Step wandering induced by the drift of adatoms in
a conserved system
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We study step wandering induced by the drift of adatoms in a conserved system. When steps are imperme-
able, in-phase wandering occurs with the step-down drift. The steps are unstable for long-wavelength fluctua-
tions and the wavelength of the most unstable mode is determined by the competition between the drift and the
step stiffness. When nonlinear effects are taken into account, the steps obey the same type of equation as that
of the step wandering due to the Ehrlich-Schwoebel effect in growth without evaporation. We carry out Monte
Carlo simulation and compare the results with the nonlinear evolution equation.
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[. INTRODUCTION perform the linear stability analysis of steps in Sec. IIl. The
time evolution of the step pattern at late stages is derived by
In a vicinal face two types of step instabilities occur in taking the nonlinear effect into account in Sec. IV. We carry
many kinds of crystals. One is step wandering, which is arPut Monte Carlo simulation and test the theory in Sec. V. We
instability for a fluctuation along the step and the other isgive @ short summary and discussion in Sec. VI.
step bunching, which is an instability for a fluctuation of the
step distance. In case of($11), the instabilities occur when Il. MODEL
a specimen is heated by direct electric curfefiThe cause

of the instabilities is considered to be the drift of adatoms. We usea confinuum step r_nodel to StUdY the linear _Stab'l'
induced by the currerit, ity of a vicinal face. Our coordinate system is such thakis

The step wandering induced by the drift has been studieggoﬁa@geg;gstiggrséegsngﬁvae)gss'Sst'gr;hsuzae&gtomn i?]lri;ent
with a continuum step model and by means of Monte Calrg__ Y bing

simulationsi%**When there is evaporation of adatoms, the_and evaporation of adatoms are neglected. When the drift is

step wandering occurs with the step-down drift if the drift " they direction, the diffusion equation of adatom density is

; 7
velocity exceeds a critical value determined by the step stiff9'Ven by
ness. When a step is isolated in a large terrace, the step obeys Jc Jc
the Kuramoto-Sivashinsk{kS) equatiot®*®whose solution i D.VZc—v ' (1)

shows spatiotemporal chaos. In a vicinal face, two-

dimensional analysté shows that grooves perpendicular to whereDy is the diffusion coefficient and is the drift veloc-

the steps appear, but the lateral fluctuation is so wild thaity. Boundary conditions at theth step are given by2®

they sometimes pinch out. Thus the unstable surface shows a . o

chaotic pattern. *Dgn- Vel Fn-yoel. =K. (c|l.—cp) +P(c|.—cl5),
The observatiogn of step wandering has been made in

Sllj(rlré]r;)t ssuirrflat(;l?aéste;rc]i?)virgegirg:i%ierg}gcgiﬁir?jrmﬁgqnt?heeWhereKi are kinetic coefficients;,, is the equilibrium ada-

S ST ; tom density at themth step, andP represents the step

same direction of the currentthe drift direction to induce oo A )

the step wandering agrees with the linear stabimypermeablI|tyz. nis the u[ut vector normal to the step toward

analysis'®!* However, the surface pattern is different from the step-down directiory is the unit vector in they direc-

the chaotic pattern expected from the thetfrgll steps wan-  tion, and +(—) indicates the lowefuppe) side terrace of

der in phase and straight grooves parallel to the current arféie step. The first term in the right-hand side of E2)

produced. represents the number of solidified adatoms, which is propor-
Recently, step wandering induced by the Ehrlich-tional to the difference between the adatom density at the

Schwoebel (ES effect’™* has been studied step and that at equilibrium. The difference of the kinetic

theoretically?®=2® With evaporation of adatoms, steps obey coefficients, K, and K_, represents the ES effeld™®

the KS equation and grooves fluctuate much in a vicinawhich also causes step instabilities in sublimation and in

face?°~2 Without evaporation, on the contrary, the fluctua- growth even if there is no drift. To focus on the effect of drift

tion of grooves is suppressed and equidistant parallel straigin the step instabilities, we neglect the ES effect and set

grooves appedf.~2 K. =K. The second term is the effect of step permeability
For step wandering induced by the drift of adatoms, theand represents the adatom current between the neighboring

surface pattern may also be affected by the presence d¢érraces bypassing solidification. When the paramete0,

evaporation. In this paper we study the step wandering inthe adatom diffusion across the step vanishes and the step is

duced by the drift of adatoms in a conserved system. We firstalled impermeable. Whe®P#0, the adatom diffusion
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across the step occurs @, andc|_ are different. If P Vn=0K(c|_—cy)+QK(c|l,—cp)
—oo, thenc|, =c|_, and the step is called perfectly perme- . .
able. =Qn[Dg(Vc|,—Vc| )—vy(c|,—c|-)]. (@)

