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We theoretically study step wandering and step bunching induced by the drift of adatoms with attention to
the permeability of steps. The critical drift velocity to induce the instability is calculated, and Monte Carlo
simulation is performed to test the linear analysis. In sublimation, when the step distance is small in compari-
son with the surface diffusion length, the wandering and bunching of steps can occur simultaneously with the
step-down drift if steps are impermeable. The instabilities do not occur simultaneously if steps are permeable:
the bunching occurs with the step-up drift, and the wandering with the step-down drift. In growth, when the
step distance is small, the bunching occurs with the step-down drift and the step wandering occurs with the
step-up drift irrespective of the permeability, in agreement with Me´tois and Stoyanov@Surf. Sci.440, 407
~1999!#. The change of the permeability with increasing temperature can explain the instabilities observed in
Si~111! vicinal face@M. Degawaet al., Jpn. J. Appl. Phys38, L308 ~1999!#.
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I. INTRODUCTION

Step bunching in a vicinal face of Si~111! in sublimation
by heating with direct electric current has been a long sta
ing mystery because the current direction to induce
bunching changes several times as temperature change1–7

According to Homma and Aizawa7 the bunching occurs with
step-down current in the lowest temperature range~range I:
860 °C,T,960 °C) and the third temperature range~range
III: 1210 °C,T,1300 °C) while it occurs with step-up cur
rent in the second~range II: 1060 °C,T,1190 °C) and the
fourth ~range IV: 1320 °C,T) temperature ranges. The hea
ing current induces drift of adsorbed atoms~adatoms! either
parallel or antiparallel to the external electric field accord
to the effective charge of an adatom. The cause of the cha
has been attributed to the change of the effective charge8 to
the change of diffusion length9,10 and to the diffusion of
surface vacancies.11 Recently Stoyanov proposed a differe
mechanism, that is the change of permeability of step12

Step bunching was also observed during growth in ran
I–III. In all these temperature ranges the bunching alw
occurs with the step-down current13 ~no experiment was per
formed in range IV!: the current direction for bunching i
reversed in range II compared with the sublimation case.
explained by Me´tois and Stoyanov, the reversal is consiste
to the interpretation that the steps are permeable in rang

If the kink density along the step is high, an adatom
taching to the step always reaches a kink position to solid
The adatoms crossing the step without solidification are n
ligibly few, and the step is called impermeable~nontranspar-
ent!. In the impermeable case, the step bunching was stu
theoretically with a step flow model.9,10,14–22When the dis-
tance between steps is smaller than the surface diffu
length, which situation is likely for a Si~111! vicinal face,2,3

the step bunching is possible with the step-down drift
sublimation. There is a critical drift velocity above which th
bunching occurs, and it is determined by the strength of
repulsive interaction between steps.10,15,16,20–22If the step is
impermeable in ranges I, II, and III, the reversal of the c
PRB 620163-1829/2000/62~12!/8452~21!/$15.00
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rent direction may be explained by the change of the eff
tive chargeZeffe:8 a positive charge in ranges I and III, and
negative charge in range II~we do not consider range IV in
this paper!. In the bunching, the size of a bunch~or equiva-
lently the width of the large terrace! increases with the an
nealing time in a power lawL;tb.5 The theoretical value
b51/2 ~Refs. 18, 20, and 21! agrees with the experimen
However, in a recent experiment23 the observation of the
surface profile of a grooved surface after heating with curr
suggests that the drift direction is always parallel to the c
rent irrespective of temperature.

Theoretically in a vicinal face two kinds of instabilities
step bunching and step wandering,22,24,25 are possible. Re-
cently Degawaet al. observed both bunching and the wa
dering by using a cylindrical specimen.26 At 1000 °C ~in
range II!, in-phase wandering occurs with the step-down c
rent, while bunching occurs with a step-up current. Althou
a step wandering instability with the drift of adatoms h
been predicted, the current direction to induce the wande
is the same as the bunching instability if steps are imper
able. Therefore, the instabilities cannot be explained sim
by the change of the effective charge.

If the kink density along the step is low, adatoms attac
ing to a straight part of the step may not reach a kink posit
and leave the step without solidification. The adatoms cro
ing the step without solidification are not negligible, and t
step is called permeable~transparent!. Stoyanov studied the
stability of an isolated bunch consisting of permeable st
in the drift flow, and found that the isolated bunch is stab
with the step-up drift.12 Therefore, without a change of sig
of the effective charge, a reversal of the current direction
bunching is possible from a change of the step permeab
the steps are impermeable in ranges I and III, and perme
in range II. The relation between the step distance and
number of steps in a bunch,27 as well as the observed bunch
ing in growth,13 support this interpretation. Then if theor
predicts the wandering instability of permeable steps w
step-down drift in sublimation, the above interpretation
consistent with the observation of wandering instability.
8452 ©2000 The American Physical Society
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In this paper, we study the instabilities of permeable a
impermeable steps both in growth and in sublimation. B
linear analysis we derive quantitative conditions for the
stabilities to occur. Then we carry out a Monte Carlo sim
lation to test the theory, at least qualitatively.

II. MODEL

A. Continuum model for a mathematical analysis

We use the standard step flow model with drift
adatoms9,10,14–22,24,25for a mathematical analysis of the ste
motion. When the drift is perpendicular to the average o
entation of steps, the diffusion equation of the adatom d
sity c(r,t), on a terrace, is given by

]c

]t
5Ds¹

2c2v
]c

]y
2

1

t
c1F, ~2.1!

whereDs is the diffusion constant,t the adatom lifetime for
evaporation,v the drift velocity ~which can be written asv
5ZeffeEDs /kBT with the applied electric fieldE), andF the
impingement rate of atoms. We suppose that the steps
parallel to thex axis on average, and that they axis points
toward the step-down direction. Unless the adatom densi
very high and the step motion is fast, we may use the qu
static approximation for the diffusion equation~2.1!:

Ds¹
2c2v

]c

]y
2

1

t
c1F50. ~2.2!

The adatom current is given by

j~r!52Ds“c~r!1vc~r!ey , ~2.3!

where the first term is due to the surface diffusion and
second term is due to the drift of adatoms. The terrace
bounded by steps, where solidification and melting occ
We may consider that some adatoms solidify at the step
sition, and others cross over the step to the neighboring
races without solidification. Then the boundary conditions
the steps are given by18,28 the growth current

K1~cuzm1
2cm!5n̂•~Ds“cuzm12veycuzm1!

5K1~cuzm12cm!1P~cuzm12cuzm2!, ~2.4!

K2~cuzm2
2cm!52n̂•~Ds“cuzm22veycuzm2!

5K2~cuzm22cm!1P~cuzm22cuzm1!, ~2.5!

wheren̂ is the unit vector normal to the step in the step-do
direction,y5zm(x,t) the position of themth step,K1(2) the
kinetic coefficient, andP the permeability coefficient of the
step. The subscript1(2) indicates the lower~upper! side of
the step. The equivalent electric circuit for an isolated s
~without external field! is shown in Fig. 1~a!. The rate of the
adatoms permeating the step is proportional to the differe
of the adatom densities in the lower and upper sides of
step. The solidification rate is proportional to the differen
of the adatom density at the step and that in equilibrium. T
equilibrium adatom density is given by
d
a
-
-

i-
n-

re

is
i-

e
is
r.
o-
r-
t

p

ce
e

e
e

cm~x!5ceq
0 S 12

V f m~x!

kBT D , ~2.6!

where ceq
0 is the equilibrium adatom density for a straig

step, andf m(x) the force acting on themth step. When we
take account of the step tension and the interaction betw
steps, the forcef m is given by

f m52b̃km2
]jm

]zm
, ~2.7!

wherekm is the curvature of themth step,b̃ the step stiff-
ness, andjm the step energy.@Equation~2.6! is an approxi-
mation and the general form is given in Ref. 29.# With a step
energyjm of the form

jm~x!5j01 (
n5m61

U@ uzm~x!2zn~x!u#, ~2.8!

the equilibrium adatom densitycm becomes

cm~x!5ceq
0 1

Vceq
0 b̃km~x!

kBT

1
nVceq

0 A

kBT (
n5m61

1

@zm~x!2zn~x!#n11
, ~2.9!

where we useU( l )5A/ l n as the repulsive interaction poten
tial. In this paper we usen52 as the exponent of the repu
sive interaction potential, which corresponds to the ela
interaction.30 For simplicity, we will only study the perfectly
permeable caseP→` and the impermeable case, caseP
50, to clarify the effect of the step permeability.

B. Lattice model for simulation

To check the mathematical analysis we carry out Mo
Carlo simulation. We consider a square lattice with perio
boundary conditions. The lattice constant and step height
a51. We use solid-on-solid~SOS! steps: overhanging of a

FIG. 1. Electric circuits equivalent to a single step in the sup
saturated adatom densityc` . The resistance is defined byR
5Dc/ j , where j is the atomic current.~a! With general boundary
condition.~b! For a perfectly permeable step.~c! For an imperme-
able step.~d! In the limit of fast step kinetics.
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step is excluded and the step position is a single-valued fu
tion of x. Two-dimensional nucleation on terraces is forb
den. The algorithm of the simulation is similar to that
Refs. 31 and 32, except that the jump of adatoms over
step is allowed without an extra diffusion barrier to inclu
the permeability of adatoms at step sites.25,33 The uniform
drift of adatoms is taken into account as a biased diffus
probability. This treatment is valid when the adatom dens
is low. We choose the time increment for a diffusion tr
Dt51/4Na (Na is the number of adatoms! in order to make
the diffusion constantDs51. When the drift velocity isv,
an adatom on the site (i , j ) moves to the site (i 61,j ) with
the transition probability 1/4, and to the site (i , j 61) with
the probability (16v/2)/4 in a diffusion trial if the destina-
tion is empty. When an adatom comes in front of a step,
adatom solidifies with the probability

ps5F11 expS DEs1DU2f

kBT D G21

. ~2.10!

