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We theoretically study step wandering and step bunching induced by the drift of adatoms with attention to
the permeability of steps. The critical drift velocity to induce the instability is calculated, and Monte Carlo
simulation is performed to test the linear analysis. In sublimation, when the step distance is small in compari-
son with the surface diffusion length, the wandering and bunching of steps can occur simultaneously with the
step-down drift if steps are impermeable. The instabilities do not occur simultaneously if steps are permeable:
the bunching occurs with the step-up drift, and the wandering with the step-down drift. In growth, when the
step distance is small, the bunching occurs with the step-down drift and the step wandering occurs with the
step-up drift irrespective of the permeability, in agreement withtdideand StoyanoySurf. Sci.440, 407
(1999]. The change of the permeability with increasing temperature can explain the instabilities observed in
Si(112) vicinal face[M. Degawaet al, Jpn. J. Appl. Phy88, L308 (1999 ].

[. INTRODUCTION rent direction may be explained by the change of the effec-
tive chargeZqe:® a positive charge in ranges | and Ill, and a
Step bunching in a vicinal face of @il1) in sublimation = negative charge in range (e do not consider range IV in
by heating with direct electric current has been a long standthis papey). In the bunching, the size of a buntbr equiva-
ing mystery because the current direction to induce thdently the width of the large terragéncreases with the an-
bunching changes several times as temperature changes.nealing time in a power lav.~t#.5 The theoretical value
According to Homma and Aizawahe bunching occurs with  B=1/2 (Refs. 18, 20, and Jlagrees with the experiment.
step-down current in the lowest temperature rafrgage I:  However, in a recent experiméntthe observation of the
860 °C<T<960°C) and the third temperature rangange surface profile of a grooved surface after heating with current
[ll: 1210 °C<T< 1300 °C) while it occurs with step-up cur- suggests that the drift direction is always parallel to the cur-
rent in the seconérange Il: 1060 °CG<T<1190°C) and the rent irrespective of temperature.
fourth (range IV: 1320 °G<T) temperature ranges. The heat-  Theoretically in a vicinal face two kinds of instabilities,
ing current induces drift of adsorbed atotaslatoms either ~ step bunching and step wanderfig*?° are possible. Re-
parallel or antiparallel to the external electric field accordingcently Degaweet al. observed both bunching and the wan-
to the effective charge of an adatom. The cause of the changkering by using a cylindrical speciméh.At 1000°C (in
has been attributed to the change of the effective cHarge, range I), in-phase wandering occurs with the step-down cur-
the change of diffusion lengti® and to the diffusion of rent, while bunching occurs with a step-up current. Although
surface vacancies.Recently Stoyanov proposed a different a step wandering instability with the drift of adatoms has
mechanism, that is the change of permeability of stéps. been predicted, the current direction to induce the wandering
Step bunching was also observed during growth in ranges the same as the bunching instability if steps are imperme-
-1l In all these temperature ranges the bunching alwaysble. Therefore, the instabilities cannot be explained simply
occurs with the step-down curréhtno experiment was per- by the change of the effective charge.
formed in range 1V: the current direction for bunching is If the kink density along the step is low, adatoms attach-
reversed in range Il compared with the sublimation case. Aing to a straight part of the step may not reach a kink position
explained by Méis and Stoyanov, the reversal is consistentand leave the step without solidification. The adatoms cross-
to the interpretation that the steps are permeable in range ling the step without solidification are not negligible, and the
If the kink density along the step is high, an adatom at-step is called permeabléransparent Stoyanov studied the
taching to the step always reaches a kink position to solidifystability of an isolated bunch consisting of permeable steps
The adatoms crossing the step without solidification are negn the drift flow, and found that the isolated bunch is stable
ligibly few, and the step is called impermealffeontranspar-  with the step-up drift? Therefore, without a change of sign
end. In the impermeable case, the step bunching was studieaf the effective charge, a reversal of the current direction for
theoretically with a step flow mod&t®4-22When the dis- bunching is possible from a change of the step permeablity:
tance between steps is smaller than the surface diffusiothe steps are impermeable in ranges | and Ill, and permeable
length, which situation is likely for a §i11) vicinal face?®  in range Il. The relation between the step distance and the
the step bunching is possible with the step-down drift innumber of steps in a bunéhas well as the observed bunch-
sublimation. There is a critical drift velocity above which the ing in growth® support this interpretation. Then if theory
bunching occurs, and it is determined by the strength of th@redicts the wandering instability of permeable steps with
repulsive interaction between stef3d>1620-23f the step is  step-down drift in sublimation, the above interpretation is
impermeable in ranges I, Il, and I, the reversal of the cur-consistent with the observation of wandering instability.
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In this paper, we study the instabilities of permeable and
impermeable steps both in growth and in sublimation. By a
linear analysis we derive quantitative conditions for the in-
stabilities to occur. Then we carry out a Monte Carlo simu- Dy . 1P ¢, x/Ds by O
lation to test the theory, at least qualitatively. Cow

1K Ceq /K

Il. MODEL Poo

A. Continuum model for a mathematical analysis (a) (c)

We use the standard step flow model with drift of Wby x/D, 1P x/D,
adatom$10:14-22242%gr 3 mathematical analysis of the step A
motion. When the drift is perpendicular to the average ori-
entation of steps, the diffusion equation of the adatom den-

sity c(r,t), on a terrace, is given by K K

(b) solid pee (d) solid

Jc
ot DsVZC— v W - ;C"‘ F, 2.9 FIG. 1. Electric circuits equivalent to a single step in the super-
saturated adatom density,,. The resistance is defined bR
whereDy is the diffusion constant; the adatom lifetime for ~=Ac/j, wherej is the atomic current@ With general boundary
evaporationp the drift velocity (which can be written ag ~ condition. (b) For a perfectly permeable stefe) For an imperme-
=Z.weEDs/kgT with the applied electric field), andF the ~ able step(d) In the limit of fast step kinetics.
impingement rate of atoms. We suppose that the steps are

parallel to thex axis on average, and that tlyeaxis points _ 0l Qf () 2.6
toward the step-down direction. Unless the adatom density is cm(x)—ceq keT |’ 6
very high and the step motion is fast, we may use the quasi- 0 . o ) )
static approximation for the diffusion equati¢®.1): where ¢, is the equilibrium adatom density for a straight
step, andf ,(x) the force acting on thenth step. When we
) Jc 1 take account of the step tension and the interaction between
DsVc—v oy~ ZCc+F=0. (2.2 steps, the forcé, is given by
L _ dE
The adatom current is given by fo=— By — ﬁ 2.7
m
j(r)==DgVc(r)+vc(n)e,, (2.3

where k., is the curvature of thenth step,3 the step stiff-
where the first term is due to the surface diffusion and theness, and,, the step energyEquation(2.6) is an approxi-
second term is due to the drift of adatoms. The terrace isnation and the general form is given in Ref. P@/ith a step
bounded by steps, where solidification and melting occurenergyé,, of the form