If we neglect step-step interaction, the equilibrium adato

density is given by Mrhe position of themth step,y={,(x), is related to the

normal velocity
QCO I z9§m agm z
Cm=Coq kBeTUﬂK: ) o Um0 ®

wherecgq is the equilibrium adatom density of an isolated lll. LINEAR ANALYSIS

step,() is the atomic area3 is the step stiffness, andis the We study linear stability of an equidistant train of straight
curvature of the step. The second term is the Gibbs-Thomsaosteps with the distandefor a fluctuation along the steps. We
effect, which stabilizes the straight step. assume that the steps fluctuate in phase. With the wave num-
By solving the diffusion equatiol) with the boundary ber of the fluctuatiorg and the amplification rate,, the
conditions(2), the adatom density on the terraces are deterposition of themth step is given by,,=ml+ 5ye'qx+“’qt and

mined. The normal step velocity is given by the linear dispersion relation is calculated as
20Kv B vl/2D D hal vl QKZ ZB vl/2D hal vl 4 QKZ B vl/2D ol hal
= S S S —
wgq ) e g°sinha coshz—s D.G, e sinha S|nh2— 1€ a coshﬁcos le
2DJOKT vl 2QK2I‘ )
—G—lq Dg?sinhal —Ka coshz— g°Dga coshal
P4 " B,et hal — p A0KT oD hal v! 6
€ acoshz— cosha coshz— sa| cosha COShZE , (6)
|
where up to the first order ofl. The stability for the long-
wavelength fluctuation is determined by the first term in Eq.
1 (2 (11). The critical drift velocity to induce the instability van-
a=3 — +409?, (7)  ishes, in contrast to the case with evaporatfol? With the
Ds step-down driftp >0, the step wandering always occurs for
a long-wavelength fluctuation. The second term is the effect
G,=2DaK coshal + D2g?sinhal + K2sinhal of the step stiffness, which is always negative and stabilizes

the straight step. As a result of the competition between the
first and the second terms, the wavelength of the most un-
(8)  stable mode is given by

ZUng QEDS
B,= , 9 Nmax= 27 °\/ . (12
T (K+2P)(e"/Ps— 1) +u(e”!Ps+1) © max keTv

The fluctuation with the wavelength ., appears domi-
nantly in the initial stage of the wandering. In Ref. 8 Minoda
and co-workers observed off-angle dependence of the wave-
length of in-phase wandering. At 1100 °C, where steps are
When the steps are perfectly permealfle; =, the step  considered to be permeaBSfethe wavelength of in-phase
wandering does not occur. When the steps are not perfecthiyandering is independent of the step distance, in agreement
permeableP#« and the step distance is small/Ds<1,  with Eq. (12
KlI/Dg<1, andPI/D¢<1, for the long-wavelength fluctua-

+2P[Dga(coshal —costwl/2Dg) + K sinhal ],

~ o, OB

F:Cequ—T. (10)

tion al <1, Eq.(6) is expanded as IV. NONLINEAR EVOLUTION EQUATION
o 7 When step wandering occurs, the amplitude of fluctuation
0 =vlg?— ke TD lq* (11 increases rapidly. To predict the evolution of step position,
chq we must take into account the nonlinear effects.

245427-2
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When the step wandering is caused by the ES effect imass conservation and the geometrical condition, the step

growth without evaporation, a nonlinear evolution equationvelocity in they directiond¢/dt is given by

is derived systematically by the multiscale expangfbfy.

The behavior of its solution is different from a chaotic be- 14 AN

havior represented by the KS equatiort® When numerical - Loy

simulation of the nonlinear evolution equation is carried out

with a random initial fluctuatiofs a cellular pattern with the o [Qc%ve, QAT 4
— +

wavelength of the most unstable mode appears and the am- =—
plitude of the step wandering increases with time %45
Though an evolution equation, which the drift-induced . . R
step wandering obeys, may be derived systematically by thg/_here the subscript O_f ¢ represents the partial derivative
multiscale expansion, here we give a heuristic derivation O?N'th respect tax. The first term in Eq(19) comes from Eq.