The increment of the step energy by the solidificationDEs is
given by DEs5e3 ~the increment of the step perimeter!,
where the nearest-neighbor bond energye is related to the
step stiffnessb̃ as

b̃

kBT
5

~12e2e/kBT!2

2e2e/kBT
. ~2.11!

The change of the step-step interaction potentialDU, when
the position ofmth step @ i ,zm( i )# moves to@ i ,zm8 ( i )#, is
given by

DU5 (
n5m61

$U@ uzm8 ~ i !2zn~ i !u#2U@ uzm~ i !2zn~ i !u#%

5A (
n5m61

@ uzm8 ~ i !2zn~ i !u222uzm~ i !2zn~ i !u22#.

~2.12!

The chemical potential gain by the solidificationf deter-
mines the equilibrium adatom densityceq

0 as

ceq
0 5

1

11ef/kBT
. ~2.13!

To satisfy the detailed balance, an atom in the step melts,
becomes an adatom with the probability

pm5F11 expS DEs1DU1f

kBT D G21

~2.14!

if there is not an adatom on top of the atom. To select
atom that does the transition trial, we prepare a single ta
for all atoms and step atoms and pick up one atom from
table. Then the kinetic coefficientK21K154. This algo-
rithm is for perfectly permeable steps. The algorithm for
impermeable step is introduced in Sec. IV A and in Appe
dix A.
c-
-

e

n
y
l
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n
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e
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III. WANDERING INSTABILITY OF THE PERMEABLE
STEP

When a step is perfectly permeable,P→`, the adatom
densities in the upper and the lower side of the step are
same@see Fig. 1~b!#:

cus5cuzm1
5cuzm2

. ~3.1!

This is the boundary condition used in the original model
Burton, Cabrera, and Frank.34 The step velocity to the nor
mal directionVn is given by

Vn52VK~cs2cm!5VDsn̂•~¹cuzm1
2¹cuzm2

!, ~3.2!

where V is the atomic area, andK is the average kinetic
coefficient defined byK5(K11K2)/2. Solidifying atoms
are supplied by the diffusion current from both terrac
Since there is no gap in the adatom density at the step, t
is no contribution of the drift current to the step velocity. B
solving Eq. ~2.2! with the boundary conditions~3.1! and
~3.2!, the normal velocityVn is determined. Time evolution
of the step positionzm(x,t) is related to the normal velocity
Vn as

]zm

]t
5VnA11S ]zm

]x D 2

. ~3.3!

A. Wandering of an isolated step

We first study the motion of an isolated step without im
pingement of atoms:F50. The boundary conditions fa
from the step arec(y→6`)50, and the velocity of the
straight stepV0 is calculated as

V052
2Dsceq

0 Aṽ214

xs~21lAṽ214!
, ~3.4!

where xs5ADst is the surface diffusion length, and th
scaled quantities are defined asṽ5vxs /Ds and l
5Ds /Kxs . With a sinusoidal perturbation of the wave num
berq to the straight step, the position of the step is given
z15V0t1dzeiqx1vqt,wherevq is the amplification rate in
the linear theory. By solving the diffusion equation, we o
tain the ratevq as

vqxs
2

VDsceq
0

5
2ṽ~Aṽ21414q̃22Aṽ214!

~21lAṽ214!~21lAṽ21414q̃2!

2
2G̃q̃2Aṽ21414q̃2

~21lAṽ21414q̃2!
, ~3.5!

whereq̃5qxs and G̃5Vb̃/kBTxs .
When the wavelength of the fluctuation is longer than

surface diffusion lengthqxs!1, the amplification ratevq is
expressed as

vq'a2q21a4q41•••, ~3.6!

where



-

th

if
ss
io

t
,

-
a
te

it

p
le
th

dl
on
v
o

ed

o

i
-
ht

ua-

ky
-

lity,
sot-

lro
so-

p
ed
the

om
b-
f

itial
the
ving
ills
f a

ar-
e

e:

It is

PRB 62 8455INSTABILITIES OF STEPS INDUCED BY THE DRIFT . . .
a2

VDsceq
0

5
2@2ṽ2G̃~41 ṽ2!~21lA41 ṽ2!#

~21lA41 ṽ2!2A41 ṽ2
, ~3.7!

a4

VDsceq
0 xs

2

52
2@ ṽ~213lA41 ṽ2!1G̃~41 ṽ2!~21lA41 ṽ2!#

~21lA41 ṽ2!3~41 ṽ2!3/2
.

~3.8!

The coefficienta2 determines the stability at long wave
length. If ṽ is small, ṽ2 is negligible, and

a2

VDsceq
0

5
1

2~11l!
F ṽ
~11l!

24G̃G , ~3.9!

which is the same as the corresponding coefficient for
impermeable step24 when the step kinetics is fast,l→0. The
first term is the effect of the drift, which is destabilizing

ṽ.0, and the second term is the effect of the stiffne
which stabilizes a straight step. As a result of competit
between these effects, the straight step is unstable with
step-down drift whose velocity exceeds the critical value

vc
W5

4VDsb̃~11l!

kBTxs
2

. ~3.10!

For v larger thanvc
W , a small fluctuation grows exponen

tially. If we include thermal fluctuation in our model as
random force, the amplitude of the step fluctuation is de
mined by a2 and ^dz2&}ua2u21 for the stable case.31,32

~Near the critical point, nonlinearity becomes important.35!
Therefore, we expect the enhancement of fluctuation w

ṽ.0 and suppression withṽ,0. The coefficienta4 deter-
mines the stability at short wavelength. Whenṽ is small,ṽ2

is negligible, and

a4

VDsceq
0

52
1

8~11l!2 F ~113l!ṽ
~11l!

18G̃G . ~3.11!

For the wandering instability to occur the drift is in the ste
down direction (ṽ.0), anda4 is negative. The step is stab
for the short wavelength fluctuation. The wavelength of
most unstable mode is determined aslmax52pA2ua4u/a2,
which becomes long near the threshold of the instability.

Since the amplitude of the fluctuation increases rapi
after the instability occurs, we need to take account of n
linear effects to predict the step behavior. Since the wa
length of the most unstable mode is long near the thresh
of the instability, the linear evolution equation is obtain
from Eq. ~3.6! by replacingvq and iq with ]/]t and]/]x.
Higher order terms should reflect the inversion symmetry
the system in thex direction,x↔2x. Then the most domi-
nant nonlinear term near the threshold of the instability
proportional to (]z/]x)2. This type of nonlinear term is re
lated to the velocity increment of the inclined straig
e

,
n
he

r-

h

-

e

y
-

e-
ld

f

s

step.25,36 The normal velocity of the inclined stepVn(zx) is
given by replacingṽ2 with ṽ2/(11zx

2) in Eq. ~3.4!. If we
expand Eq.~3.3! as

]z

]t
5V01dS ]z

]xD 2

1•••, ~3.12!

the coefficient of the nonlinear term is given by

d5
V0

2
1

1

2

d2Vn

dzx
2

'
V0

2
52

Dsceq
0

xs~11l!
, ~3.13!

where we have neglectedṽ2. Adding the nonlinear term to
the linear equation, we obtain the nonlinear evolution eq
tion

]z

]t
52a2

]2z

]x2
2a4

]4z

]x4
1dS ]z

]xD 2

. ~3.14!

This equation is called the Kuramoto-Sivashins
equation,37,38and its solution is known to produce spatiotem
poral chaos. Therefore, near the threshold of the instabi
the step is expected to show chaotic behavior if the ani
ropy of crystal is negligible.24,25,32,39The effect of the anisot-
ropy is discussed in Refs. 40 and 41.

To confirm the above analysis we performed Monte Ca
simulation. Figure 2 represents the time evolution of an i
lated step with the drift. The system size is 2563256 and the
parameters are t5256, ceq

0 50.18 (f/kBT51.0), and

b̃/kBT50.54 (e/kBT51.5). The initial step position is
z(x,t)50. By using Eq.~3.7!, the drift velocity to induce the
wandering instability is estimated to be 8.831023<v
<1.4. Figure 2~a! shows the time evolution with the step-u
drift (v520.1). The wandering fluctuation is suppress
and the receding step is more straight than that without
drift @Fig. 2~b!#.25 Figure 2~c! shows the time evolution with
the step-down drift (v50.1). The drift velocity is in the
unstable range and the wandering instability is evident. Fr
Eq. ~3.5! the wavelength of the most unstable mode is o
tained aslmax.36, which agrees roughly with the period o
the peaks of the wandering pattern observed in the in
stage of the instability. In the late stage the period of
peaks becomes longer. The positions of peaks are mo
randomly along the step, and collision and creation of h
occur. The step pattern is similar to the chaotic pattern o
solution of Eq.~3.14! with negatived.42

B. Step wandering in a vicinal face

We consider a vicinal face consisting of equidistant p
allel steps with a distancel. Wandering of the steps in th
linear regime is expressed in terms of the position of themth
step aszm5ml1dzeiqx1 imkl1vt. Since it is difficult to cal-
culatev for generalq andk, we consider the simplest cas
all steps fluctuate in phase, that isk50. When there is no
impingement of the atoms,F50, the amplification ratev is
calculated in a similar way as in the isolated step case.
given by
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vxs
2

Vceq
0 Ds

5
1

lg0
S ṽ sinh

a l̃

2
2a cosh

a l̃

2
1ae2 ṽ l̃ /2D

2
2

lg0gq
sinh

aql̃

2
S ṽ sinh

a l̃

2
2a cosh

a l̃

2

1ae2 ṽ l̃ /2D 2
4av
g0gq

sinh
aql̃

2
S cosh

a l̃

2
2 cosh

ṽ l̃

2
D

1
2a

g0gq
S cosh

a l̃

2
2 cosh

ṽ l̃

2
D

3S ṽ sinh
aql̃

2
1aq cosh

aql̃

2
2aqe2 ṽ l̃ /2D

2
aq

gq
S cosh

aql̃

2
2 cosh

ṽ l̃

2
D G̃q̃2, ~3.15!

FIG. 2. Time evolution of the position of a perfectly permeab
step in sublimation:~a! with the step-up drift (v520.1), ~b! with-
out the drift (v50), and~c! with the step-down drift (v50.1).
where

l̃ 5
l

xs
, ~3.16!

a5Aṽ214, ~3.17!

aq5Aṽ21414q̃2, ~3.18!

g052laS cosh
a l̃

2
2 cosh

ṽ l̃

2
D 12 sinh

a l̃

2
, ~3.19!

gq52laqS cosh
aql̃

2
2 cosh

ṽ l̃

2
D 12 sinh

aql̃

2
.

