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The structure of the flux-tube profile in Abelian-projected~AP! SU~2! gauge theory in the maximally
Abelian gauge is studied. The connection between the AP flux tube and the classical flux-tube solution of the
U~1! dual Abelian Higgs model is clarified in terms of the path-integral duality transformation. This connection
suggests that the electric photon and the magnetic monopole parts of the Abelian Wilson loop can act as
separate sources creating the Coulombic and the solenoidal electric field inside a flux tube. The conjecture is
confirmed by a lattice simulation which shows that the AP flux tube is composed of these two contributions.
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I. INTRODUCTION

When the QCD vacuum is viewed as adual supercon-
ductor @1,2#, the quark confinement mechanism can be i
mediately understood: the~color-!electric flux associated

with a quark-antiquark (q-q̄) system is squeezed into a
almost-one-dimensional flux tube by the dual Meissner ef
caused by magnetic monopole condensation. This pic
leads to a linear confinement potential and is a dual analo
of the magnetic Abrikosov vortex in an ordinary superco
ductor @3–5#. It is natural to expect that it can be quantit
tively formulated by a dual version of an Abelian Higg
model, the dual Abelian Higgs~DAH! model. The
Lagrangian—in addition to the kinetic terms of each fie
and a minimal coupling between the two fields—should c
tain a monopole self-interaction term that allows for a brok
phase of dual gauge symmetry. The DAH model indeed
an electric flux-tube solution of the staticq-q̄ system@5#.

A linear potential emerging from a flux tube is quite we
come to give an interpretation for the area law behavior
the Wilson loop observed in lattice QCD simulations@6#. It
would explain the Regge trajectory pattern or other stringl
properties of hadrons@7#. Then the problem arises of how t
derive the dual superconductor scenario from QCD, tha
how to formally derive the DAH model from QCD. One als
would like to observe certain characteristic features of
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dual superconductor, such as the formation of flux tub
through a Monte Carlo simulation of lattice QCD directly.

As for the formal derivation, it is known that if magneti
monopoles are introduced as the consequence of Abe
projection in the manner of ’t Hooft@8# and if the diagonal
components of gluons play a dominant role~compared to the
off-diagonal ones! in the long distance behavior of QCD
~Abelian dominance!, a condensed phase of monopoles
realized beyond a certain critical scale@9,10#. Remarkably,
lattice QCD simulations with non-Abelian configurations u
dergoing ’t Hooft’s Abelian projection@typically in the maxi-
mally Abelian gauge~MAG!# support this scenario numer
cally. For instance, the string tension measured by
‘‘Abelian Wilson loop’’ constructed from the Abelian link
variables~the ‘‘Abelian string tension’’! is almost saturating
the non-Abelian string tension@11#. In this context, applying
the Zwanziger formalism@12#, one can introduce the dua
gauge field which is minimally coupled to monopoles. Su
ming over monopole current trajectories@13,14#, one can
also introduce a monopole field. This formulation final
leads to the DAH model@15–18#. However, it is difficult to
determine the effective couplings of the DAH model throu
this analytical derivation, because one cannot treat the mo
pole current system quantitatively. In order to accompl
this, one would need numerical investigations of monop
dynamics on the lattice, for instance, by means of the inve
Monte Carlo method@19–22#. This might require more com
plicatedAnsätze for matching the monopole actions@23#.

Just in order to seek flux-tube configurations in the no
Abelian gauge theory, the profiles of the electric field and
monopole current distribution induced by an Abelian Wils
loop have been studied within the Abelian-projection sche
@24–27#. It has been found that the shapes are similar
those of the flux-tube solution in the DAH model. From no
©2003 The American Physical Society18-1
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we call the former one ‘‘Abelian-projected~AP! flux tube’’
and the latter one ‘‘DAH flux tube.’’ We remark that th
connection between the AP flux tube and the DAH flux tu
is not on equal footing because the former contains the qu
tum effects at work in non-Abelian lattice gauge simulatio
on the original lattice, while the latter is a classical soluti
obtained by solving the field equations with dual variabl
Having in mind this conceptual difference, it is still wort
determining the effective couplings of the DAH mode
which could not be fixed through a formal derivatio
through the comparison between the two flux tubes. Thi
interesting because, once the DAH parameters are fixed,
can use the DAH model for further analyses: for discuss
hadronic objects@28–30#, for investigating the dynamics o
the flux tube by deriving an effective string action from t
DAH model @31–36#, etc.

Up to now, the quantitative status of the comparison
tween the AP and the DAH flux tubes has not been con
sive, although this has been attempted several times@24–
27,37#. In order to find DAH parameters which posse
physical meaning in this context, at first it is important
understand to what extent the AP flux tube can be re
related to the DAH flux tube, first of all since they are d
fined in terms of different~original and dual! variables. This
should become clear once the duality transformation is
ried out in detail. Second, also a more systematic study of
AP flux-tube profile is required to have well-controlled la
tice data; one needs to check the Gribov copy effect hid
in the process of MAG fixing, has to examine to what exte
the scaling property is fulfilled, should investigate theq-q̄
distance dependence of the flux-tube shape, etc., on a s
ciently large lattice volume.