. . T 17), the effect of the step tilting, and the second term comes
the nonlinear equation. For simplicity we assume that thi . X : .
steps are impermeable. We consider an equidistant train fom Eq.(18). The linear dispersion obtained from H9)

steps whose normal direction is tilted from thexis at an coincides with Eq(11). Since we have the same equation as

angled. We set thet axis along the step and tieaxis in the that of Ref. 24, we expect the same wandering behavior.
step-down normal direction. In th& direction the step dis-

oX

L H 9

1422 1+2 x| (14332

tance is given byl , =1 cosé and the drift velocity isv

=v cosf. The adatom density is given byg({)=A,

+Bexp@, {/Dy, where
K(e"t't/Ps—1)cg,

K(e"'t/Ps—1)+p, (11 /Ps4 1)

A (13

2vicgq
CK(e't/Ps—1)+p ('l Ps+ 1)

B, (14)

The adatom current in thé direction j({) and in the¢
directionj(¢) are given by

] dc
Jg(§)=—Dsd—£+vlC=vLA§, (19
Je(D)=c(Qvy, (16)

where the drift velocity in the direction isvj=v sin6. The
adatom current on the terrace in thelirectionJ{" is given

by

1) I ) . ] Dy sing
J= Ody[—]g(g’)sm6?+J§(§)cos¢9]=2TAg

~Cogv siné coso, (17)

V. MONTE CARLO SIMULATION
A. Simulation model

To test the above analysis we carry out Monte Carlo simu-
lation. The algorithm is the same as that in Ref. 13. We
consider g8001) vicinal face of a cubic lattice with the lattice
constanta=1. x axis is parallel to the steps aiydaxis is in
the step-down direction. The boundary conditions are peri-
odic in thex direction and helical in the direction. The
steps are solid-on-solid steps, i.e., each step position is a
single-valued function o%. Therefore, we denote the surface
configuration by they coordinatey,(i) of the mth step on
the ith lattice site in thex direction. We forbid two-
dimensional nucleation and formation of multiple hight
steps. Then, solidification and melting occurs only at the
steps.

We choose the time increment for each diffusion trial in
such a way to make the surface diffusion coefficiBgt=1.
When the drift of adatoms is weala/D <1, the drift mo-
tion is taken into account as a biased diffusion. If the drift is
in the y direction, the probability for hopping of an adatom
from the site (,j) to the site {(,j=1) is (1xval2kgT)/4
and to the sitei(x1,j) is 1/4, wherev(—v) corresponds to
the step-dowr(step-up drift.

In Sec. IV we assumed that steps are impermeable in de-
riving the nonlinear evolution equation, E@.9). Hereafter
we also assume that steps are impermeable: adatoms cannot

where we have assumed that the step distance is smgp to the neighboring terraces by diffusion. Adatoms can go
v, 1/ID¢<1. Since there is no evaporation of adatoms, th€0 the neighboring terraces through successive solidification
change of adatom current is accompanied by solidification ofnd melting. Solidification occurs when an adatom comes to
melting of atoms at the stepif(l) is the adatom current due an edge of a terrace. When solidifying adatom is at the lower
to the tilt of the step. There is other type of adatom currenside edge, the atom solidifies on site. When the adatom is at

J@ It comes from the difference of the chemical potentialthe Upper side edge, it moves down to the lower side edge to
w along the step and given by solidify. However, it cannot solidify if the site is occupied by

another adatom.

d( m The probability for the solidification is given by
I =1 costD 2 —| =], (18)
99s\ kgT .
AE+AU—-¢
wheres s the arc length of the step a@dd/ds=cosé. When ps=|1+ex kB—T (20
the step is curved, the Gibbs-Thomson effect determines the
chemical potentiaj.=Q B«. Total adatom current in the  The increment of step energy is given by

direction is given byJ,=JY+J( By considering the AE¢=eX (increment of the step perimeter lengtivhere e

245427-3
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is the nearest-neighbor bond energy. The bond energy 256

. -~ WW

related to the step stiffneg® as W

i el e

192 N
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AN el
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AU is the change of step interaction energy. For simplicity, WW

the interaction between neighboring steps is approximated by OW
an interaction within the samecoordinate in our simulation. 0 64 128 192 256

We consider the elastic repulsive interaction, and weluise (a) X

=3,A/lym(i) —yn(i)|? as the interaction potential between
the mth step anch(=m=1)th step, wheré\ is a parameter
representing the strength of the interactigns the chemical
potential gain by solidification, which is related to the equi-
librium adatom density2, as’®

S0 SP LTSNSO

c? o
e 1+ alkeT

(22

N
B
it
S

Melting of solid atom occurs when there is no adatom on
top of the atom. The probability of melting is given by