~3.20!

When the step distance is smaller than the surface diffus
length, l !xs , the amplification ratevq in the long-
wavelength limit (ql!1) is written as

vqxs
2

VDsceq
0

'S ṽ l̃ 5

360
2G̃ l̃ D q̃21•••, ~3.21!

which does not depend on the step kineticsl. Similarly to
the case of an isolated step@Eq ~3.9!#, the wandering insta-
bility is induced by the step-down drift. The critical drif
velocity is

vc
W5

360DsVb̃xs
2

kBTl4
, ~3.22!

which is larger than that of the isolated step. Sincevc
W is

inversely proportional to (l /xs)
4, the vicinal face rapidly be-

comes stable with decreasing step distance.
Figure 3 shows snapshots of the wandering instability o

step train. The system size is 5123128 and the number o
steps is four. Initially the steps are straight with the sa
distance l 532. The surface diffusion length isxs564,
which is twice as long as the initial step distance. The eq
librium adatom density isceq

0 50.27. To make the wanderin
instability accessible in the simulation, we use steps w
small stiffnessb̃/kBT50.13. From Eq.~3.22! the critical
drift velocity is estimated tovc

W50.18. The strength of the
repulsive interaction isA51000, withn52. Figure 3~a! rep-

FIG. 3. Snapshots of the wandering of a train of perfectly p
meable steps:~a! at t54.13105 with the repulsive interaction
(A/kBT51000), and~b! at t54.13105 without repulsive interac-
tion. The drift is in the step-down direction (v50.4).
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resents the step wandering with the step-down driftv
50.4). By the repulsive interaction, the in-phase motion
the step wandering pattern is evident. When the repuls
interaction is turned off, although the in-phase mode has
largest growth mode, the phase coherence vanishes du
the randomness@Fig. 3~b!#.

IV. WANDERING INSTABILITY OF IMPERMEABLE
STEP

To study the wandering instability of impermeable ste
we need to change the boundary conditions@Eqs ~3.1! and
~3.2!#. Since the step is impermeable to the surface diffus
adatoms cannot jump over the steps without solidificat
and the parameter for the permeabilityP50 in Eqs. ~2.4!
and~2.5! @see Fig. 1~c!#. If the kinetic coefficient is finite, the
gap of the adatom density is produced between the lower
upper sides of the step. Since the adatom flux to the ste
proportional to the difference between the adatom densit
the step and that at equilibrium, the boundary conditions
given by Eqs.~2.4! and ~2.5! with P50 ~Refs. 9,10, and
14–16!:

K1~cuzm1
2cm!5n̂•~Ds“cuzm1

2veycuzm1
!

5K1~cuzm1
2cm!, ~4.1!

K2~cuzm2
2cm!5n̂•~2Ds“cuzm21veycuzm2

!

5K2~cuzm2
2cm!. ~4.2!

The difference of the kinetic coefficientsK1 andK2 is the
Ehrlich-Schwoebel~ES! effect,43,44 which can also induce
the instabilities. IfK1.K2 , the wandering instability oc-
curs in growth32,39,45,46and the bunching instability occurs i
sublimation.44,47,48 For simplicity we neglect the ES effec
and setK15K25K. By solving the diffusion equation~2.2!
with the boundary conditions@Eqs. ~4.1! and ~4.2!# we can
calculate the profile of the adatom density. From the den
profile the step velocity is determined by

Vn
m5VK1~cuzm1

2cm!1VK2~cuzm2
2cm!

5VK~cuzm1
1cuzm2

22cm!. ~4.3!

A. Wandering of an isolated step

We consider the wandering of an isolated step without
impingement of adatoms. By solving the diffusion equati
with the boundary conditions far from the stepc(y→6`)
50, the velocity of the receding step is given by

V052
VDsceq

0 ~2l1a!

xs~11l21al!
. ~4.4!

When we give a small perturbationz5dzeiqx1vqt to the
step, the amplification ratevq is calculated as
f
e
e
to

,

,
n

nd
is

at
re

ty

e

vqxs
2

Vceq
0 Ds

5
~v2a!~aq2a!

@l~v1aq!12#@l~v1a!12#

1
~v1a!~aq2a!

@l~v2aq!22#@l~v2a!22#

2
aq12l~11q̃2!

11l2~11q̃2!1aql
G̃q̃2. ~4.5!

In the fast step kinetics limit,l→0, Eq.~4.5! is simplified as

vqxs
2

Vceq
0 Ds

5
ṽ
2

~Aṽ21414q̃22Aṽ214!

2G̃q̃2Aṽ21414q̃2, ~4.6!

which is, as expected, the same as the amplification rat
the permeable step@Eq. ~3.5!# with l→0. In this limit, since
there is no kinetic barrier at the step, the gap in the ada
density disappears and we obtain eq.~3.1! @see Figs. 1~b! and
1~d!#. When the step kinetics is slow andl@1, the amplifi-
cation ratevq is given by

vqxs
2

Vceq
0 Ds

'
3

2l2 S ṽ2
4l

3
G̃ D q̃21••• ~4.7!

for the long-wavelength fluctuation. The critical drift veloc
ity is given by

vc
W5

4Ds
2Vb̃

3Kxs
3kBT

. ~4.8!

Sincevc
W is inversely proportional to the kinetic coefficien

K, with increasing the value ofK, the critical drift velocity
decreases and the step becomes less stable. Irrespect
the kinetics, a receding step becomes unstable with the s
down drift.

We carry out Monte Carlo simulation to test the line
stability analysis. The diffusion of the adatoms is the same
that for the permeable case except that the adatoms ca
jump over the steps@Fig. 4~a!#. When an adatom comes i
front of a step site or just on the step site after a diffus
trial, the adatom tries to solidify@Fig. 4~b!#. The solidifica-
tion of the adatom in front of the step is the same as tha
the permeable case. On the other hand, the solidificatio
the adatom on the step site is tried only if the front of the s
is not occupied by another adatom@Fig. 4~c!#. When the
adatom on the step site solidifies, it moves down to the fr
of the step site and solidifies there@Fig. 4~b!#. When an atom
consisting the step melts and becomes an adatom, the ad
stays there with the probability 1/2 or moves onto the up
terrace with probability 1/2 if the destination is not occupi
@Fig. 4~d!# ~otherwise it cannot melt!. Since the solidification
occurs in both sides of the step, we set the melting proba
ity twice as large as the previous permeable case. There
small asymmetry in this algorithm: the probability of solid
fication from the upper terrace is approximately (12cuz1

)
times smaller than that onto the lower terrace and the pr
ability of melting in the upper side terrace is approximate
(12cuz2

) times smaller than that onto the lower terrace. T
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asymmetry decreases with decreasing adatom density
estimate of the equilibrium density and the kinetic coe
cients for the present algorithm are given in Appendix A.

Figure 5 shows time evolution of the step position in t
Monte Carlo simulation. The parameters arexs516, ceq

0

50.18 (f/kBT51.5), and b̃/kBT50.54 (e/kBT51.0).
Since the step kinetics is fastl251.631022!1 and l1

51.931022, the amplification ratevq is approximately
given by Eq.~4.6! and the critical drift velocity isvc

W'8.4
31023. Figure 5~a! is the time evolution of the step positio
with the step-up drift (v520.2). As expected from the lin
ear analysis, the step is more straight than that without
drift @Fig. 5~b!#. Figure 5~c! represents the time evolutio
with the step-down drift. Since the drift velocityv50.2 ex-
ceeds the critical value, the step is unstable and the wan
ing instability occurs. The wavelength of the fastest grow
mode expected from Eq.~4.5! is estimated tolmax524,
which roughly agrees with the wavelength of the fluctuat
observed in the initial stage of the instability. The unsta
step produces peaks, which show chaotic motion simila
the permeable step.

B. Wandering instability in the vicinal face

When steps are straight and equidistant with a distancl,
without the impingement of atoms, the adatom density on
terrace 0<y< l is given by

c0~y!5ceq
0 eṽ l̃ /2S A cosh

ay

2xs
1B sinh

ay

2xs
D , ~4.9!

where

FIG. 4. Atomic processes at an impermeable step in the Mo
Carlo simulation:~a! prohibition of the diffusion over the step,~b!
solidification at the front site of the step,~c! prohibition of the
solidification at the site occupied by another adatom, and~d! melt-
ing onto the upper and the lower terraces.
An
-

e

er-
g

e
to

e

A52
1

h0~ l !
F2S l ṽ

2
sinh

a l̃

2
2

la

2
cosh

a l̃

2
2 sinh

a l̃

2
D

1
la

2
e2 ṽ l̃ /2G , ~4.10!