In this paper, we aim to address only the first part,
qualitative and detailed relation between the AP and
DAH flux tubes. Here we do not attempt to fix the DA
model parameters. What we plan to do here is to show
the AP flux tube has the composed internal structure as
DAH flux tube has, going through the path-integral dual
transformation of the AP gauge theory. In fact, in the DA
model, as we explain later in detail, the appearance of
electric flux tube is due to the superposition of two w
distinguished components, a Coulombic electric field,
rectly induced by the electric charges, and a solenoidal e
tric field induced by a monopole supercurrent. They are
sponsible for the Coulombic and the linearly rising pa
respectively, of the inter-quark potential in the DAH mod
If the electric flux profile can be uniquely decomposed in
case of the AP flux tube as well, analogously to the DAH fl
tube, this will be an additional argument in favor of the DA
model description, which will be important for further qua
titative discussions.

The guiding idea to discover this kind of structure also
the AP flux tube comes from the measurement of theq-q̄
potential in terms of the Abelian Wilson loop. The investig
tion of the Abelian Wilson loop using the decomposition in
an electric photon part~‘‘photon Wilson loop’’! and a mag-
netic monopole part~‘‘monopole Wilson loop’’! shows that
also the Abelian potential consists of a Coulombic and
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linear potential@38–40#. We notice that this structure is quit
similar to that of theq-q̄ potential in the DAH model.

The paper is organized as follows. In Sec. II we sh
discuss the theoretical connection of the photon and
monopole Wilson loops with the composed structure of
DAH flux tube. We do this by closely looking at the path
integral duality transformation of the AP gauge theory. M
tivated by lattice results on the effective monopole action
adopt, as our starting point, a Villain type compact QED
the approximate action of theeffective, AP gauge theory. In
Sec. III we present the numerical results, the flux pro
induced by the photon and monopole Wilson loops, m
sured within SU~2! lattice gauge theory in the MAG. We
come to the conclusion that the AP flux tube is composed
of Coulomb and solenoidal parts, which add up to the f
electric flux tube, in the same manner as the DAH flux tu
Section IV is the summary.

The due improvement in the systematic study of the
flux tube including all details of the quantitative analysis
our lattice data, along the guiding lines formulated in t
present paper, is the subject of our follow-up paper@41#.

II. THE COMPOSED STRUCTURE OF THE FLUX TUBE
IN THE DAH MODEL

In this section, based on a path-integral analysis, we
cuss a possible theoretical relation between the elec
photon and magnetic-monopole parts of the Abelian Wils
loop in the AP-SU~2! lattice gauge theory and the compos
internal structure of the flux-tube solution in the U~1! DAH
model.

From lattice studies of the effective monopole action
the MAG @19–22#, it is numerically suggested that, at som
infrared scale, the partition function of the AP-SU~2! theory
is represented by the Villain type modification of compa
QED. Thus, we regard it as the effective AP gauge the
and start from the partition function

Z5E
2p

p

Du (
n(m)PZ

expF2
1

2
~F,DD F !1 i ~u, j !G .

~2.1!

F(C2) is the field strength

F5du22pn(m), ~2.2!

which is composed of compact link variablesu(C1)
P@2p,p) and magnetic Dirac stringsn(m)(C2)PZ @42#. u
corresponds to the Abelian gauge field, which interacts w
an external electric currentj (C1)PZ. The operatorD is a
general differential operator andD is the Laplacian on the
lattice. In the infrared limit, it is numerically shown that th
operator D is well described by the following form:D
5beD

211a1gD, where be , a and g are renormalized
coupling constants of the monopole action which satisfy
relation be@a,g @43#. The ~inverse! effective gauge cou-
pling is be[4/e2. Since the magnetic Dirac stringsn(m) are
bordered by magnetic monopole currentsk(C3) as dn(m)
8-2
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52k ~hencedk50), the Abelian Bianchi identity is now
violated asdF522p dn(m)52pk.

For a conserved electric currentd j 50, we call

WA@ j #[exp@ i ~u, j !# ~2.3!

the Abelian Wilson loop. Its electric-photon (Wph) and the
magnetic-monopole (Wmo) parts are specified as follows
Applying the Hodge decomposition tou, we have the rela-
tion

u5D21Du5D21~dd1dd!u

5D21dF12pD21dn(m)1D21ddu

5D21dF12pD21dp12pq1D21dd~u22pq!.

~2.4!