We may consider that some adatoms solidify at the step po-
sition, and others cross over the step to the neighboring ter-
races without solidification. Then the boundary conditions at
the steps are given BY?®the growth current

En(0=bot 2 UllLn()=&0[, (28

the equilibrium adatom density,, becomes

K.(cl;  —cm)=n-(DVe|, ,—vec|, ;) . 0 Brn(x)
Cn(X) =0t ———
~K.(cly —Cm+P(el,  —cl, ), (2.4 m(0=Cert T
VQCgcA

K_(cl;, —cm=-n-(DVc|, ——vegcl, ) (2.9

=K_(cl; ——cm)+P(cl, ——cl; ), (2.5

keT  ndme1 [£n(x)— £a() ]

where we us&J(lI)=A/l" as the repulsive interaction poten-
tial. In this paper we use=2 as the exponent of the repul-
sive interaction potential, which corresponds to the elastic

Do S > " interaction®® For simplicity, we will only study the perfectly
kinetic coefficient, and® the permeability coefficient of the permeable cas®—o and the impermeable case, ca@e

step. The subscript (—) indicates the lowetuppe) side of =0, to clarify the effect of the step permeability.
the step. The equivalent electric circuit for an isolated step '

(without external fieldlis shown in Fig. 1a). The rate of the
adatoms permeating the step is proportional to the difference
of the adatom densities in the lower and upper sides of the To check the mathematical analysis we carry out Monte
step. The solidification rate is proportional to the differenceCarlo simulation. We consider a square lattice with periodic
of the adatom density at the step and that in equilibrium. Théoundary conditions. The lattice constant and step height are
equilibrium adatom density is given by a=1. We use solid-on-solidSOS steps: overhanging of a

wheren is the unit vector normal to the step in the step-down
direction,y = {m(X,t) the position of themth stepK , ) the

B. Lattice model for simulation
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step is excluded and the step position is a single-valued func-lll. WANDERING INSTABILITY OF THE PERMEABLE

tion of x. Two-dimensional nucleation on terraces is forbid-
den. The algorithm of the simulation is similar to that of

Refs. 31 and 32, except that the jump of adatoms over thge

step is allowed without an extra diffusion barrier to include
the permeability of adatoms at step sites® The uniform

STEP

When a step is perfectly permeabR—o, the adatom
nsities in the upper and the lower side of the step are the
same[see Fig. 1b)]:

drift of adatoms is taken into account as a biased diffusion
probability. This treatment is valid when the adatom density
is low. We choose the time increment for a diffusion trial This is the boundary condition used in the original model of

cls=cl, . =cl; - (3.2

At=1/4N, (N, is the number of adatomé order to make
the diffusion constanD¢=1. When the drift velocity i,
an adatom on the sitd,{) moves to the sitei¢-1,j) with
the transition probability 1/4, and to the sitgj(*1) with
the probability (F-v/2)/4 in a diffusion trial if the destina-

Burton, Cabrera, and Frarik.The step velocity to the nor-
mal directionV,, is given by

Vn=20K(¢s~Cy) =QDN-(Ve|,  —~Vc|, ), (32

tion is empty. When an adatom comes in front of a step, thavhere () is the atomic area, anHl is the average kinetic

adatom solidifies with the probability

L+ o 21200

The increment of the step energy by the solidificatidsg is
given by AE;=€eX (the increment of the step perimeter
where the nearest-neighbor bond eneegig related to the

step stiffnes$ as

AE+AU—¢\ ]t

T (2.10

Ps=

E (1_e75/kBT)2

T (2.11

BT 2¢e~ e/kgT

The change of the step-step interaction potemtidl, when

the position ofmth step[i,{m(i)] moves to[i,Z,(i)], is
given by

AU= 3 UL = &)= UL u() = £a)]1}

=An:§ﬂ (1200 = Za(D)] 2= £m(i) = £a(D)] 2.
(2.12

The chemical potential gain by the solidificatieh deter-
mines the equilibrium adatom densitﬂq as

0 1
Co=——.
e 1 4 g¢lkeT

(2.13

To satisfy the detailed balance, an atom in the step melts, and

becomes an adatom with the probability

1+ exp(

AEc+AU+ ¢\ |1

kaT (2.19

Pm=

if there is not an adatom on top of the atom. To select an
atom that does the transition trial, we prepare a single table
for all atoms and step atoms and pick up one atom from thé

table. Then the kinetic coefficied _+K, =4. This algo-

coefficient defined byK= (K, +K_)/2. Solidifying atoms

are supplied by the diffusion current from both terraces.
Since there is no gap in the adatom density at the step, there
is no contribution of the drift current to the step velocity. By
solving Eq. (2.2) with the boundary condition$3.1) and
(3.2), the normal velocity/,, is determined. Time evolution

of the step positiord ,(x,t) is related to the normal velocity

V, as
[ [0m\?