B52
1

h0~ l !
F S l ṽ

2
cosh

a l̃

2
2

la

2
sinh

a l̃

2
2 cosh

a l̃

2
D

1S 11
l ṽ
2

D e2 ṽ l̃ /2G , ~4.11!

h0~ l !5l2 sinh
a l̃

2
1al cosh

a l̃

2
1 sinh

a l̃

2
. ~4.12!

te

FIG. 5. Time evolution of the position of an impermeable st
in sublimation~a! with the step-up drift (v520.2), ~b! without the
drift (v50), and~c! with the step-down drift (v520.2).
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Since each terrace is treated separately, we can calculate the amplification ratevq with a generalk. By using Eq.~4.9!, the
linear amplification rate is calculated as

vqxs
2

VDsceq
0

5
u1

hq~ l !
F2l2~11q̃2!sinh

aql̃

2
2

laq

2
cosh

aql̃

2
2

l ṽ
2

sinh
aql̃

2
1

laq

2
eṽ l̃ /2G

1
u2

hq~ l !
F2l2~11q̃2!sinh

aql̃

2
2

laq

2
cosh

aql̃

2
1

l ṽ
2

sinh
aql̃

2
1

laq

2
e2 ṽ l̃ /2G1

1

hq~ l ! Flaqu1

2
~eṽ l̃ /2e2 i k̃ l̃ 2eṽ l̃ /2!

1
laqu2

2
~e2 ṽ l̃ /2eik̃ l̃ 2e2 ṽ l̃ /2!G2

1

h0~ l !
S la cosh

aql̃

2
22 sinh

aql̃

2
1la cosh

aql̃

2
D

2
F~ l !

hq~ l !
F2l~11q̃2!sinh

aql̃

2
1aq cosh

aql̃

2
2aq cosh

ṽ l̃ 22i k̃ l̃

2
G ~12 cosk̃ l̃ !2

G̃

hq~ l !
F2l~11q̃2!sinh

aql̃

2

1aq cosh
aql̃

2
2aq cosh

ṽ l̃ 22i k̃ l̃

2
G q̃2, ~4.13!
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k̃5kxs ~4.14!

hq~ l !5l2~11q̃2!sinh
aql̃

2
1aql cosh

aql̃

2
1 sinh

aql̃

2
,

~4.15!

u152
xs

lceq
0

dc0

dy U
y50

1
1

ceq
0

c0U
y50

, ~4.16!

u252
xs

lceq
0

dc0

dy U
y5 l

2
1

ceq
0

c0U
y5 l

, ~4.17!

F~ l !5
Vxs

kBT

d2U

dl2
5

Vxs

kBT

6A

l 4
. ~4.18!

Hereafter we consider the case that the step distanc
much smaller than the surface diffusion length and thal
!1. We expand Eq.~4.13! with l, and take account of the
lowest order inl. For simplicity, we calculatevq for an
in-phase fluctuation,k50. When the step kinetics is slow
enough to satisfyl@ l /xs, the amplification rate for the
long-wavelength fluctuation,vq, is given by22

vqxs
2

VDsceq
0

5 l̃ ~ ṽ2G̃ !q̃21•••. ~4.19!

The equidistant train of steps is unstable with the step-do
drift exceeding the critical value,

vc
W5

VDsb̃

xs
2kBT

, ~4.20!

which is one-fourth ofvc for an isolated step. Withl
! l /xs , the form of the amplification rate changes. In t
is

n

limit of fast step kinetics,l→0, the step becomes permeab
and we obtain the same result of as Eq.~3.21!.

As shown in Table I, without the impingement of ad
toms, the wandering instability occurs with the step-do
drift for both the permeable and the impermeable steps. W
the fast step kinetics, the difference due to the step per
ability vanishes.

V. BUNCHING INSTABILITY OF THE PERMEABLE
STEP

In the case of the permeable steps, the adatom densiti
neighboring terraces are coupled by the boundary condi
Eq. ~3.1!. In the step flow model, we must solve simult
neous equations to determine the adatom densities and
difficult to study the bunching of many steps. Therefore
use a continuum model,49 in which the drift of adatoms is
readily taken into account. Recently Stoyanov12 argued that a
vicinal face consisting of permeable steps is unstable w
the step-up drift, and showed that a large bunch is stabili
with the step-up drift. Here we analyze the linear stability
a vicinal face for a long-wavelength fluctuation, and give
analytical expression for the condition of the instability.

We neglect the fluctuation along steps and assume tha
steps are straight. When the step distance is small comp
with the characteristic length of modulation, we can descr
the surface profile with the density of stepsr(y). Time evo-
lution equations of the adatom density and the step den
are given by12,49

]c

]t
5Ds

]2c

]y2
2v

]c

]y
1F2

1

t
c22rK@c2ceq~y!#,

~5.1!

]r

]t
1

]

]y
$2rVK@c2ceq~y!#%50, ~5.2!

where ceq(y) is the local equilibrium density of adatoms
Equation~5.1! is the diffusion equation including the effec
of solidification of adatoms at the steps. The decrease of
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TABLE I. Conditions to induce instabilities.

Growth condition Permeability Terrace Kinetics Drift Instability

sublimation permeable isolated fast/slow down wandering
l /xs!1 fast/slow down wandering

not too slow (l!xs / l ) up bunching
impermeable isolated fast/slow down wandering

a l /xs@1 fast/slow up bunching
down wandering

a l /xs!1 fast/slow down wandering/bunching

growth permeable isolated fast/slow up wandering
l /xms!1 fast/slow up wandering

not too slow (l!xs / l ) down bunching
impermeable isolated fast (l!1) up wandering

slow (l@1) down wandering
a l /xs@1 fast (l! l /xs) down bunching

slow (l@ l /xs) down wandering /bunching
a l /xs!1 fast (l! l /xs) up wandering

down bunching
slow (l@ l /xs) down wandering/bunching
he

to
tio

g

e
lifi-
sed

-
is

al-

ry

tep
adatom density due to solidification is proportional to t
local step density. Equation~5.2! is the continuity equation
of the step density. The step current isrV with the step
velocity

V52VK@c2ceq~y!#. ~5.3!

Since we consider modulation only in they direction, the
curvature of the steps vanishes and the equilibrium ada
density is determined by the step interaction. The interac
force is derived from the step energyj as f 52]j/]y, and
therefore50–52

ceq5ceq
0 1

Vceq
0

kBT

dj

dr

]r

]y
5ceq

0 1g~r!
]r

]y
. ~5.4!

The step energyj(r) is given by Eq.~2.8! and

]j

]r
5 l 3

d2U

dl2
56Ar, ~5.5!

which is the surface stiffness iny direction divided bya2.
When the step density is uniformr5r0, from Eqs.~5.1! and
~5.2!, the adatom densityc0 and the step velocityV0 in the
steady state are given by

c05
~F12r0Kceq

0 !t

2r0Kt11
, ~5.6!

V05
2VK~Ft2ceq

0 !

2r0Kt11
. ~5.7!

We study the linear stability of the vicinal face by givin
a small perturbation to the step density,r5r01dreiky1vkt

and to the adatom density,c(y)5c01dceiky1vkt. Equations
~5.1!–~5.4! determine the amplification ratevk via
m
n

vk
21Fk2~Ds12Vgr0K !1 ik~V01v !1

1

t
12r0KGvk

1S k2Ds1 ikv1
1

t D ~2k2Vgr0K1 ikV0!50. ~5.8!

There are two branches of solutions:vk5v(1)→0 andvk
5v(2)→21/t2r0K with k→0. Since the second mod
decays much faster than the first one, the important amp
cation rate is the first one. The amplification rate is expres
as

vk5 in1k1n2k21 in3k31n4k41•••. ~5.9!

The real part ofvk represents the amplification of the fluc
tuation. The instability for the long wavelength fluctuation
determined byn2, which is given by

n25
V0t

112r0Kt S v2
V01v

112r0Kt D2
2Vr0Kg~r0!

112r0Kt
.

~5.10!

The second term is the effect of the step repulsion and
ways stabilizes the vicinal face. The first term in Eq.~5.10!
can destabilize the vicinal face. If the step kinetics is ve
slow, r0Kt→0, the first term is proportional to2V0

2(,0)
and stabilizes the vicinal face. On the other hand, if the s
kinetics is fast, 1!r0Kt, i.e., l,xs/ l , the first term can be
positive. Then the coefficients in Eq.~5.9! are given by

n152
V0

2r0tK
,

n252
2Vr0Kg~r0!2vV0t

2r0tK
,

n352
DsV0t12Vr0Kvtg~r0!

2r0tK
,
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n452
DsVg~r0!

r0
. ~5.11!

The amplification rate becomes positive whenV0v exceeds
the critical value,

~V0v !c5
2Vr0Kg~r0!

t
5

12V2ceq
0 Kr0

2

kBTt
A, ~5.12!

and the vicinal face is unstable. Sincen4 is always negative,
the vicinal face is still stable for the short-wavelength flu
tuation. In sublimation,V0,0, the instability occurs with the
step-up drift. The drift direction to induce the bunching i
stability is opposite to that for the impermeable steps. Si
the critical drift velocity is inversely proportional to the ste
velocity, with increasing the undersaturation, the bunch
instability occurs more easily. The imaginary part ofvk rep-
resents the propagation of the fluctuation. Near the thres
of the instability, the wave number of the fastest growi
mode is small and the dominant term of the propagation
vk is n1k. The propagation velocity is2n1, which is pro-
portional to the step velocityV0 and in the opposite direction
to the step motion. SincerKt@1, it is much slower than the
motion of the steps.

Figure 6 represents snapshots of a step train in Mo
Carlo simulation. The system size is 1283256 with 32 steps.
Initially the steps are straight and equidistant. There is
impingement of adatoms, and the receding steps become
stable when the step-up drift exceeds the critical velocityvc

B ,

v,vc
B52

12VKA

kBTl3
. ~5.13!