In the last line, we have used the relationn(m)5p1dq,
wherep(C2), q(C1)PZ. This means that an arbitrary shap
of the open magnetic Dirac stringn(m) is in general described
by the sum of a fixed open stringp with dp52k and the
closed stringsdq with d2q50. Since all possible close
string fluctuations are summed over, one can choose an
trary open stringp. Inserting Eq.~2.4! into Eq. ~2.3!, the
Abelian Wilson loop can be written as

WA@ j #5exp@ i ~D21dF, j !#•exp@ i ~2pD21dp, j !#

5Wph@ j #•Wmo@ j #, ~2.5!

where the third and fourth terms of Eq.~2.4! do not contrib-
ute to this decomposition because of the relatio
exp@2pi(q,j)#51 andd j 50.

Let us proceed with the path integration of the partiti
function ~2.1! keeping trackof the two parts of the Wilson
loop, Wph@ j # andWmo@ j #. For simplicity and for picking up
the essence of the following discussions, we restrict the
ferential operator in Eq.~2.1! to the leading term,D
5beD

21. The path integral duality transformation of such
model itself has been discussed in many places since
works @44,45#.

We first rewrite the summation over Dirac strings as
independent summation over monopole currentsk ~with con-
straintdk50) andq as

(
n(m)PZ

5 (
kPZ, dk50

(
qPZ

. ~2.6!

Then, the integration with respect tou is replaced by

E
2p

p

Du (
qPZ

5 È`

Duph, ~2.7!

where uph5D21dF represent noncompact link variable
Acting with an exterior derivative onumo52pD21dp, one
finds dumo52p(n(m)1C(m)2dq) with C(m)5D21dk.
Thus, the partition function is written as noncompact QE
with summation over closed monopole currents,
09401
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Z5E
2`

`

Duph (
kPZ, dk50

expF2
be

2
~duph12pC(m)!2

1 i ~uph1umo, j !G . ~2.8!

In this expression one still realizes the violation of Abeli
Bianchi identity in the formdF52pdC(m)52pk due to
dC(m)5k. Using the relation (duph,C(m))5(uph,dC(m))
50 ~since dC(m)50) one can write (F)25(duph)2

14p2(C(m))2. Taking into account the gauge fixing cond
tion duph50, one can integrate overuph. This yields a direct
interaction term between electric currentsj via the Coulomb
propagatorD21. Thus we have

Z5 (
kPZ, dk50

expF2
1

2be
~ j ,D21 j !

22p2be~C(m)!21 i ~umo, j !G . ~2.9!

Defining C(e)(* C2)[D21d* j in analogy toC(m)5D21dk,
the first term of the action can also be written in the form

1

2be
~ j ,D21 j !5

1

2be
~* j ,D21* j !

5
1

2be
~C(e)!252p2bm~C(e)!2, ~2.10!

where we have introduced the~inverse! dual gauge coupling
bm51/g2, which should satisfy 4p2bebm51 ~i.e. Dirac’s
condition eg54p). Similarly, the square ofC(m) can be
rewritten as

2p2be~C(m)!25
1

2bm
~k,D21k!5

1

2bm
~* k,D21* k!.

~2.11!

The exponential of this expression can further be underst
as resulting from functional integration over the magne
part of a noncompact dual gauge fieldũmo(* C1), minimally
coupled to the magnetic monopole current,

expF2
1

2bm
~* k,D21* k!G

5E
2`

`

DũmoexpF2
bm

2
~dũmo!21 i ~ ũmo,* k!G .

~2.12!

We have attached the superscript ‘‘mo’’ in order to distin-
guish it from the photon part of the dual gauge fie
ũph(* C1), which is defined in analogy toumo as

ũph52pD21dn(e). ~2.13!

Heren(e)(* C2)PZ denotes electric Dirac strings, satisfyin
dn(e)52* j , which necessarily accompanies the presence
8-3
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external electric charges. Formally,ũph enters our consider
ation when we reexpress the monopole Wilson loop, us
the relation

~umo, j !2~ ũph,* k!522p~p,* n(e)!52pN ~NPZ!.
~2.14!

This means that the direct coupling ofj to umo can be set
equal to that ofk to ũph, because of exp@i(2pN)#51. Thus,
the partition function is found to be

Z5E
2`

`

Dũmo (
kPZ, dk50

expF2
bm

2
~dũmo12pC(e)!2

1 i ~ ũmo1 ũph,* k!G . ~2.15!