A. Wandering of an isolated step

o _
at

(3.3

We first study the motion of an isolated step without im-
pingement of atomsF=0. The boundary conditions far
from the step are(y— +«)=0, and the velocity of the
straight stepV is calculated as

2DCoqVv?+4
Xs(2+ N \02+4)

where xg=+/Dg7 is the surface diffusion length, and the

scaled quantities are defined as=uvx,/Ds and A\
=D4/Kx. With a sinusoidal perturbation of the wave num-
ber g to the straight step, the position of the step is given by
{1=Vot+ 67e'* “d' where w, is the amplification rate in
the linear theory. By solving the diffusion equation, we ob-
tain the ratew, as

Vo (3.9

25 (Vo2 + 4+ 45— o2+ 4)
DL, (24 A52+4) (24 Aot 4+ 4TD)
ST\ rar g

2enorraragd)
whereq=qx, andT = QB/KgTxs.
When the wavelength of the fluctuation is longer than the

urface diffusion lengtlgxs <1, the amplification rate is
expressed as

2
XS

(3.5

S

rithm is for perfectly permeable steps. The algorithm for an
impermeable step is introduced in Sec. IV A and in Appen-
dix A. where

wq~a2q2+ a4q4+ cee (3.6)
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step?®23® The normal velocity of the inclined stey,(¢,) is

2[20 ~T(4+02)(2+\\4+72 o =
@z _ 220 T(a+oT) v7)] (3.7)  given by replacing? with v%/(1+¢2) in Eq. (3.4. If we

QD (24N V4+02)2V4+72 expand Eq(3.9 as
a, L ag\?
—=Vo+é|—=| +---, (312
> at 0 Tlax
QD Coxs
27 (2+3\ \/4+—52)+f(4+52)(2+)\ /4+;2)] the coefficient of the nonlinear term is given by
(2+ N V4+02)3(4+72)2 Vo 1d¥V, Vo D 2

38 "2 29z T2 xarny OB

The coefficienta, determines the stability at long wave-

length. If 5 is small, 52 is negligible, and where we have neglectaf. Adding the nonlinear term to

the linear equation, we obtain the nonlinear evolution equa-

~ tion
o _ 1 S 4T (3.9
0 “2(1+N)[(1+N) P '
Dl 21N [(1+N) 0w i) »
which is the same as the corresponding coefficient for the a2 IX? “a x4 X 3.19

impermeable stéff when the step kinetics is fast—0. The
first term is the effect of the drift, which is destabilizing if This equation is called the Kuramoto-Sivashinsky

v>0, and the second term is the effect of the stiffnessequatior?’38and its solution is known to produce spatiotem-
which stabilizes a straight step. As a result of competitionporal chaos. Therefore, near the threshold of the instability,
between these effects, the straight step is unstable with thie step is expected to show chaotic behavior if the anisot-
step-down drift whose velocity exceeds the critical value, ropy of crystal is negligiblé*2>323°The effect of the anisot-
ropy is discussed in Refs. 40 and 41.
40D B(1+N) To confirm the above analysis we performed Monte Calro
:T (310  simulation. Figure 2 represents the time evolution of an iso-
B'%s lated step with the drift. The system size is 25866 and the

For v larger thanvy’, a small fluctuation grows exponen- Parameters are 7=256, Coq=0.18 (p/kgT=1.0), and
tially. If we include thermal fluctuation in our model as a B/kgT=0.54 (e/kgT=1.5). The initial step position is
random force, the amplitude of the step fluctuation is deter{(x,t)=0. By using Eq(3.7), the drift velocity to induce the
mined by a, and (5{?)«|a,|~! for the stable cas#:®  wandering instability is estimated to be &80 %<y
(Near the critical point, nonlinearity becomes importiht. <1.4. Figure 2a) shows the time evolution with the step-up
Therefore, we expect the enhancement of fluctuation withdrift (v=—0.1). The wandering fluctuation is suppressed
v>0 and suppression with<0. The coefficienta, deter- and the receding step is more straight than that without the
mines the stability at short wavelength. Wheis small,p2  drift [Fig. 2(b)].*° Figure c) shows the time evolution with
is negligible, and the step-down drift {=0.1). The _drn‘t vgalloc_|ty is in the
unstable range and the wandering instability is evident. From
Eg. (3.5 the wavelength of the most unstable mode is ob-
8'1:} (3.1)  tained as\y,~36, which agrees roughly with the period of
the peaks of the wandering pattern observed in the initial
o o L stage of the instability. In the late stage the period of the
For the Wanderlng instability to occur the drift is in the Step'peaks becomes longer. The positions of peaks are moving
down direction ¢ >0), anda, is negative. The step is stable randomly along the step, and collision and creation of hills
for the short wavelength fluctuation. The wavelength of theoccur. The step pattern is similar to the chaotic pattern of a
most unstable mode is determined Mg, =27\2[ayl/a,  solution of Eq.(3.14 with negatives.*?
which becomes long near the threshold of the instability.
Since the amplitude of the fluctuation increases rapidly
after the instability occurs, we need to take account of non-
linear effects to predict the step behavior. Since the wave- We consider a vicinal face consisting of equidistant par-
length of the most unstable mode is long near the thresholdllel steps with a distanck Wandering of the steps in the
of the instability, the linear evolution equation is obtainedlinear regime is expressed in terms of the position ofrtitle
from Eq. (3.6) by replacingw, andiq with d/dt andd/ox.  step as(y,=ml+ e’ Mkt Since it is difficult to cal-
Higher order terms should reflect the inversion symmetry oftulatew for generalg andk, we consider the simplest case:
the system in thex direction,x< —x. Then the most domi- all steps fluctuate in phase, thatks-0. When there is no
nant nonlinear term near the threshold of the instability isimpingement of the atom&;, =0, the amplification rate is
proportional to ¢Z/9x)?. This type of nonlinear term is re- calculated in a similar way as in the isolated step case. It is
lated to the velocity increment of the inclined straight given by

w
UC

(1+3\)v
(1+\)

ay 1

DY, 8(1+)\)?