-1

Pm= (23

. AE+AU+ ¢
+ex kB—T

The melted atom stays there with probability 1/2 and moves
onto the upper terrace with probability 1/2 if the site is not
occupied by another adatofatherwise, it cannot meltThe

weak ES effect appears in the algorithm, but it does not give
serious effects in our simulatioisee Ref. 13 for details | e aaen e
0 64 128 192 256

(©) X

B. Simulation result

Figure 1 represents a vicinal face with drift of adatoms in  FIG. 1. Snapshots of surface without evaporation of adat@ns
a conserved system. We start simulation with equidistanpith the drift velocity va/2kgT=0.2 att~1.3x10, (b) with the
train of straight steps. When the step is impermeable, botdrift velocity va/2kgT=0.2 att~3.6x 10%, and (c) with va/2kgT
step wandering and step bunching occur with step-dowrt ~0-2 att~4.1x1C°. The system size i& X H=256x 256 and
drift. 2213 Then we use strong step repulsion and suppress tHg€ Step number i&=32. Other parameters aee=1.0, ¢=1.5,
step bunching. Figures(d) and Xb) represent the vicinal A=64.0.
face with step-down drift. In-phase step wandering occurs L i i 5
and a train of equidistant grooves appears. In the initial . _
stage, short small grooves appear like nucleaftfeig. 1(a)]. w(t)= N ; \/[ EI (y“("t)_ L EI yalh,O |
With increasing time, the groove structure spreads the whole (24)
surface and the amplitude of grooves grd®gy. 1(b)]. The
pattern is similar to that of Ref. 8. When the amplitude ofwhereN is the number of step4, is the system size in the
step wandering becomes comparable to the system size, thgFection. To suppress the step bunching we use the strong
groove structure is broken and the step bunching starts. Thitep repulsiol’A=64. In the initial staget<2.0x 10%), the
extreme situation is unphysical because we neglected the itecal wandering hardly occurs and the step width is small.
teraction between steps in thalirection. With step-up drift, Once the in-phase step wandering occurs, the width grows
the vicinal face is stable and wandering does not of€ig.  rapidly (2.0<10*<t<2.0x 10°). With inceasing the width,
1(c)]. The drift direction to induce the step wandering agreeshe growth becomes slowt#2.0x10°) and obeysw~t?
with the linear analysis, and the formation of straightwith B<1/2. In the nonlinear analysf4??® the step width
grooves agrees with the solution of the nonlinear evolutiorincreases with time as’?, which agrees with our simulation.

equatiort*%° The power law growth continues until the step width be-
Figure 2 represents the time evolution of the step width comes unphysically large and the validity of the model
defined by breaks down t>6.0x 10°).

245427-4
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FIG. 2. Time evolution of the step width. The system sizé is FIG. 4. Snapshots of step wandering with evaporation of ada-
XH=128x128 with step numbeN=16. The drift velocity is  toms att~3.6x10*. The adatom lifetime isr=1024. The other
val2kgT=0.1. Other parameters are the same as in Fig. 1. parameters are the same as in Fig. 1.

Figure 3 represents snapshots of the step wandering witfjcinal face with impermeable steps under evaporation.
aWeaker Step repulsion. Since the repu|Si0n iS Weak, the Stmhen Step bunching is Suppressed by the Strong Step repu'-
bunching, which is suppressed in Fig. 1, occurs. In the initiakjon, in the initial stage, in-phase wandering occurs and par-
stage[Fig. 3(a)], local wandering occurs easily and many gjle| straight grooves appear. However, with increasing am-
narrow grooves appear. The initiation of groove formation iSpIitude of wandering, the grooves fluctuate wildly and
inhomogeneous and looks like nucleation. This featurgyinching out of grooves occurs. The result of Monte Carlo
agrees with experimefitThe fluctuation of grooves induce simulation (Fig. 4) exhibits this tendenc} In our simula-
the local step bunching, in contrast to the regular array ofjon, the fluctuation of grooves is small because of weak
grooves with strong step repulsidhig. 1). evaporation. If the evaporation is strong, the fluctuation

Figure 4 represents a snapshot of step wandering witRrobably becomes large. However, since the wavelength of

evaporation of adatoms. Except the evaporation, the parangtep wandering is longer, large scale simulation is necessary.
eters are the same as those in Fig. 1. With the evaporation,

correlation between steps becomes weak and fluctuation of
grooves, which is suppressed in in Fig. 1, is large and break
of grooves occurs. In Ref. 12 we studied time evolution of a We studied step wandering induced by the drift of ada-
toms in a conserved system. In the linear analysis the in-
phase step wandering occurs with the step-down drift if the
step is not perfectly permeablB#«~. We derived the non-
192 linear evolution equation of in-phase wandering and showed
that the type of the nonlinear equation is the same as that in
Y 128 Refs. 24 and 25. We carried out Monte Carlo simulation with

s S AN o

N A = i e

M impermeable steps. The results of simulation qualitatively
64 agree with the theoretical analysis.