The action is invariant under the transformationũmo° ũmo

1d f̃ . This is nothing but the realization of the dual gau
symmetry, due to the conservation of magnetic monop
currents,dk50. In this action, the electric currents are no
implicitly defined via the violation of the dual Abelian Bian
chi identity written down for the dual field strength

F̃5dũmo12pC(e) ~2.16!

asdF̃52pdC(e)52p* j , wheredC(e)5* j .
The summation over monopole currents is the most d

cult part of the evaluation. In principle, one needs to kn
the monopole dynamics, for instance, such as monopole
rent distribution in the vacuum and self-interactions, etc. T
numerical investigations of the effective monopole actio
based on lattice Monte Carlo simulation in the MAG provi
such information, which has suggested the approximate f
of the AP action given in Eq.~2.1!. Here, we are not going to
deal with these complications, since the kinetic structure
the dual gauge field, being composed of a regularũmo part
and a singularũph part, is not affected by the summatio
over monopoles. We then assume that the monopole cu
system is described by the grand canonical ensemble
closed loops, interacting via the dual gauge field. Then
complex-valued scalar monopole fieldx, which minimally
couples to the dual gauge field, is introduced@13,14# instead
of monopole currents as

(
kPZ, dk50

exp@ i ~ ũmo1 ũph,* k!#

→E DxDx* exp„2$u@d1 i ~ ũmo1 ũph!#xu2

1l~ uxu22v2!2%…, ~2.17!

where theluxu4 (l.0) term plays the role of keeping th
density of loops finite~it produces a short distance repulsio
between the loop segments! and v denotes monopole con
densate which describes the typical scale of the system
this way, we arrive at the DAH model,
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SDAH5
bm

2
~ F̃ !21u@d1 i ~ ũmo1 ũph!#xu21l~ uxu22v2!2.

~2.18!

Although we cannot argue the precise values of the effec
couplings in this formal derivation, we can restrict ourselv
to the range of parameters able to describe the conde
phase of monopoles, according to the lattice results@20#.

Due to the singular structure ofũph associated withn(e)

@see Eq.~2.13!#, the DAH modelhas the open flux-tube so-
lution, obtained by solving the field equations,

bm]m~]mũn
mo2]nũm

mo!52~ ũn
mo1 ũn

ph!f25kn ,
~2.19!

]m]mf1~ ũm
mo1 ũm

ph!2f52lf~f22v2!.
~2.20!

Here, we have inserted the polar decomposition of the mo
pole fieldx5fexp(ih) (f,hPR), and the phaseh has been
absorbed into the definition ofũm

mo . The boundary conditions
of the dual gauge field and monopole field are determined
as to make the energy of the system finite: just on the elec
Dirac stringn(e), ũm

mo50 andf50 whereas at large distanc

from the string,ũm
mo52 ũm

ph and f5v. After solving the
field equations~in general, numerically!, we can compute the
profile of the electric field as the spatial part of the fie
strengthF̃ in Eq. ~2.16!,

E5“3ũ mo12pC(e)[Emo1Eph, ~2.21!

and the magnetic current as the spatial part of the mono
current,

k52~ ũ mo1ũ ph!f2, ~2.22!

respectively. Concrete forms of the field equations and
boundary conditions of fields for the straightq-q̄ system are
given in Appendix A.

A typical flux-tube solution, the profile of the electric fiel
and the monopole current, for the straightq-q̄ system is
shown in Fig. 1. The parameters we have chosen arebm

51/g251, mB•a5A2gv•a50.5 and mx•a52Alv•a

50.5, taking theq-q̄ separationr 516a, wherea is a certain
length scale. The Ginzburg-Landau parameter is herek
[mx /mB51, which means the vacuum has supercondu
ing properties just between type-I and type-II vacuum. T
set of parameters is just to illustrate the flux-tube profile
an example. In Fig. 2, we then show the ingredient of
electric-field profile based on Eq.~2.21!. We plot the flux-
line pattern of the electric fields along theq-q̄ axis, and the
strength of each field as a function of the cylindrical radiu
In Fig. 3, we plot the strength of azimuthal monopole-curre
profile. Here, for the plots of the electric field and monopo
current, we have added two cases corresponding tomB•a
50.5 andmx•a50.25 (k50.5, type I! andmB•a50.5 and
8-4
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FIG. 1. Profiles of electric fieldE•a2 ~left!
and monopole currentk•a3 ~right! in the DAH
model, wherea denotes a certain length scal
The quark and antiquark are placed at (x,y,z)
5(0,0,28) and (0,0,8).
-

d

irac
ed
ds

ic
tion
pe
ing
mx•a50.75 (k51.5, type II!. Note that only the monopole
related part depends onk, while the photon part does not.