B. Step wandering in a vicinal face
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FIG. 3. Snapshots of the wandering of a train of perfectly per-
meable steps{a) at t=4.1x10° with the repulsive interaction

(A/kgT=1000), and(b) at t=4.1x 10° without repulsive interac-
tion. The drift is in the step-down directiow €0.4).

where
=—, (3.16

a=\v’+4, (3.17

ag= o+ 4+ 42, (3.19

- al
+2 S|nh7, (3.19

<l
—1

al
Jp=2A\ a( cos% - Cosr‘T

agl vl |

_ a _ inhodl
gq—Z)\aq(cosh7 cosk? +2 sinh >

(3.20

When the step distance is smaller than the surface diffusion
length, |<xs, the amplification ratew, in the long-
wavelength limit gl<<1) is written as

e+, (3.20)

P ~—
qus N(UIS ~

QDY 360

FIG. 2. Time evolution of the position of a perfectly permeable which does not depend on the step kineticsSimilarly to

step in sublimation(a) with the step-up drift § =—0.1), (b) with-
out the drift @ =0), and(c) with the step-down drift{=0.1).

wx§ 1 ([~ . al e
o =)\— v smh——acosr7+ae v
QceDs Mo
2 ) haqT ~ . ha~| il
N0ode sin > |V sin > a COS 5
1| 4av aqT al
+ae V"¢ | ———sinh——| cosh— — cosh—
dodq 2 2 2
2a al ol
+——| cosh— — cosh—
909q 2 2
~ . agl aqT B
Xl v sth +aq coshT —aqe

q

agl

aq(cosh— - cos%)faz,

vl
2

the case of an isolated stéfq (3.9)], the wandering insta-
bility is induced by the step-down drift. The critical drift
velocity is

w
UC

360D B2

, 3.2
kgTI* (322

which is larger than that of the isolated step. Simcglé is
inversely proportional tol(xs)*, the vicinal face rapidly be-
comes stable with decreasing step distance.

Figure 3 shows snapshots of the wandering instability of a
step train. The system size is 54228 and the number of
steps is four. Initially the steps are straight with the same
distance | =32. The surface diffusion length ig;=64,
which is twice as long as the initial step distance. The equi-
librium adatom density isng 0.27. To make the wandering
instability accessible in the simulation, we use steps with
small stiffnessB/kgT=0.13. From Eq.(3.22 the critical
drift velocity is estimated to)‘é"= 0.18. The strength of the
repulsive interaction i#&\= 1000, withv=2. Figure 3a) rep-
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resents the step wandering with the step-down drift (
=0.4). By the repulsive interaction, the in-phase motion of =
the step wandering pattern is evident. When the repulsive Qceps [Nt ag)+2][N(v+a)+2]
interaction is turned off, although the in-phase mode has the n _

largest growth mode, the phase coherence vanishes due to (v+a)(ag—a)

the randomnesgFig. 3b)]. [Nv—ag)—2][Nv—a)—2]

agt 2N (1+ Q) ~o
- q2 = I'g2. (4.5
1+A2(1+ ) + agh

wqx§ 3 (v—a)(ag—a)

IV. WANDERING INSTABILITY OF IMPERMEABLE
STEP

In the fast step kinetics limi 0, Eq.(4.9 is simplified as
To study the wandering instability of impermeable steps, p kinetics fimit, = A.(4.5) is simplif

we need to change the boundary conditipigs (3.1) and
(3.2)]. Since the step is impermeable to the surface diffusion,

P ~
quS _v

(Vo2 +4+497—\p2+4)

adatoms cannot jump over the steps without solidification chqu 2
and the parameter for the permeabilP=0 in Egs. (2.4 — -
and(2.5) [see Fig. 1c)]. If the kinetic coefficient is finite, the —Tg*\v?+4+4q? (4.9

gap of the adatom density is produced between the lower a
upper sides of the step. Since the adatom flux to the step
proportional to the difference between the adatom density g
the step and that at equilibrium, the boundary conditions arg
given by Egs.(2.4) and (2.5 with P=0 (Refs. 9,10, and

rWhich is, as expected, the same as the amplification rate of
e permeable stdjEq. (3.5 ] with A—0. In this limit, since
ere is no kinetic barrier at the step, the gap in the adatom
ensity disappears and we obtain €31) [see Figs. (b) and
1(d)]. When the step kinetics is slow and>1, the amplifi-

14-16: cation ratew is given by
-~ 2
K(cl;,, —Cm)=A-(DVel, —vecl;, ) ©as %i(;— ﬂf)aa @
0 2 3 ’
= K+(C|§m+_cm)l (41) chQDS 2)\
for the long-wavelength fluctuation. The critical drift veloc-
. ity is given by
K_(cl, —Cm)=n-(~DsVels, tveg, ) y o~
m 4D2Q0B
\Wi S
_ K_ _ ) 4'2 v = 4.8)
(cls, —Cm) (4.2 ° 3Kx3kgT (

The difference of the kinetic coefficienks, andK_ is the Sincev\c’v is inversely proportional to the kinetic coefficient
Ehrlich-SchwoebelES) effect*3** which can also induce K, with increasing the value df, the critical drift velocity
the instabilities. IfK .>K_, the wandering instability oc- decreases and the step becomes less stable. Irrespective of
curs in growti23°4546and the bunching instability occurs in the kinetics, a receding step becomes unstable with the step-
sublimation***"*8 For simplicity we neglect the ES effect down drift.
and seK . =K_=K. By solving the diffusion equatio(2.2) We carry out Monte Carlo simulation to test the linear
with the boundary conditiongEgs. (4.1) and (4.2)] we can  stability analysis. The diffusion of the adatoms is the same as
calculate the profile of the adatom density. From the densitghat for the permeable case except that the adatoms cannot
profile the step velocity is determined by jump over the stepfFig. 4a)]. When an adatom comes in
front of a step site or just on the step site after a diffusion
trial, the adatom tries to solidif{fFig. 4(b)]. The solidifica-
tion of the adatom in front of the step is the same as that in
4.3 the permeable case. On the other hand, the solidification of
' the adatom on the step site is tried only if the front of the site
is not occupied by another adatolig. 4(c)]. When the
adatom on the step site solidifies, it moves down to the front
) i ) ) of the step site and solidifies theeig. 4(b)]. When an atom
~ We consider the wandering of an isolated step without th@onsisting the step melts and becomes an adatom, the adatom
impingement of adatoms. By solving the diffusion equationstays there with the probability 1/2 or moves onto the upper
with the boundary conditions far from the stefy—*%)  terrace with probability 1/2 if the destination is not occupied

Vi=0K,(c|;  —cn)+QK_(c[; —cp)

=QK(cl;  +cl, —2cpy).