The parameters in Fig. 6 arel 58, xs516, ceq
0

50.18, b̃/kBT50.54 andA/kBT54. Then the critical drift
velocity vc

y is calculated asvc
B520.19. Figures 6~a! and

6~b! show snapshots with the step-up drift. The drift veloc
is v520.6, and step bunching occurs. In the initial stage
the bunching@Fig. 6~a!#, the long-wavelength fluctuation o
the step distance appears. In the late stage@Fig. 6~b!#, the
bunches collide with each other and large bunches app
When we carry out the simulation in a larger system~the
system size is 5123512, with 64 steps!, the bunches wande
and sometimes collide with neighboring bunches@Fig. 6~c!#.
The pattern is similar to the form of bunches observed in
experiment3 and the one in the simulation of a simplified st
model.17 Figures 6~d! and 6~e! show snapshots of the ste
bunching without the repulsive interaction, where only t
formation of multiheight steps is forbidden. In the initi
stage @Fig. 6~d!#, the step train is unstable for a shor
wavelength fluctuation, and bunches consisting of a f
steps wander. In spite of such a large difference in the in
stage, large bunches appear in the late stage@Fig. 6~e!#. Be-
cause of a lack of repulsive interaction, the step distanc
the bunches is smaller than that with repulsion.

VI. BUNCHING INSTABILITY OF THE IMPERMEABLE
STEP

To study the bunching of impermeable steps, we use
same model as that used in Sec. IV. The diffusion equatio
-

e
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given by Eq. ~2.2!, and the boundary conditions are Eq
~4.1! and~4.2!. The linear stability is studied in Ref. 16, an
here we summarize the result. When the impingement of
adatoms is negligible, the velocity of themth stepV0

m is

FIG. 6. Snapshots of bunching of permeable steps in subli
tion: ~a! in the initial stage (t55.63104), ~b! in the late stage (t
58.23104), and~c! in the late stage (t51.03105) in a large sys-
tem, with the step-up drift (v520.6) and repulsive interaction
(A/kBT54.0). ~d! In the initial stage (t54.13103), and~e! in the
late stage (t52.13104), with the step-up drift (v520.6) and no
repulsive interaction.
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given by

2xsV0
m

VDs
5

@~22l2 ṽ !sinh~a l̃ 1/2!2a cosh~a l̃ 1/2!#cn1ae2 ṽ l̃ 1/2cn11

~11l2!sinh~a l̃ 1/2!1al cosh~a l̃ 1/2!

1
@~22l1 ṽ !sinh~a l 2/2xs!2a cosh~a l̃ 2/2!#cn1aeṽ l̃ 2/2cn21

~11l2!sinh~a l̃ 2/2!1al cosh~a l̃ 2/2!
, ~6.1!
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where l̃ 6 are the scaled width of the upper side (2) and the
lower side~1! terraces, andl̃ 65uzm612zmu/xs . The equi-
librium adatom density at themth stepcm is given by Eq.
~5.4!. For the small perturbationdym5dyke

imk̃l̃ 1vkt to the
straight steps, the amplification ratevk is given by

t Re vk

Vceq
0

5@m1~ l !2m2~ l !F~ l !#sin2
k̃ l̃

2
, ~6.2!

t Im vf

Vceq
0

5@s1~ l !2s2~ l !F~ l !#sink̃ l̃ , ~6.3!

where the coefficients are16

m1~ l !52
d

d l̃
F ṽ sinh~a l̃ /2!1a cosh~a l̃ /2!

~11l2!sinh~a l̃ /2!1al sinh~a l̃ /2!
G ,

~6.4!

m2~ l !

54
2l sinh~a l̃ /2!1a cosh~a l̃ /2!2a cosh~ ṽ l̃ /2!cosk̃ l̃

~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!
,

~6.5!

s1~ l !5
d

d l̃
F2l sinh~a l̃ /2!1a cosh~a l̃ /2!2a cosh~ ṽ l̃ /2!

~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!
G ,

~6.6!

s2~ l !5
2a sinh~ ṽ l̃ /2!~12 coskl !

~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!
. ~6.7!

When the step distance is small,a l /2xs!1, Eq. ~6.4! is ap-
proximated by

m1~ l !5
2ṽl

@~11l2! l̃ /21l#2
, ~6.8!

which is proportional toṽ. The bunching instability is in-
duced by the step-down drift if it wins the repulsive intera
tion. A simple formula is obtained ifl /xs!l;1: Eq. ~6.2!
becomes16
-

t Re vf

Vceq
0

5F2ṽ
l

24F~ l !S l̃ 1
12 cosf

l D Gsin2
k̃ l̃

2

'S ṽ
2l

2F~ l ! l̃ D l̃ 2k̃22
F~ l !

2l
l̃ 4k̃41•••.

~6.9!

The coefficient ofk4 is determined by the repulsive intera
tion potential, and is negative. The vicinal face is stable
the short-wavelength fluctuation. When the drift is in t
step-down direction and its velocity exceeds the criti
value,

vc
B5

12lDsVA

xsl
3kBT

, ~6.10!

the coefficient ofk2 is positive, and the vicinal face become
unstable for the long-wavelength fluctuation.

In the above analysis we supposed that the steps
straight. If the step distance is small, however, the step w
dering is also induced by the step-down drift. Figure 7 sho
snapshots of a step train with a small step distance in Mo
Carlo simulation. The system size is 1283256 and the num-
ber of steps is 32. Initially the steps are equidistant anl

58. The parameters arexs516, b̃51.35, ceq
0 50.18, and

A/kBT54. Figure 7~a! shows a snapshot of the step tra
with step-up drift (v520.3) at t51.83104. As expected
from the linear analysis, neither the wandering nor t
bunching occurs. When the drift is in the step-down direct
(v50.3), both the bunching and the wandering occur sim
taneously@Figs. 7~b! and 7~c!#. In the initial stage@Fig. 7~b!#,
step wandering accompanied by bunching with short len
occurs. The short bunches grow and the bunches are
nected to each other@Fig. 7~c!#, which is very different from
bunching of permeable steps~Fig. 6!. Though the wandering
and bunching are induced simultaneously in Fig. 7, when
use appropriate parameters, the bunching@Fig. 8~a!, with a
large stiffness# or the wandering@Fig. 8~b!, with a small
stiffness and a strong repulsion# is induced separately.

Figure 9 contains a snapshot of a step train with the d
tance longer than the surface diffusion length,l /xs52. The
equidistant step train with a large step distance is unsta
with the step-up drift. The linear instability with a large ste
distance is studied by the one-dimensional step fl
model.9,10,16With increasing step distance, the drift directio
to induce the step bunching changes and the equidistant
train is unstable with the step-up drift. Since the step tr
with a small step distance is stable with the step-up dr
tight bunches are not produced. Thus the result of simula
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FIG. 7. Snapshots of impermeable steps with the repulsive interaction (A/kBT54) in sublimation:~a! stable (t51.83104), with the
step-up drift (v520.4); ~b! in the initial stage of bunching (t51.03104); and~c! in the late stage (t51.83104), with the step-down drift
(v50.4).
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is in agreement with the previous study.9,10,16Since the steps
are stable for wandering, they are straight in Fig. 9.

VII. INSTABILITIES IN GROWTH

Recently, step bunching during growth with the dire
electric current is observed by Yanget al.5 in the low-
temperature range (T;945 °C) and by Me´tois and
Stoyanov13 both in the middle-temperature range (1160
<T<1240 °C) and in the high-temperature range (1260
<T<1320 °C). In the latter experiment the reversal of t
current direction, which is observed in sublimation, did n
occur. In this section we summarize our result of investi
tion for the instabilities in growth. We calculate the line
amplification rate for the long-wavelength fluctuation. W
also show the result of Monte Carlo simulation, which w
performed in several cases to test the linear stability analy
The full expressions of the amplification rate are presente
the Appendixes.

A. Wandering instability of permeable steps

If the step is perfectly permeable, the amplification ra
for an isolated step is given by Eq.~B5!,

vqxs
2

Vceq
0 Ds

5
1

2~11l!
F2DF̃ ṽ
~11l!

24G̃G q̃21•••, ~7.1!

where DF̃5(Ft/ceq
0 21) and terms of orderṽ2 has been

neglected. SinceDF̃.0 in growth, the wandering instability
is induced by the step-up drift in contrast to the sublimat
case. Figure 10 shows the time evolution of an isolated p
meable step obtained by Monte Carlo simulation. The
rameters areb̃/kBT51.35, ceq

0 50.18, xs516, and F52
31023. The critical drift velocity expected from Eq.~7.1! is
vc

W520.12. When the drift is in the step-down directio
(v50.2), the step is stable@Fig. 10~a!# and straighter than
that without drift @Fig. 10~b!#. When the velocity of the
step-up drift isv520.2, wandering instability occurs@Fig.
t

t
-

s
is.
in

e

n
r-
-

10~c!#. From Eq.~B1! the wavelength of the most unstab
mode is calculated aslmax533, which roughly agrees with
the typical wavelength of the step wandering in the ea
stage of the simulation. The wavelength of the wandering
the late stage is larger than that. The unstable step prod
grooves, and their motion is chaotic in space and time. T
pattern is similar to the solution of the KS equation~3.14!
with a positive coefficientd of the nonlinear term.24

For the wandering in a vicinal face, the amplification ra
is given by Eq.~B9!:

vq

VDsceq
0

5S 2DF̃ ṽ l̃ 5

360
2G̃ l̃ D q21•••. ~7.2!