In Fig. 2, we find that although the electric field derive
from the monopole part of the dual gauge field,Ez

mo , takes
positive value near the center, it turnsnegativebeyond a
certain radiusrc ~in the given case,rc;7a): this signals the
appearance of asolenoidalelectric field which plays an im-
portant role to cancel the Coulombic field,Ez

ph , induced by
09401
electric charges, at some distance from the electric D
string. By this interplay the total electric field is squeez
from the dual superconducting vacuum, which finally lea
to a flux tube. This is thecomposed internal structureof the
DAH flux tube we are referring to. The solenoidal electr
field and monopole supercurrent are related by the rela
“3Emo5k. It is important to realize that although the sha
of total electric field profile becomes steeper with increas
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FIG. 2. The flux-line pattern of the electric field~upper row! and the electric field strength as a function of the cylindrical radius~lower
row!: ~a! the solenoidal electric fieldEmo and ~b! the Coulombic fieldEph add up to the flux-tube profile of the full electric field~c!.
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k due to the change of its monopole part, the flux tube
always composed of the Coulombic and solenoidal elec
fields. For the infinitely separatedq-q̄ system, the Coulombic
contribution disappears and only the solenoidal electric fi
remains, where translational invariance of the flux-tube p
file along theq-q̄ axis becomes manifest.

Now we come to the main point of the present secti
Through the path-integral duality transformation, which h
formally led us to the DAH model, we have found the role
the photon Wilson loopWph@ j #5exp@i(u ph,j)# and the mono-
pole Wilson loopWmo@ j #5exp@i(u mo,j)# for the DAH model
and its flux-tube solution;Wph@ j # leads to the square of th
Coulombic field strengthC(e) after the integration overuph

@see Eq.~2.10!#, while Wmo@ j # is translated into the interac
tion term betweenũph52pD21dn(e) and the monopole field
x @see Eqs.~2.14! and ~2.17!#; namely, the photon Wilson
loop provides the origin of the Coulombic electric field co
tribution to the DAH flux tube. On the other hand, the mon
pole Wilson loop determines the non-trivial behavior of t
dual gauge field, inducing the monopole supercurrent and
solenoidal electric field component of the DAH flux tub
The Coulombic and solenoidal electric fields are respons
for the Coulombic and linearly rising parts of the inter-qua
potential in the DAH model. In the actual AP lattice gau
simulations, it has been numerically shown that the poten
detected by the photon and monopole Wilson loops have
the same feature@38–40#. Now, this is naturally understoo
from the relation between each Wilson loop and the co
posed internal structure of the DAH flux tube. We then e
pect that the AP flux tube will exhibit the same compos
structure as in the DAH flux tube, whereWph@ j # andWmo@ j #
would be respective sources.

III. DETECTING THE COMPOSED STRUCTURE
OF ABELIAN-PROJECTED FLUX TUBE

In this section, we are going to confirm the compos
structure of the AP flux tube by measuring the electric fi
and monopole current profiles induced from the photon
monopole parts of the Abelian Wilson loop, based on
Monte Carlo simulation of SU~2! lattice gauge theory in the
MAG.

0.05

0.04

0.03

0.02

0.01

0.00

k ϕ
 / 

a3

12840
ρ/a (at z=0)

 κ = 1.5
 κ = 1
 κ = 0.5

FIG. 3. The monopole current strength as a function of the
lindrical radius.
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In order to measure the the flux-tube profile induced
the Abelian Wilson loopWA@ j #5exp@i(u,j)#, one can sche-
matically use the following relation for a local operatorO:

^O& j5

*2p
p Du(

n(m)
Oexp@2 1

2 ~F,DDF !1 i ~u, j !#

*2p
p Du(

n(m)
exp@2 1

2 ~F,DDF !1 i ~u, j !#

5

*2p
p Du(

n(m)
OWA@ j #exp@2 1

2 ~F,DDF !#

*2p
p Du(

n(m)
WA@ j #exp@2 1

2 ~F,DDF !#

5
^OWA@ j #&0

^WA@ j #&0
, ~3.1!

where^•••& j denotes an average in the vacuum with an
ternal source, and̂•••&0 an average in the vacuum withou
such source. Thus by measurement of the expectation va
of ^OWA&0 and the Abelian Wilson loop̂WA&0, the expec-
tation value of a local operator associated with the exter
source,^O& j , can be evaluated. Below, the Abelian fie
strengthF and the monopole currentk have been chosen a
local operatorsO. In the actual simulation, since we do n
know the exact form of the AP action, we first generate no
Abelian SU~2! gauge configurations and then specify t
U~1! degrees of freedom by Abelian projection after MA
fixing.

Typical profiles of the electric field and monopole curre
measured in this context are shown in Fig. 4~some details of
the simulation are given below briefly and in Appendix B!.
Already at glance, the shapes of the resulting profiles
very similar to the flux-tube profiles obtained within th
DAH model, see Fig. 1.

Before discussing the numerical simulation further, it
useful to consider what happens if we insertWph and Wmo
into Eq.~3.1! instead ofWA . Using Eq.~2.5! and writing the
Abelian field strength asF5duph12pC(m)[Fph1Fmo ,
we can expect

^F& j5
^~Fph1Fmo!Wph@ j #Wmo@ j #&0

^Wph@ j #Wmo@ j #&0

'
^FphWph@ j #&0

^Wph@ j #&0
1

^FmoWmo@ j #&0

^Wmo@ j #&0

5^Fph& j1^Fmo& j . ~3.2!