A. Wandering of an isolated step

=0, the velocity of the receding step is given by [Fig. 4d)] (otherwise it cannot meltSince the solidification
occurs in both sides of the step, we set the melting probabil-
oD coq(2)\+a) ity twice as large as the previous permeable case. There is a
Vo= S (4.4 small asymmetry in this algorithm: the probability of solidi-
X 1+A%+a\) fication from the upper terrace is approximately—(d|£+)

. times smaller than that onto the lower terrace and the prob-
When we give a small perturbatiofi= §7€9**“d' to the  ability of melting in the upper side terrace is approximately
step, the amplification rate, is calculated as (1—c|, ) times smaller than that onto the lower terrace. The
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T T

Y _800

—1200]

180054 128 192 256
(@) X

(b) (d

FIG. 4. Atomic processes at an impermeable step in the Monte
Carlo simulation:(a) prohibition of the diffusion over the stefi)
solidification at the front site of the stefg) prohibition of the
solidification at the site occupied by another adatom, @hanelt-
ing onto the upper and the lower terraces.

asymmetry decreases with decreasing adatom density. An
estimate of the equilibrium density and the kinetic coeffi-
cients for the present algorithm are given in Appendix A.

Figure 5 shows time evolution of the step position in the —400
Monte Carlo simulation. The parameters atg=16, cgq
—0.18 (#/kgT=15), and BlkeT=0.54 (e/kgT=1.0). Y _800
Since the step kinetics is fast.=1.6xX10 °<1 and\,

=1.9x10"?, the amplification ratew, is approximately _1200F
given by Eq.(4.6) and the critical drift velocity i)}'~8.4
x 10" 3. Figure Ra) is the time evolution of the step position

with the step-up drift ¢ =—0.2). As expected from the lin- 1600 =32 "128 192 256

ear analysis, the step is more straight than that without the © X

drift [Fig. 5(b)]. Figure Jc) represents the time evolution

with the step-down drift. Since the drift velocity=0.2 ex- FIG. 5. Time evolution of the position of an impermeable step

ceeds the critical value, the step is unstable and the wandein sublimation(a) with the step-up drift { = —0.2), (b) without the
ing instability occurs. The wavelength of the fastest growingdrift (v=0), and(c) with the step-down drift{=—0.2).

mode expected from Eq4.5 is estimated to\ .= 24,

which roughly agrees with the wavelength of the fluctuation

observed in the initial stage of the instability. The unstable 1 \D ol Na ol ol
step produces peaks, which show chaotic motion similar to A=-— il 7smh7—7003r7— sinr?
the permeable step. olh)

+ e””z}, (4.10

B. Wandering instability in the vicinal face 2
When steps are straight and equidistant with a distédnce _ _
without the impingement of atoms, the adatom density on the B 1 v al Na  al a
terrace Gsy=I is given by B= ho(l) TCOS% _7S'nh?_ C°S|%2
v
+| 1+ e””z}, (4.1

c (y):coqu”2 Acoshe + B sinh (4.9
0 e 2XS .

o

2xs)’
(1) =\ Sinhl + ek costil + sinh (4.1

where o()=N*sinh—-+a\ cosh—-+ sinh—-. (4.12
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Since each terrace is treated separately, we can calculate the amplification, raith a generak. By using Eq.(4.9), the

linear amplification rate is calculated as

2 ~
WgX§ u, 5 ~y . agl Nag agl \D aql Nag =7,
= =N (1+ S|nh———cosh———smh—+ e’
D2, () (1+q9sinh—>-— 2 "2
u_ ~ gl N ag A\ aql )\a ~ 1 [Naguy ~, -~ ~
| =2 2yainh—3_ _ 4 Xq! AU q TTa o) | 2TAEE T2 —ikl _ qpl)2
+hq(l) Ne(1+g“)sinh 5 5 COSh—+ 5 sinh—— 5 —e } hy(1) > ( e’'’?)
+ hargu- (e v112gikl _ g=vlr2y | _ Na cosha—qT -2 :sinha—q~| +ha cosha—qT
2 ho(1) 2 2 2
O0) | (14 57)sinn’e + pal r:T—TZ~ 1— coskl r 2\(1+5)sinh
_W (14+g%)sin — Taq cos 5 T cos (1— coskl)— hy() (1+qg°)sin -
agl o7 2K,
+ arg Cosh—— — aq cosh———| ¢, (4.13
|
where limit of fast step kineticsh — 0, the step becomes permeable
B and we obtain the same result of as E21).
k=kxg (4.14 As shown in Table I, without the impingement of ada-
toms, the wandering instability occurs with the step-down
5 al al al drift for both the permeable and the impermeable steps. With
h (I)=)\2(1+q2)sinh—q+a \ cosh—— + sinh——, the fast step kinetics, the difference due to the step perme-
! 2 ! 2 2 ability vanishes
(4.15 '
V. BUNCHING INSTABILITY OF THE PERMEABLE
__ X dc 1 STEP
Uy=-— )\CO dy +C—OC0 s (416)
€d y=0 “ea ly-o In the case of the permeable steps, the adatom densities of
neighboring terraces are coupled by the boundary condition
Xs dcg 1 Eqg. (3.2). In the step flow model, we must solve simulta-
- a0 dy ~ 0 (417 neous equations to determine the adatom densities and it is
€d y=t Tea ly= difficult to study the bunching of many steps. Therefore we
use a continuum modé&f,in which the drift of adatoms is
B(l)= Qx, d?U ~ Oxs 6A (4.18 readily taken into account. Recently Stoyatfargued that a

de|2 kT|4'

Hereafter we consider the case that the step distance ¥

much smaller than the surface diffusion length and that
<1. We expand Eq4.13 with I, and take account of the
lowest order inl. For simplicity, we calculatew, for an
in-phase fluctuationk=0. When the step kinetics is slow
enough to satisfyA>1/x,, the amplification rate for the
long-wavelength fluctuationy,, is given by?