The difference betweenvq in sublimation@Eq. ~3.21!# and
that in growth@Eq. ~7.2!# is the prefactor2DF̃ in front of
the drift term. In growth, the wandering instability occu
with the step-up drift irrespective of the step kineticsl.

B. Wandering instability of impermeable steps

If the step is impermeable, the amplification rate for
isolated step is given by Eq.~C1!. If the step kinetics is fast
l!1 andṽ2 is negligible, the amplification rate in growth i
obtained by replacingṽ in the amplification rate in sublima
tion @Eqs.~3.9! and ~3.11! with l50] with 2DF ṽ:

vqxs
2

Vceq
0 Ds

52
DF̃ ṽ14G̃

2
q̃22

2DF̃ ṽ18G̃

8
q̃4. ~7.3!

In growth the instability can occur with the step-up drift (ṽ
,0). Figure 11 shows the time evolution of an isolated i
permeable step in the fast kinetics. The system size is
3256 and the parameters arexs516, b̃/kBT51.35, ceq

0

50.18, andF5231023. From Eq. ~7.3! the critical drift
velocity is given byvc

W521.131022. Figure 11~a! repre-
sents the time evolution of a stable step with the step-do
drift (v50.2). As expected from the linear analysis, the s
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is straighter than that without drift@Fig. 11~b!#. Figure 11~c!
represents the time evolution of an unstable step with
step-up drift (v520.2). The unstable step produces the c
otic pattern similar to the permeable step.

If the step kinetics is slowl@1, the first term in Eq.~C1!
may be neglected, and the amplification rate is given by

vqxs
2

Vceq
0 Ds

'
1

l
~ F̃ ṽ22G̃ !q̃21•••, ~7.4!

whereF̃5Ft/ceq
0 . The destabilizing effect is proportional t

F̃ ṽ, which comes from the second term in Eq.~C1!. Whether
the surface is in sublimation or in growth, the wanderi
instability occurs with step-down drift in the slow step kine
ics. The critical drift velocity is independent of the step k
netic coefficient in growth~if l is large enough!, while it is
proportional tol in sublimation (F50).

FIG. 8. Snapshots of impermeable steps in sublimation:~a!
Bunching of straight steps withA/kBT58, l 54, xs58, ceq

50.18, b̃/kBT52.76, andv50.4 at t59.53103. ~b! Wandering
of an equidistant step train withA/kBT564, l 54, xs58, ceq

50.18, b̃/kBT50.13, andv50.4 att51.83104.
e
-

For the wandering in a vicinal face, withl /xs!l, the
amplification rate is given by Eq.~C12!,

vqxs
2

VDsceq
0

5 l̃ ~ ṽ2G̃ !q̃21•••, ~7.5!

which is the same as that in sublimation equation~4.19!. The
step distance is so short that the impingementF does not
influence the instability. In the limit of fast step kinetics, o
the other hand, the amplification rate is again given by
~C13!, which does not differ from the permeable case@Eq.
~3.21!#. Because of the short circuit@Fig. 1~d!#, the steps are
effectively permeable. The instability occurs with the step-
drift in growth.

For impermeable steps, the drift direction to induce t
wandering instability changes with the step kinetics. If t
step kinetics is fast,l!1 or l! l /xs , the drift direction to
induce the instability in growth is opposite to that in sub
mation. If the step kinetics is slow,l@1 or l@ l /xs , the
drift direction to induce the instability does not change.

C. Bunching instability of permeable steps

The amplification rate of fluctuation in the step density f
permeable steps has been already given by Eq.~5.9!. In
growth (V0.0), the bunching is induced by the step-dow
drift. Figure 12 shows some results of the Monte Carlo sim
lation for permeable steps in growth. The system size
1283256, and the number of steps is 32. The parameters
b̃/kBT51.35, ceq

0 50.18, F5231023, and A/kBT510.
The critical drift velocity is estimated asvc

B50.13. Figures
12~a! and 12~b! represent the step bunching with the ste
down drift (v50.4). In the initial stage (t59.63104) @Fig.
12~a!#, the equidistant step train becomes unstable for
long-wavelength fluctuation. Later att51.93105 @Fig.
12~b!#, the contrast of the step density becomes clear,
large bunches appear. Since the wandering occurs with

FIG. 9. A snapshot of the weak bunching of the impermea
step in sublimation att53.73104. The step distance is longer tha
the surface diffusion length,l 516 andxs58. The other parameter

areA/kBT510, ceq50.18, andb̃/kBT52.76.
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drift of the opposite direction, the steps in the bunches
rather straight. Figures 12~c! represents the stable step tra
with v520.4. Though the drift is in the step-up directio
the wandering instability does not occur because of the la
critical drift velocity vc

W516.9 estimated from Eq.~7.2!.

D. Bunching instability of impermeable steps

If steps are impermeable, the difference of the amplifi
tion rate in sublimation and in growth appears inm1( l ) and
s1( l ) of Eqs. ~6.2! and ~6.3!. When the step distance i
small,a l /2xs!1, m1( l ) is given by Eq.~D4!

m1~ l !'
2ṽl

@~l211! l̃ /21l#2
, ~7.6!

which does not depend on the impingement rateF. The step
distance is so short that the effect of impingement is ne
gible. Thus the drift direction to induce the bunching do

FIG. 10. Time evolution of the position of a permeable step
growth. The impingement rate isF5231023, ~a! with the step-up
drift (v520.2), ~b! without the drift, and~c! with the step-down
drift (v50.2).
re

e

-

i-
s

not change in growth and in sublimation. When the s
distance is longa l /2xs@1, Eq. ~D2! is positive with the
step-down drift in growth.16 Thus the equidistant step train
unstable with the step-down drift in growth. The drift dire
tion to induce the bunching changes in growth and in su
mation with a long step distance.

Figure 13 shows the bunching of impermeable steps w
fast kineticsK153.3 andK253.9 in growth. The system
size is 1283256, and the number of the steps is 32. T
parameters areb̃/kBT51.35, ceq

0 50.18, F5231023, and
A/kBT515. The vicinal face is unstable with the step-dow
drift @Figs. 13~a! and 13~b!#. Long bunches appear in the la
stage@Fig. 13~b!# in contrast to Fig. 7~c!, where both bunch-
ing and wandering occur. The fluctuation of the bunches
larger than that of the permeable steps@Fig. 12~b!#. When the
drift is in the step-up direction, the vicinal face is stable a

FIG. 11. Time evolution of the position of an impermeable st
in growth. The impingement rate isF5231023, ~a! with the step-
down drift (v50.2), ~b! without drift, and~c! with the step-up drift
(v520.2).
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FIG. 12. Snapshots of bunching of permeable steps with the repulsive interactionA/kBT510 in growth,~a! in the initial stage (t59.6
3104) and ~b! in the late stage (t51.93105) with the step-down drift (v50.4), and~c! at t53.83104 with the step-up drift (v5
20.4),
te

a

e
g
T
di

w
rs
u

i
ic
-

ty
is
d

on
t

ct
-
io

ar
ch
th

in
w

y,
b
te
ra
in

ed

h
ive
y is
ent
ity
tep
h
,

ing

h-
the

by
the

ch-

re
with
pro-

the
is

s

e

the train of straight step is equidistant@Fig. 13~c!#. Figure 14
contains a snapshot of the bunching of impermeable s
with the long step distance,a l /xs@1. The system size is
1283256 and the number of steps is 16. The parameters
K153.3, K253.9, xs516, b̃/kBT52.76, ceq

0 50.18, F
5531023, andA/kBT510. Steps are also unstable with th
step-down drift. The drift direction to induce the bunchin
remains the same as that with a small step distance.
fluctuation of steps is large because of the large step
tance.

In growth, the step bunching occurs with the step-do
drift for both permeable and impermeable steps. The reve
of the drift direction to induce the bunching does not occ
with growth.

VIII. DISCUSSION

The conditions to induce instabilities are summarized
Table I. The physical reasons for these instabilities in a v
nal face (l !xs) are the following. The bunching of perme
able step is explained by the change of adatom densi12

With the step-up drift in sublimation, if the step density
high in some region the adatom density increases there
to the melting, and the high-adatom-density region is c
veyed to the upper part of the vicinal face and decelerates
steps there. Steps are accumulated, and the density flu
tion is amplified. With the step-down drift in growth, con
versely, the adatom density in the high-step-density reg
becomes low, and the steps in the lower part
decelerated.13 Thus steps are also accumulated. The bun
ing of impermeable steps is explained by the change of
terrace width.44 Due to the drift, neglecting the asymmetry
the step kinetics, a step that has a larger terrace in the do
stream moves faster in sublimation. In growth, conversel
step that has a larger terrace upstream moves faster. In
cases a step overtakes the next one if the drift is in the s
down direction, and a step pairing occurs. Repulsive inte
tion between steps changes the pairing instability to the
stability of the step density.47 The bunching instability is a
ps
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result of the change of the step velocity, which is determin
by the total current flowing into~or out from! the step. The
wandering instability is a Mullins-Sekerka instability, whic
is controlled by the diffusion current at the step. Irrespect
of the step permeability the gradient of the adatom densit
steeper in the up-stream direction. Thus the diffusion curr
in this direction is dominant, and the wandering instabil
occurs if the up-stream direction coincides with the s
motion:42 with the step-down drift in sublimation and wit
the step-up drift in growth~if the step kinetics is too slow
l@1, this simple argument does not hold!.

In experiment the current direction to induce the bunch
reverses several times in sublimation:2–5,26 the bunching oc-
curs with the step-down current in the low- and hig
temperature ranges, and with the step-up current in
middle-temperature range. In growth,5,13 however, the rever-
sal does not occur, and the bunching is always induced
the step-down current. The wandering is observed in
middle temperature range with the step-down drift,26 which
is opposite to the current direction to induce the step bun
ing. All these results are explained if the steps, witha l /xs
!1, are impermeable in the low- and high-temperatu
ranges, and permeable in the middle-temperature range,
a positive effective charge irrespective of temperature as
posed by Stoyanov.12 Very recently, Degawaet al.23 found,
by observation of the change of a surface profile, that
drift is always in the direction of the electric current. Th
report also supports the present explanation.