Here, we have taken into account that in many cases la
simulations in the MAG have found operatorsXph andYmo ,
defined in terms of the photon part and the monopole par
the Abelian link variableu, respectively, to be uncorrelated
^XphYmo&0'^Xph&0^Ymo&0 ~see, e.g., Ref.@40# and refer-
ences therein!. From the relation~3.2!, we expect that the
sum of the flux profiles induced by the photon and monop
Wilson loops reproduces the total AP flux tube.

-

8-6
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FIG. 4. Profiles of electric field~left! and
monopole current~right! at b52.5115, with an
Abelian Wilson loop of size 1634 on a 324 lat-
tice. The corresponding quark and antiquark p
sitions are (x,y,z)5(0,0,28) and (0,0,8).
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Second, let us consider the expectation value of the mo
pole current k. Since we have the obvious relationk
52dC(m)5kmo , where a photon part of the monopole cu
rent does not exist,kph}d2uph50, we will observe

^k& j'
^kmoWmo@ j #&0

^Wmo@ j #&0
5^kmo& j . ~3.3!

This means that the correlator of the monopole current o
with the monopole Wilson loop will account for the full ex
pectation value of monopole current profile and, at the sa
time, the correlator with the photon Wilson loop vanish
everywhere.

We then show the corresponding lattice results, the e
tric field profile in Fig. 5 and the monopole current profile
Fig. 6, both as a function of the cylindrical radius. The
measurements have been done atb52.5115 on a 324 lattice
after the MAG has been fixed. Theq-q̄ distances arer
56a and 12a, and the measurements refer to thex-y plane
at half-distance. The lattice spacing isa50.081 fm, which
has been determined from the non-Abelian string tens
sL , Asphys5AsL/a[440 MeV. Physically, theq-q̄ dis-
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tances correspond to 0.48 fm and 0.97 fm, respectively~see
Appendix B!. In Fig. 7 we show the same electric field pr
files as in Fig. 5, focusing on the region where the monop
part of Ez becomes negative.

We find that these lattice results concerning the beha
of the profiles strongly support our considerations abo
from the photon and the monopole Wilson loops, we obt
the Coulombic electric field and the solenoidal electric fie
with the monopole supercurrent profile, respectively. We fi
that the sum of these two contributions reproduces the pro
obtained from the complete Abelian Wilson loop@see Eq.
~3.2!#. There is no correlation between the photon Wils
loop and monopole current as anticipated in Eq.~3.3!.
Hence, we conclude that the AP flux tube has the same c
posed structure as the DAH flux tube.

The behavior of the profiles as a function of theq-q̄ dis-
tancer is also remarkable. While the monopole Wilson loo
contributions, the solenoidal electric field and the monop
current profiles in the midplane are rather stable with resp
to r, the photon Wilson loop contribution~i.e. the Coulombic
electric field! drastically changes. From Fig. 5 it becom
obvious that the latter determines the change of the full A
0.06

0.04

0.02

0.00

E
z

121086420

ρ/a

 Abelian
 Monopole
 Photon
 Mono + Photo 

0.06

0.04

0.02

0.00

E
z

121086420

ρ/a

 Abelian
 Monopole
 Photon
 Mono + Photo 

FIG. 5. Electric field profile from correlators with Abelian, photon and monopole Wilson loops atr 56a50.48 fm ~left! and at r
512a50.97 fm ~right!.
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FIG. 6. Monopole current profile from correlators with Abelian, photon and monopole Wilson loops atr 56a50.48 fm ~left! and atr
512a50.97 fm ~right!.
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lian electric field profile for differentr. In order to see a
really translationally invariant profile of the electric field, w
need practically infiniteq-q̄ separation,r→`. In this limit,
the profile only from the monopole part remains. This situ
tion is also the same in the DAH flux tube.

IV. SUMMARY

It has already been known that the profiles of the class
flux-tube solution in the dual Abelian Higgs~DAH! model
and of the Abelian-projected~AP! flux tube, observed in lat-
tice simulations in the maximally Abelian gauge~MAG!,
look quite similar.

In this paper, in order to establish a more detailed co
spondence between these two kinds of profiles, we h
studied the composed structure of both flux tubes more c
fully. First, by applying the path-integral duality transform
tion to the Villain type compact QED considered as the
proximate action of the AP gauge theory, we have been le
the U~1! DAH model. Along the way, we have identified th
electric and magnetic parts of the Abelian Wilson loop by
09401
-

al

-
ve
e-

-
to

e

Hodge decomposition, and have clarified the role of ea
contribution to the structure of the flux-tube solution in t
DAH model. The photon and monopole Wilson loops pr
vide sources of the Coulombic and solenoidal electric fi
components of the DAH flux tube.