(4.19

The equidistant train of steps is unstable with the step-down

drift exceeding the critical value,

QDB
X2kg T

W:

(4.20

which is one-fourth ofv. for an isolated step. With\

vicinal face consisting of permeable steps is unstable with
the step-up drift, and showed that a large bunch is stabilized
ith the step-up drift. Here we analyze the linear stability of

a vicinal face for a long-wavelength fluctuation, and give an

analytical expression for the condition of the instability.

We neglect the fluctuation along steps and assume that the
steps are straight. When the step distance is small compared
with the characteristic length of modulation, we can describe
the surface profile with the density of steply). Time evo-
lution equations of the adatom density and the step density
are given by**°

ic J%c aC+F 1 oK
= Sa_yz_ 7y —C=2p [c—CedY) ],
(5.1
ap
EJF—{ZPQK[C Ced ¥)1}=0, (5.2

where ce(y) is the local equilibrium density of adatoms.
Equation(5.1) is the diffusion equation including the effect

<l/x, the form of the amplification rate changes. In theof solidification of adatoms at the steps. The decrease of the
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TABLE I. Conditions to induce instabilities.

Growth condition  Permeability Terrace Kinetics Drift Instability
sublimation permeable isolated fast/slow down wandering
I/xg<<1 fast/slow down wandering
not too slow Q<xg/I) up bunching
impermeable isolated fast/slow down wandering
al/xg>1  fast/slow up bunching
down wandering
al/xg<1  fast/slow down  wandering/bunching
growth permeable isolated  fast/slow up wandering
I/xms<1l  fast/slow up wandering
not too slow {<x¢/I)  down bunching
impermeable isolated fash 1) up wandering
slow (A>1) down wandering
allxg>1  fast \<1/xy) down bunching
slow (\>1/xg) down  wandering /bunching
allxg<1l  fast \<<I/x) up wandering
down bunching
slow (A>1/xy) down  wandering/bunching

adatom density due to solidification is proportional to the )
local step density. Equatiofb.2) is the continuity equation ot
of the step density. The step currentd¥ with the step

velocity

1
k2 (Dg+2Q ypoK) +ik(Vo+v)+ ~+2poK |y

(2K2Q ypoK +ikVy)=0. (5.8

. 1
+(k2DS+|kv+ -
V=2QK[c—CedY)]. (5.3
There are two branches of solutions;=w(1)—0 and w
Since we consider modulation only in thedirection, the = (2)— —1/7—poK with k—0. Since the second mode
curvature of the steps vanishes and the equilibrium adatorecays much faster than the first one, the important amplifi-

density is determined by the step interaction. The interactiogation rate is the first one. The amplification rate is expressed
force is derived from the step enerdyasf=—9¢&/dy, and as

therefor@®-52
o =iv K+ k2 +ivgk3+ v kd+ - - -, (5.9
0
c.=c0 + QCeQE ‘9_/):00 + y(p)ﬁ_’)_ (5.4) The real part ofw, represents the amplification of the fluc-
e Ted kgT dp gy ay tuation. The instability for the long wavelength fluctuation is

. determined byv,, which is given by
The step energ¥(p) is given by Eq.(2.8) and

Vor ( Votuv | 2QpoKy(po)

&_§:|3dz_U:6A (5.5 V2:1+2p0KT U_1+2poK7' 1+2pK7 °
p - oar P ' (5.10

The second term is the effect of the step repulsion and al-
ways stabilizes the vicinal face. The first term in E§.10

can destabilize the vicinal face. If the step kinetics is very
slow, pgK 7—0, the first term is proportional te- V§(<O)

and stabilizes the vicinal face. On the other hand, if the step
kinetics is fast, &poKr, i.e.,A<X/l, the first term can be

which is the surface stiffness i direction divided bya?.
When the step density is uniforp= pg, from Egs.(5.1) and
(5.2, the adatom densitg, and the step velocity/, in the
steady state are given by

0
c _(F+2poKcey T (5.  Positive. Then the coefficients in E¢5.9) are given by
O 2pKr+l '
20K (Fr—cl) 1T K
Vo= gkt (-0
S 2QpoKy(po) —vVoT
We study the linear stability of the vicinal face by giving 2 2po7K ’
a small perturbation to the step densipys po+ Spe'*y* k!
and to the adatom density(y) = c,+ sce Y “k. Equations e DVor+2QpoKv 7y(po)
3=

(5.1)—(5.4) determine the amplification rate, via 2po7K '
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DQ¥(po) 2%
ekt AL 5.1
Po 613

Vp=

The amplification rate becomes positive whég exceeds
the critical value,

192p

20poKy(po)  120%coKpj

(VOU)C: T kBTT )

(512 V 128

and the vicinal face is unstable. Singgis always negative,
the vicinal face is still stable for the short-wavelength fluc-
tuation. In sublimationyy<<0, the instability occurs with the
step-up drift. The drift direction to induce the bunching in-
stability is opposite to that for the impermeable steps. Since
the critical drift velocity is inversely proportional to the step 0
velocity, with increasing the undersaturation, the bunching
instability occurs more easily. The imaginary part«gf rep- @
resents the propagation of the fluctuation. Near the threshold  2%®

of the instability, the wave number of the fastest growing

mode is small and the dominant term of the propagation in s T eV

wy is v1k. The propagation velocity is- v;, which is pro- 192w 192%
portional to the step velocity, and in the opposite direction

to the step motion. SinceK =1, it is much slower than the i 1 : .
motion of the steps.

Figure 6 represents snapshots of a step train in Monte Y 128 1 7 ‘28%
Carlo simulation. The system size is 22856 with 32 steps. % e
Initially the steps are straight and equidistant. There is no ey et
impingement of adatoms, and the receding steps become un- g4l ] 64@
stable when the step-up drift exceeds the critical velac?ty

B 120KA S==a——n s %
V<vc=— kTR (5.13 % 32 o4 96 128 %32 64 96 128
® (b) x C) x
The parameters in Fig. 6 arel=8, x,=16, cgq 286 —
=0.18, B/kgT=0.54 andA/kgT=4. Then the critical drift I ]
velocity vY is calculated as®=—0.19. Figures @) and %
6(b) show snapshots with the step-up drift. The drift velocity 192r -
isv=—0.6, and step bunching occurs. In the initial stage of ﬁm
the bunchingFig. 6(a)], the long-wavelength fluctuation of T T ]

the step distance appears. In the late stdegg. 6(b)], the
bunches collide with each other and large bunches appear.
When we carry out the simulation in a larger systéime
system size is 512512, with 64 steps the bunches wander
and sometimes collide with neighboring bunchEg. 6(c)].