In a Si~111! vicinal face, the surface diffusion length i
xs51.33106 Å, and the diffusion constant isDs51.8
31010 Å2/s at 945 °C~in the low-temperature range!, and
xs55.73104 Å and Ds51.631011 Å 2/s at 1273°C~in the
high-temperature range!.5 The scaled drift velocityṽ is given
by ṽ5xsZeE/kBT, whereZeffe is the effective charge andE
is the electric field. WhenE5500 V/m, which is a typical
value, andZeff50.1, the scaled drift velocityṽ is estimated
to be ṽ50.06 at 945 °C andṽ50.002 at 1273 °C. Since th
typical step distance in the experiments2–5,13,26 is l<4000
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FIG. 13. Snapshots of impermeable steps in growth. The initial step distance isl 58, with xs516. Bunching~a! in the initial stage (t
51.93104) and ~b! in the late stage (t53.13104) with the step-down drift (v50.2), and~c! a stable train with the step-up drift (v5
20.2) att53.13104.
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Å , a l /xs!1 is satisfied. At 1190 ° C, where bunching o
curs with the step-up current in sublimation, the parame
are estimated asDs51.031011 Å/s andxs51.03105 Å5. If
bunching occurs with a step distancel>103 Å, the kinetic
coefficient is K.53103 Å/s with a perfectly permeable
step. Since the estimation ofK by using the impermeable
model is K'5.53107 Å/s,5 bunching occurs with a much
smaller kinetic coefficient if the steps are perfec
permeable.

In the Monte Carlo simulation, we only take account
step interaction in they direction. When bunches are straig
as in the permeable case, this simulation is valid, a
bunches similar to that in the experiments are obtain
When the bunches bend and become parallel to they axis as

FIG. 14. Snapshots of bunching of impermeable steps in gro
with the step distance longer than the surface diffusion length.
drift is in the step-down direction (v50.2), andt58.83103.
rs

f

d
d.

in the impermeable case we found in the sublimation,
need to take account of the step interaction in all directio
and to remove the SOS condition. For the particular c
where both bunching and wandering occur simultaneou
we have derived a two-dimensional continuum model to
scribe the surface morphology.22 By numerical integration of
the continuum evolution equation we have found domains
diagonal ridges. The correlated pattern of bunching and w
dering in Fig. 7~c! is reminiscent of this ridge pattern. How
ever, to obtain realistic surface pattern in a Monte Ca
simulation, we need to use a more realistic model and
perform larger scale simulation.
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APPENDIX A: KINETIC COEFFICIENT IN THE MONTE
CARLO SIMULATION

In the lattice model simulation for the impermeable ste
the average number of atoms that solidify in a unit tim
increment~one diffusion step! Dt from the lower terrace is

DNs
15

Lc1

Na
ps , ~A1!

and that from the upper terrace is

DNs
25

Lc2

Na
~12c1!ps , ~A2!

whereL is the system size~the step length in thex direction!,
Na is the number of adatoms, andps is the average solidifi-
cation probability:

th
e
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ps5
1

11e2f/kBT
. ~A3!

The average number of melting atoms that go onto the lo
terrace is

DNm
15

L

Na
~12c2!pm

1

2
, ~A4!

and the number that go onto the upper terrace is

DNm
25

L

Na
~12c2!pm

1

2
~12c2!, ~A5!

wherepm is the average melting probability:

pm5
2

11ef/kBT
. ~A6!

To balance the solidification from both sides of the step,
melting of adatoms should occur twice as frequently as
of the permeable step, andpm should be twice as large a
that of the permeable step. In the equilibrium statec1

5c2 , and the conditionsDNs
15DNm

1 and DNs
25DNm

2

give the equilibrium density

ceq15ceq-5ceq5
1

11ef/kBT
, ~A7!

which is equal to the equilibrium adatom density in the p
meable case. Ifc1 and c2 deviate from this value, the ne
number of solidifying atoms from the lower terrace per u
length, in the linear approximation, is

DNs
12DNm

1

L
5

ps

Na
~c12ceq!1

pm

2Na
~c22ceq!, ~A8!

where we have used the equilibrium condition@Eq. ~A7!#.
This number depends not only onc1 but also onc2 , which
differs from boundary condition~4.1!. It is not possible to
find a simple algorithm which reproduces boundary con
tions ~4.1! and~4.2!. The first term in eq.~A8! determines the
kinetic coefficientK1 . We have chosen the time increme
Dt51/4Na to set the diffusion coefficientDs51. With this
choice the kinetic coefficient for the upper terrace is

K154ps5
4

11e2f/kBT
. ~A9!

The coefficient in the second term is smaller thanK1 by a
factor e2f/kBT, and we suppose that at low temperatures
contribution from the second term is small enough. Simila
er

e
at

-

t

i-

e
y

the net number of solidifying atoms from the upper terra
per unit length is approximated in the linear order of t
concentration deviation from the equilibrium value as

DNs
22DNm

2

L
5

~12ceq!

Na
~c22ceq!~ps1pm!

1
ceqps

Na
~c12ceq!. ~A10!

The first term yields the kinetic coefficient

K254~12ceq!~ps1pm!5
4ef/kBT

11ef/kBT S 11
1

11ef/kBTD ,

~A11!

which is slightly larger thanK1 . The coefficient of the sec
ond term is smaller thanK2 by a factor pse

2f/kBT/(ps
1pm), which is expected to be small at low temperatur
The numbers cited in the paper are calculated with Eqs.~A9!
and ~A11!.

APPENDIX B: WANDERING OF THE PERMEABLE STEP
IN GROWTH

1. Isolated step

A step is isolated in an infinitely large facet, and atom
impinge from the vapor with the rateF. When the perturba-
tion z1eiqx1vqt is given to the straight step, the amplificatio
ratevq is calculated as

vqxs
2

VDsceq
0

5
22DF̃ ṽ~Aṽ21414q̃22Aṽ214!

~21lAṽ214!~21lAṽ21414q̃2!

2
2G̃q̃2Aṽ21414q̃2

~21lAṽ21414q̃2!
, ~B1!

where DF̃5Ft/ceq
0 21. For a long-wavelength fluctuation

vq is expressed as

vq'a2q22a4q4, ~B2!

where

a2

VDsceq
0

5
2@22DF̃ ṽ2G̃~41 ṽ2!~21lAṽ214!#

~21lAṽ214!2Aṽ214
,

~B3!
a4

VDsceq
0 xs

2
52

4@2DF̃ ṽ~213lAṽ214!1G̃~41 ṽ2!~21lAṽ214!#

~11lAṽ214!3~ ṽ214!3/2
. ~B4!
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If ṽ is small andṽ2 is negligible, the amplification rate i
given by

vqxs
2

VDsceq
0

5
1

2~11l!
F2DF̃ ṽ
~11l!

24G̃G q̃2

2
1

8~11l!2 F2DF̃ ṽ~113l!

~11l!
14G̃G q̃4.

~B5!

Then critical value of the drift velocity is

vc
W5

4VDsb̃ceq
0 ~11l!

kBTxs
2~ceq

0 2tF !
. ~B6!

The instability occurs whenDF̃ ṽ is negative, i.e., with step
down drift in sublimation and with step-up drift in growth

2. Steps in a vicinal face

For an equidistant step train with step distancel, the am-
plification ratevq for an in-phase fluctuation is given by

vqxs
2

Vceq
0 Ds

52
DF̃

lg0
S ṽ sinh

a l̃

2
2a cosh

a l̃

2
1ae2 ṽ l̃ /2D

1
2DF̃

lg0gq
sinh

aql̃

2
S ṽ sinh

a l̃

2
2a cosh

a l̃

2

1ae2 ṽ l̃ /2D 1
4avDF̃

g0gq
sinh

aql̃

2

3S cosh
a l̃

2
2 cosh

ṽ l̃

2
D 2

2DF̃a

g0gq

3S cosh
a l̃

2
2 cosh

ṽ l̃

2
D

3S ṽ sinh
aql̃

2
1aq cosh

aql̃

2
2aqe2 ṽ l̃ /2D

2
aq

gq
S cosh

aql̃

2
2 cosh

ṽ l̃

2
D G̃q̃2. ~B7!

When the step distance is much smaller than the sur
diffusion lengthl !xs and the wavelength of the perturbatio
is long enoughq̃5qxs!1, vq is expanded as

vq

VDsceq
0

5S 2DF̃ ṽ l̃ 5

360
2G̃ l̃ D q21•••. ~B8!

The critical drift velocity is given by

vc
W5

360DsVb̃ceq
0 xs

2

~ceq
0 2Ft!kBTl4

. ~B9!

The instability occurs whenDFv is negative, i.e., with step
down drift in sublimation and with step-up drift in growth
ce

APPENDIX C: WANDERING OF THE IMPERMEABLE
STEP IN GROWTH

1. Isolated step

A step is isolated in an infinitely large facet with the im
pingement of atomsF. The perturbationz1eiqx1vqt is given
to the straight step. The amplification ratevq is calculated as

vqxs
2

Vceq
0 Ds

52F ~v2a!~aq2a!

@l~v1aq!12#@l~v1a!12#

1
~v1a!~aq2a!

@l~v2aq!22#@l~v2a!22#GDF̃

2F ~v2a!~aq2a!

@l~v1aq!12#@l~v1a!12#

2
~v1a!~aq2a!