Guided by this observation, we have performed latt
simulations of the SU~2! lattice gauge theory in the MAG
and have measured the flux profiles induced by the pho
and the monopole Wilson loops. We have found that
resulting profiles show the same composed structure as
DAH flux tube.

The further question would be how both sides are rela
quantitatively. One way would be to fit the profile of the A
flux tube by that of the DAH flux tube and to determine t
DAH parameters which remain unknown in the formal de
vation of the DAH model. Here, we would like to emphasi
that the composed structure of the AP flux tube found h
and its relation to the DAH flux tube will be important fo
further quantitative discussions. In fact, there is no su
work that takes into account the correspondence of the st
tures. In addition to this, as we have mentioned briefly in
0.0020

0.0015

0.0010

0.0005

0.0000

-0.0005

-0.0010

E
z

121086420

ρ/a

0.0020

0.0015

0.0010

0.0005

0.0000

-0.0005

-0.0010
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FIG. 7. The same plots as in Fig. 5, for flux tubes of lengthr 50.48 fm andr 50.97 fm, with theEz axis rescaled. The profile directly
from the Abelian Wilson loop is omitted.
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DUALITY OF GAUGE FIELD SINGULARITIES AND . . . PHYSICAL REVIEW D68, 094018 ~2003!
Introduction, a more systematic study of the AP flux-tu
profile itself is required: the Gribov copy effect in the MAG
the scaling property, theq-q̄ distance dependence, etc. Ot
erwise, one cannot trust the robustness and physical
evance of the resulting DAH parameters. A part of suc
quantitative analysis is reported in Lattice 2002@46# and the
detailed report will be presented in Ref.@41#.

In closing, we note that although we have concentra
here on SU~2! gauge theory, the ideas discussed in
present paper can be extended to arbitrary AP-SU(N) gauge
theory in the MAG@47–49#.
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APPENDIX A: CLASSICAL FLUX-TUBE SOLUTION
IN THE DAH MODEL

In this appendix, we present concrete form of the fie
equations of the DAH model, Eqs.~2.19! and ~2.20!, for a
straightq-q̄ system. We use here the continuum notations;
Bm

mo be the continuum form of the regular dual gauge fie

denotedũm
mo on the lattice,Bm

ph that of the singular dua

gauge fieldũm
ph .

We put the quark and the antiquark atx15(2r /2)ez and
x25(1r /2)ez . Since this system has cylindrical geomet
the fields can be parametrized in terms of cylindrical coor
nates (r,w,z) as

f5f~r,z!, ~A1!

Bmo5Bmo~r,z!ew[
B̂mo~r,z!

r
ew , ~A2!
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Bph52
n

2r S z1r /2

Ar21~z1r /2!2
2

z2r /2

Ar21~z2r /2!2D ew .

~A3!

The factorn in Bph is the winding number of the flux tube
~an integer value!, which is determined by the representatio
of the electric charges@48,50,51#. The fundamental represen
tation corresponds ton51.

The field equations~2.19! and ~2.20! are then reduced to

bmS ]2B̂mo

]r2
2

1

r

]B̂mo

]r
1

]2B̂mo

]z2 D
22F B̂mo2

n

2 S z1r /2

Ar21~z1r /2!2

2
z2r /2

Ar21~z2r /2!2D Gf2 50, ~A4!

]2f

]r2
1

1

r

]f

]r
1

]2f

]z2

2
S B̂mo2

n

2 S z1r /2

Ar21~z1r /2!2
2

z2r /2

Ar21~z2r /2!2D
r

D 2

f

22lf~f22v2!50. ~A5!

The boundary conditions are specified so as to make
energy of the system finite as

B̂mo50 as r→0,

f50 as r→0 for 2r<z<r ,

B̂mo5
n

2 S z1r /2

Ar21~z1r /2!2
2

z2r /2

Ar21~z2r /2!2D ,

f5v as r, z→`. ~A6!

After getting the numerical solution of the field equations f
B̂mo andf, the profiles of the electric field are computed
Eq. ~2.21!, where

Emo52
1

r

]B̂mo

]z
er1

1

r

]B̂mo

]r
ez , ~A7!

Eph5
n

2 S r

@r21~z1r /2!2#3/2
2

r

@r21~z2r /2!2#3/2D er

1
n

2 S z1r /2

@r21~z1r /2!2#3/2
2

z2r /2

@r21~z2r /2!2#3/2D ez .

~A8!

The profile of the monopole current~2.22! is given by
8-9
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k52F B̂mo2
n

2 S z1r /2

Ar21~z1r /2!2

2
z2r /2

Ar21~z2r /2!2D Gf2 ew . ~A9!

APPENDIX B: LATTICE SIMULATION DETAIL

For the SU~2! link variablesUm(s) generated by Monte
Carlo method with Wilson gauge action, we adopt the MA
fixing, which is achieved by maximizing the functional

R@UV#5(
s,m

tr$t3Um
V~s!t3Um

V †~s!%. ~B1!