The pattern is similar to the form of bunches observed in the
experimentand the one in the simulation of a simplified step
model’ Figures €d) and e) show snapshots of the step
bunching without the repulsive interaction, where only the
formation of multiheight steps is forbidden. In the initial (e) X

stage [Fig. 6(d)], the step train is unstable for a short- FIG. 6. Snapshots of bunching of permeable steps in sublima-
wavelength fluctuation, and bunches consisting of a fewtion: (a) in the initial stage (=5.6x10%, (b) in the late staget(
steps wander. In spite of such a large difference in the initiak-8.2x 10%), and(c) in the late staget&1.0x10°) in a large sys-
stage, large bunches appear in the late sfkge 6(€)]. Be-  tem, with the step-up drifty(=—0.6) and repulsive interaction
cause of a lack of repulsive interaction, the step distance i§A/kgT=4.0). (d) In the initial stage (=4.1x 10°), and(e) in the

the bunches is smaller than that with repulsion. late stage {=2.1x 10%), with the step-up drift ¢=—0.6) and no
repulsive interaction.

Y128

VI. BUNCHING INSTABILITY OF THE IMPERMEABLE

STEP given by Eqg.(2.2), and the boundary conditions are Egs.

(4.1) and(4.2). The linear stability is studied in Ref. 16, and
To study the bunching of impermeable steps, we use thbere we summarize the result. When the impingement of the
same model as that used in Sec. IV. The diffusion equation iadatoms is negligible, the velocity of tmath stepV{' is
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given by
2xVY' [(—2\—7)sinn(aT . /2)— a costial ./2)]c,+ ae " +2c 4
QD (1+N\3)sinh al ,/2)+ a\ cosH al . /2)
[( 2\ +0)sini al _/2xs) — a cost{al _/2)]c,+ ae” -2c,_, 6.2
(1+M\?)sinh al _/2)+ a\ cosial _/2) ’ '
|
WhereTi are the scaled Wi(ith of the upper side ) and the 7Re wg 20 1— cos¢ 'n2~k~|
lower side(+) terraces, andi. =|{m+1— {ml/Xs. The equi- 0 T_A'q)(l) N SIF=-
librium adatom density at thenth stepcy, is given by Eq. e
(5.4). For the small perturbatiody,,= sy,e'"™K * ! to the v d(1).
straigh ificati is gi ~| 5y —@MT [T — KA+
ght steps, the amplification radg is given by 2\ 2\
(6.9
TRe wy . 4 . L
——— =) = ua(H A ]sm2 (6.2  The coefficient ok™ is determined by the repulsive interac-
0ceq tion potential, and is negative. The vicinal face is stable for
the short-wavelength fluctuation. When the drift is in the
step-down direction and its velocity exceeds the critical
7Im w |
—[ol(l) ao(1®(1)]sinkl, (6.3  Value,
chq
5 12DJOA 6.10
.. V=", .
where the coefficients afe © x3kgT
-~ ~ the coefficient ok? is positive, and the vicinal face becomes
(=22 d v sinh(a!/2) + a cosl{al /2) unstable for the long-wavelength fluctuation.
- dT| (1+A\?)sin «l/2)+ a\ sinna1/2) |’ In the above analysis we supposed that the steps are
(6.4)  straight. If the step distance is small, however, the step wan-
dering is also induced by the step-down drift. Figure 7 shows
0 snapshots of a step train with a small step distance in Monte
M2

2\ sinh al/2) + a cosi al/2) — a cosiv1/2)coskl
(1+1?)sinh al/2) + e cosh a1/2)

(6.5
o sinh(a1/2) + a cost{al/2) — o costvT/2)
T (14 A sint(al/2) + an coshali2)
(6.6)
(1) = 2a sinhv1/2)(1— coskl) 6.7

(1+\?)sinh al/2) + e\ coskal/2)

When the step distance is smalll/2x;<1, Eq.(6.4) is ap-
proximated by

20\
[(L+ND)T/2+0]%

pa(l)= (6.8

which is proportional taw. The bunching instability is in-

Carlo simulation. The system size is 22856 and the num-
ber of steps is 32. Initially the steps are equidistant bnd
=8. The parameters ave,=16, f=1.35, c3=0.18, and
Al/kgT=4. Figure Ta) shows a snapshot of the step train
with step-up drift ¢ =—0.3) att=1.8x10*. As expected
from the linear analysis, neither the wandering nor the
bunching occurs. When the drift is in the step-down direction
(v=0.3), both the bunching and the wandering occur simul-
taneouslyFigs. 1b) and 7c)]. In the initial stagdFig. 7(b)],
step wandering accompanied by bunching with short length
occurs. The short bunches grow and the bunches are con-
nected to each oth¢Fig. 7(c)], which is very different from
bunching of permeable stefBig. 6). Though the wandering
and bunching are induced simultaneously in Fig. 7, when we
use appropriate parameters, the bunchifig. 8a), with a
large stiffnes$ or the wanderingFig. 8b), with a small
stiffness and a strong repulsipis induced separately.