W\\Iﬂ In the step instabilities of §L11) vicinal faces, tempera-

oo =N ture is separated into at least three ranges: range |
00 64 128 I192 256 (83000—1000°C), range Il (1000°C—11800C) and range
Il (1180 °C-1300°C) according to the current direction to
induce the step bunchifg®3° Since the step bunching is
observed in range | with step-down current and in range |l
with step-up current, the steps are considered to be imperme-
able in range | and permeable in rangé1f:3°

Recently, in-phase step wandering has been observed in
range | and Il when a crystal is sublimated with step-down
current® Since the drift of adatoms is parallel to the current,
the step wandering occurs irrespective of step permeability.
Then our analysis agrees with the experiment although we
v , i have neglected the evaporation of adatoms in our analysis. In
00 128 ' 192 o5 Si(lll)_ the surface diffusion length is mgch_larger than the
®) x step distance and th_e effect of evaporation is not crucial.

In a recent experimefithe time dependence of the am-

FIG. 3. Snapshots of step wandering with weak step repulsioplitude of step wandering was measured i1$1) vicinal
A=40.0(a) in an early staget1.8<10% and(b) in a late stage face at 1100 °C. When the step wandering occurs, the ampli-
(t~3.2x 10%) Other parameters are the same as in Fig. 1. tude of wandering increases rapidly in the initial stage. In the

VI. SUMMARY AND DISCUSSION

256
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late stage the growth rate decreases and saturation of the When the steps are perfectly permeable, neither the step
amplitude occurs. In the initial stage of the step wanderingbunching nor the step wandering occurs in a conserved sys-
the growth of amplitude is rapid in our simulation and thetem, In range Il, where the step is considered to be perme-
exponential growth is expected from the linear analysis. Bothble, both the step wandering and the step bunching are
the linear analysis and the simulation agree with the experighserved:6-8 To interpret the result, two scenarios are pos-
ment. In a late stage the amplitude increases’asith B sible. One is that the steps are almost perfectly permeable
~1/2 in our simulation and in the nonlinear analysis. In theand the evaporation of adatoms is not negligible. Then both
experiment, slow growth is observed before the saturationnstabilities are possible but evaporation is not strong enough
though it is not clear whether the growth law t¥% The o destroy the straight grooves produced by the step wander-
saturation of amplitude observed in the experiment does nghg. The other is the instabilities of the partially permeable
agree with the nonlinear analysis. Even if theomponent of  steps, and evaporation is negligible. When the steps are par-
the ste_p repulsion, which we n_eglected in our.simulation, igially permeable, as expected by H4l), the in-phase step
taken into account, the saturation of the amplltude does I’]Qhandering occurs with the Step-down drift despite the ab-
occur?® There are many discussions on this discrepancy ofence of evaporation. Considering the result for perfectly
step fluctuation amplitude at the very late stages in the eXpermeable step's we think that the step bunching may occur
periment and in the theoretical and numerical analyses, bujith step-up drift if the step permeability is large enough. To

the problem is not yet settled. clarify the scenario, we are investigating the instabilities with
In our analysis, both the step wandering and the step finite permeability.

bunching occur with the step-down drift if the steps are im-
permeable. In experimeft,in range I, where the steps are
considered to be impermeable, the in-phase step wandering
occurs on the surface with large off angles and the step
bunching occurs with small off angles. We may interpret the This work was performed as a part of the program “Re-
result as follows. When the off angle is large, the step dissearch for the Future” of the Japanese Society for the Pro-
tance is small and the repulsion between steps is strongnotion of SciencgJSP$ and supported by a Grant-in-Aid
Then the step bunching is suppressed and only the step wafiem JSPS. Y. S. and M. V. benefited from the interuniversity
dering is observed. When the off angle is small, the stegooperative research program of the Institute for Materials
distance is large and the step repulsion is weak. Then the stépesearch, Tohoku University. Y.S. acknowledges the grant
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