After the MAG fixing, Abelian projection is performed; th
SU~2! link variablesUm

V(s)5Um
MA(s) are factorized into a

diagonal~Abelian! link variable um(s)PU(1) and the off-
diagonal ~charged matter field! parts cm(s), cm* (s)
PSU(2)/U(1) asfollows:

Um
MA~s!5S A12ucm~s!u2 2cm* ~s!

cm* ~s! A12ucm~s!u2D
3S um~s! 0

0 um* ~s!
D , ~B2!

where the Abelian link variablesum(s) are then explicitly
written as

um~s!5eium(s)
„um~s!P@2p,p!…. ~B3!

The Abelian plaquette variables are then constructed as

umn~s![um~s!1un~s1m̂ !2um~s1 n̂ !

2un~s! P@24p,4p!, ~B4!

which is decomposed into a regular partūmn(s)P@2p,p)
and a singular~magnetic Dirac string! part nmn

(m)(s)50,61,
62 as follows:

umn~s![ūmn~s!12pnmn
(m)~s!. ~B5!

The Abelian field strength is defined byūmn(s)5umn(s)
22pnmn

(m)(s). Following DeGrand and Toussaint@52#, mag-
netic monopoles are extracted as the string boundaries

km~sd!52 1
2 «mnrs]nnrs

(m)~s1m̂ ! ~«123451!, ~B6!

whereukm(sd)u<2 andsd[s1(1̂12̂13̂14̂)/2 denotes the
dual site.

For measuring the correlation function, we have used
following local operators: an electric field operator
09401
e

O~s!5 i ū i4~s!5 i @u i4~s!22pni4
(m)~s!#, ~B7!

and a monopole current operator

O~sd!52p ik i~sd!. ~B8!

The Abelian Wilson loop is constructed as

WA@ j #5)
l P j

um~s!5expF i(
l P j

um~s!G . ~B9!

Similarly, the photon and the monopole Wilson loop are co
structed from the photon and monopole parts of Abelian l
variables,uph andumo, respectively, where

um~s!5D21]n@ ūmn~s!12pnmn
(m)~s!#5um

ph~s!1um
mo~s!.

~B10!

In this decomposition, it is necessary to adopt the Abel
Landau gauge which is characterized by]mum(s)50. Note,
however, that the Wilson loops constructed from each l
variable are Abelian gauge invariant.

In this simulation, in order to see the profiles which b
long to the ground state of a flux tube, we have adopte
smearing technique for spacelike Abelian link variable
Then we have constructed thesmearedAbelian Wilson loop
@40#. Considering the fourth direction as the Euclidean tim
direction, we have performedNs times the following step in
a smearing procedure applied only to thespatial Abelian
links (i , j 51,2,3),

aeiu i (s)1(
j Þ i

ei [u j (s)1u i (s1 ĵ )2u j (s1 î )]→eiu i (s), ~B11!

where a is an appropriate smearing parameter. The sa
procedure was also applied to the spatial parts of the pho
and the monopole link variables before constructing e
type of Wilson loop.

The numerical simulations which are presented in this
per have been done atb52.5115. The lattice volume wa
324. We have used 100 configurations for measurements.
have produced them after 3000 thermalization sweeps, s
rated by 500 Monte Carlo updates. They have been stored
performing MAG fixing. This has been repeatedNg times,
starting each time from a different random gauge copy of
configuration, in order to explore an increasing number
Gribov copies. The copy reaching the maximal value of
gauge functional~B1! has been selected for measuring t
profiles and kept for further increasing ofNg . Finally we
have chosenNg520. For the MAG fixing itself, we have
used the simulated annealing algorithm@40#, followed by a
final steepest descent relaxation. The sizes of the Wil
loops mainly studied~for Figs. 5–7! are R3T5636 and
1236 in units of lattice spacinga. We have measured th
profiles in thex-y plane orthogonal to the Wilson loop in it
midpoint. The Abelian smearing parameters have been fo
8-10
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by optimization asNs58 anda52.0. With this choice, the
profiles induced by the Abelian Wilson loop with timelik
extensionsT58 andT56 agree within errors.

The physical scale@the lattice spacinga(b52.5115)] has
been determined from the non-Abelian string tensionsL by
fixing Asphys5AsL/a[440 MeV. The non-Abelian string
A

W

ys

B

ys

cl

09401
tension has been reevaluated by measuring expectation
ues of non-Abelian Wilson loops with an optimized no
Abelian smearing. The potential has been fitted to match
form V(R)5C2A/R1sLR. The resulting string tension is
sL50.0323(4) atb52.5115, such that the correspondin
lattice spacing in physical units isa(b)50.0806(5) fm.
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