@l~v2aq!22#@l~v2a!22#GlF̃ ṽ

2
aq12l~11q̃2!

11l2~11q̃2!1al
G̃q̃2, ~C1!

whereF̃5Ft/ceq
0 . When we take the the fast kinetics limi

l→0, Eq. ~C1! is simplified as

vqxs
2

Vceq
0 Ds

52
DF̃ ṽ

2
~Aṽ21414q̃22Aṽ214!

2G̃q̃2Aṽ21414q̃2, ~C2!

which is the same as Eq.~B1! in the fast kinetics limit. When
the step kinetics is slow,l@1, the second term in Eq.~C1!,
proportional tol21, is larger than the first term, proportiona
to l22. For the long-wavelength fluctuation, the amplific
tion ratevq is given by

vqxs
2

Vceq
0 Ds

'
1

l
~ F̃ ṽ22G̃ !q̃21•••. ~C3!

Whether in growth or sublimation, with the impingement
atoms, the bunching instability occurs with the step-do
drift exceeding the critical value:

vc
W52

VDsb̃ceq
0

tFxs
2kBT

. ~C4!

2. Steps in a vicinal face

For an equidistant train of straight steps, the adatom d
sity is given by

c0~y!5Ft1ceq
0 eṽ l̃ /2S A cosh

ay

2xs
1B sinh

ay

2xs
D , ~C5!

wherel is the step distance, and the coefficientsA andB are
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A52
DF̃

h0~ l !
F2S l ṽ

2
sinh

a l̃

2
2

la

2
cosh

a l̃

2
2 sinh

a l̃

2
D 1

la

2
e2 ṽ l̃ /2G

1
F̃ ṽl

h0~ l !
F S l ṽ

2
sinh

a l̃

2
2

la

2
cosh

a l̃

2
2 sinh

a l̃

2
D 1

la

2
e2 ṽ l̃ /2G , ~C6!

B52
DF̃

h0~ l !
F S l ṽ

2
cosh

a l̃

2
2

la

2
sinh

a l̃

2
2 cosh

a l̃

2
D

1S 11
l ṽ
2

D e2 ṽ l̃ /2G1
F̃ ṽl

h0~ l !
F2S l ṽ

2
cosh

a l̃

2
2

la

2
sinh

a l̃

2
2 cosh

a l̃

2
D 1S 11

l ṽ
2

D e2 ṽ l̃ /2G . ~C7!

When the step position is perturbed aszm5nl1z1eiqx1 imkl1vqt by the fluctuation, the amplification ratevq is calculated as

vqxs
2

VDsceq
0

5
u1

hq~ l !
F2l2~11q̃2!sinh

aql̃

2
2

laq

2
cosh

aql̃

2
2

l ṽ
2

sinh
aql̃

2
1

laq

2
eṽ l̃ /2G

1
u2

hq~ l !
F2l2~11q̃2!sinh

aql̃

2
2

laq

2
cosh

aql̃

2
1

l ṽ
2

sinh
aql̃

2
1

laq

2
e2 ṽ l̃ /2G

1
1

hq~ l ! Flaqu1

2
~eṽ l̃ /2e2 i k̃ l̃ 2eṽ l̃ /2!1

laqu2

2
~e2 ṽ l̃ /2eikl2e2 ṽ l̃ /2!G

1
DF̃l

h0~ l !
S ṽ sinh

a l̃

2
2a sinh

ṽ l̃

2
D 2

F̃ ṽl

h0~ l !
S la cosh

a l̃

2
12 sinh

a l̃

2
2la sinh

ṽ l̃

2
D

2
F~ l !

hq~ l !
F2l2~11q̃2!sinh

aql̃

2
1laq cosh

aql̃

2
2laq cosh

ṽ l̃ 22i k̃ l̃

2
G ~12 cosk̃ l̃ !,

2
G̃

hq~ l !
F2l2~11q̃2!sinh

aql̃

2
1laq cosh

aql̃

2
2laq cosh

ṽ l̃ 22i k̃ l̃

2
G q̃2, ~C8!

where

u152
xs

lceq
0

du0

dy U
y50

1
1

ceq
0

u0U
y50

, ~C9!

u252
xs

lceq
0

du0

dy U
y5 l

2
1

ceq
0

u0U
y5 l

, ~C10!

u0~y!5c0~y!2Ft. ~C11!

We assume that the step distancel is much smaller than the surface diffusion length and all the steps are perturbed wi
same phase, i.e.,k50. For the slow step kinetics,l /xs!l, the amplification ratevq is expressed as

vqxs
2

VDsceq
0

5 l̃ ~ ṽ2G̃ !q̃21•••, ~C12!

which is the same as that in sublimation@Eq. ~4.19!#. In the limit of fast kinetics,l! l /xs, the amplification ratevq is given
by

vqxs
2

VDsceq
0

5S 2
DF̃ ṽ
360

l̃ 52G̃ l̃ D q̃21•••, ~C13!

which is a generalization of Eq.~3.22!. This result coincides with the permeable case@Eq. ~B8!#, because the gap of the adato
density at the step vanishes in the fast kinetics limit. The instability can occur with the step-down drift in sublimation an
the step-up drift in growth.
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With impingement of adatoms, the velocity of thenth stepVn is given by

2xsVn

VDs
52l ṽFt

~22l2 ṽ !sinh~a l̃ 1/2!2a cosh~a l̃ 1/2!2ae2 ṽ l̃ 1/2

~11l2!sinh~a l̃ 1/2!1al cosh~a l̃ 1/2!

1l ṽFt
~22l1 ṽ !sinh~a l̃ 2/2!2a cosh~a l̃ 2/2!2aeṽ l̃ 2/2

~11l2!sinh~a l̃ 2/2!1al cosh~a l̃ 2/2!

2Ft
~22l2 ṽ !sinh~a l̃ 1/2!2a cosh~a l̃ 1/2!1ae2 ṽ l̃ 1/2

~11l2!sinh~a l̃ 1/2!1al cosh~a l̃ 1/2!

2Ft
~22l1 ṽ !sinh~a l̃ 2/2!2a cosh~a l̃ 2/2!1aeṽ l̃ 2/2

~11l2!sinh~a l̃ 2/2!1al cosh~a l̃ 2/2!

1
@~22l2 ṽ !sinh~a l̃ 1/2!2a cosh~a l 1/2xs!#cn1ae2 ṽ l̃ 1/2cn11

~11l2!sinh~a l̃ 1/2!1al cosh~a l̃ 1/2!

1
@~22l1 ṽ !sinh~a l̃ 2/2!2a cosh~a l̃ 2/2!#cn1aeṽ l̃ 2/2cn21

~11l2!sinh~a l̃ 2/2!1al cosh~a l̃ 2/2!
. ~D1!

The coefficientsm1( l ) of Eq. ~6.4! ands1( l ) of Eq. ~6.6! are modified as

m1~ l !522l ṽF̃
d

d l̃
F2l sinh~a l̃ /2!1a cosh~a l̃ /2!1a cosh~ ṽ l̃ /2!

~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!
G22DF̃

d

d l̃
F ṽ sinh~a l̃ /2!1a sinh~ ṽ l̃ /2!

~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!
G ,

~D2!

s1~ l !5l ṽF̃
d

d l̃
F Fsinh~a l̃ /2!2a cosh~ ṽ l̃ /2!

~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!
G1DF̃

d

d l̃
F2l sinh~a l̃ /2!1a cosh~a l̃ /2!2a cosh~ ṽ l̃ /2!

~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!
G , ~D3!

whereF̃5Ft/ceq
0 andDF̃5(Ft/ceq

0 21). When the step distance is small,a l /2xs!1, m1( l ) becomes

m1~ l !'24ṽ
d

d l̃
Fl~DF11!~l l̃ /211!1DF l̃ /2

~11l2! l̃ /21l
G5

2ṽl

@~l211! l̃ /21l#2
, ~D4!

which is the same as that without impingement@Eq. ~6.8!#. Thus, irrespective of the impingement of the adatoms, the vic
face consisting of impermeable steps can be unstable with the step-down drift.

The derivatives in eq.~D2! are given by

d

d l̃
F2l sinh~a l̃ /2!1a cosh~a l̃ /2!1a cosh~ ṽ l̃ /2!

~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!
G52

a2~12l2!

@~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!#2

2
a~11l2!@a cosh~ ṽ l̃ /2!cosh~a l̃ /2!2 ṽ sinh~ ṽ l̃ /2!sinh~a l̃ /2!#

@~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!#2

2
a2l@a cosh~ ṽ l̃ /2!sinh~a l̃ /2!2 ṽ sinh~ ṽ l̃ /2! cosh~a l̃ /2!#

@~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!#2
~D5!

d

d l̃
F ṽ sinh~a l̃ /2!1a sinh~ ṽ l̃ /2!

~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!
G5

a2vl

2@~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!#2

2
a~11l2!@a sinh~ ṽ l̃ /2!cosh~a l̃ /2!2 ṽ cosh~ ṽ l̃ /2!sinh~a l̃ /2!#

@~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!#2

2
a2l@a sinh~ ṽ l̃ /2!sinh~a l̃ /2!2 ṽ cosh~ ṽ l̃ /2!cosh~a l̃ /2!#

@~11l2!sinh~a l̃ /2!1al cosh~a l̃ /2!#2
. ~D6!
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When the step distance is much longer than the surface
fusion length, Eq.~D5! is negative, irrespective of the drif
direction. Equation~D6! is negative with the step-down drif
and positive with the step-up drift. In sublimation the fir
D

,

s,

I

i.

.

if-term in Eq.~D2! vanishes, and2DF̃521. Thenm1( l ) is
positive, and the vicinal face is unstable with the step-
drift. In growth, m1( l ) is positive, and the vicinal face is
unstable with the step-down drift.
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