Figure 9 contains a snapshot of a step train with the dis-
tance longer than the surface diffusion lendttxs=2. The
equidistant step train with a large step distance is unstable
with the step-up drift. The linear instability with a large step
distance is studied by the one-dimensional step flow
model®*%1with increasing step distance, the drift direction
to induce the step bunching changes and the equidistant step

duced by the step-down drift if it wins the repulsive interac-train is unstable with the step-up drift. Since the step train

tion. A simple formula is obtained if/xs<\~1: Eq. (6.2
become¥

with a small step distance is stable with the step-up drift,
tight bunches are not produced. Thus the result of simulation
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FIG. 7. Snapshots of impermeable steps with the repulsive interactitkg T=4) in sublimation:(a) stable ¢=1.8x10%, with the
step-up drift ¢ = —0.4); (b) in the initial stage of bunchingt € 1.0x 10%); and(c) in the late stagetE& 1.8x 10%), with the step-down drift
(v=0.4).

is in agreement with the previous stuthf'Since the steps 10(c)]. From Eq.(B1) the wavelength of the most unstable

are stable for wandering, they are straight in Fig. 9. mode is calculated as,,,= 33, which roughly agrees with
the typical wavelength of the step wandering in the early
VII. INSTABILITIES IN GROWTH stage of the simulation. The wavelength of the wandering in

. ] . . the late stage is larger than that. The unstable step produces

Recently, step bunching during growtg with the directgygoves, and their motion is chaotic in space and time. The
electric current is observed by Yangfal® in the low-  pattern is similar to the solution of the KS equatit$114)
temperature  range T(-945°C) and by Mwis and  yjth a positive coefficien® of the nonlinear terr®*
Stoyanov® both in the middle-temperature range (1160°C " Fqr the wandering in a vicinal face, the amplification rate
<T=<1240°C) and in the high-temperature range (1260 °Gs given by Eq.(B9):
<T=<1320°C). In the latter experiment the reversal of the
current direction, which is observed in sublimation, did not wq —AFDI®
occur. In this section we summarize our result of investiga- o |\ T30 |
tion for the instabilities in growth. We calculate the linear DCeq

also show the result of Monte Carlo simulation, which WaSy o+ in growth[Eq. (7.2] is the prefactor— AE in front of
performed in several cases to test the linear stability analysi?:he drift term. In .gro.wth the wandering instability occurs
The full expressions of the amplification rate are presented iU\/ith the step-.up drift irre,spective of the step kinet}¥:5

the Appendixes.

q°+---. (7.2

A. Wandering instability of permeable steps B. Wandering instability of impermeable steps

If the step is perfectly permeable, the amplification rate. If the step is impermeable, the amplification rate for an
for an isolated step is given by E(B5), isolated step is given by EQC1). If the step kinetics is fast

A<1 andv? is negligible, the amplification rate in growth is

wXS 1 G obtained by replacing in the amplification rate in sublima-
acep, 2arm ey HETe T on [Egs. (3.9 and(3.10 with \=0] with — AFs:
e S
where AF = (Fr/cJ;—1) and terms of ordev? has been wX2 __AINZ'5+41~"~2_—A|~:'5+81~"~4 .3
neglected. SincAF >0 in growth, the wandering instability chqu_ 2 8 a- '

is induced by the step-up drift in contrast to the sublimation

case. Figure 10 shows the time evolution of an isolated perin growth the instability can occur with the step-up drigt (
meable step obtained by Monte Carlo simulation. The pa<0). Figure 11 shows the time evolution of an isolated im-
rameters areB/kgT=1.35, cg =0.18, x;=16, andF=2 permeable step in the fast kinetics. The system size is 256
x 10" 3. The critical drift velocity expected from E7.1) is X256 and the parameters arg=16, B/kgT=1.35, cgq
vW/=-0.12. When the drift is in the step-down direction =0.18, andF=2x10"3. From Eq.(7.3 the critical drift
(v=0.2), the step is stablgFig. 10a)] and straighter than velocity is given byvy'=—1.1xX10 2. Figure 11a) repre-
that without drift [Fig. 10b)]. When the velocity of the sents the time evolution of a stable step with the step-down
step-up drift isv = —0.2, wandering instability occufd=ig.  drift (v=0.2). As expected from the linear analysis, the step
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FIG. 9. A snapshot of the weak bunching of the impermeable
step in sublimation at=3.7x 10*. The step distance is longer than
the surface diffusion lengtth= 16 andx;=8. The other parameters

areA/kgT=10, Ceq=0.18, andB/ksT=2.76.
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For the wandering in a vicinal face, withx,<\, the
amplification rate is given by EqC12),
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which is the same as that in sublimation equati®i9. The
step distance is so short that the impingemeéndoes not
influence the instability. In the limit of fast step kinetics, on
the other hand, the amplification rate is again given by Eq.
% a2 64 96 128 (C13), which does not differ from the permeable c4fs.
(3.21)]. Because of the short circliFig. 1(d)], the steps are
effectively permeable. The instability occurs with the step-up
FIG. 8. Snapshots of impermeable steps in sublimati@n: ~ drift in growth.
Bunching of straight steps withA/kgT=8, I=4, Xs=8, Cq For impermeable steps, the drift direction to induce the
=0.18, BlkgT=2.76, andv=0.4 att=9.5x 10°. (b) Wandering Wandering instability changes with the step kinetics. If the
of an equidistant step train with/kgT=64, =4, x;=8, Ceq step kinetics is fast\ <1 or A<|/xg, the drift direction to
=0.18, BlkgT=0.13, andy=0.4 att=1.8x 10%. induce the instability in growth is opposite to that in subli-
mation. If the step kinetics is slow>1 or A>1/xg, the
is straighter than that without drifEig. 11(b)]. Figure 11c)  drift direction to induce the instability does not change.
represents the time evolution of an unstable step with the
step-up drift ¢ = —0.2). The unstable step produces the cha- C. Bunching instability of permeable steps
otic pattern similar to the permeable step.
If the step kinetics is slow>1, the first term in Eq(C1)
may be neglected, and the amplification rate is given by

=

[Cfd2daadd,
e

| Araapmaliy =e]

(b) X

The amplification rate of fluctuation in the step density for
permeable steps has been already given by (B@). In
growth (Vy>0), the bunching is induced by the step-down
drift. Figure 12 shows some results of the Monte Carlo simu-
BT oT\R2. ... lation for permeable steps in growth. The system size is
Fo—2l)g -, 74 128x 256, and the number of steps is 32. The parameters are
~ BlkgT=1.35, c3;=0.18, F=2x10"%, and A/kgT=10.
whereF =F 7/cg,. The destabilizing effect is proportional to The critical drift velocity is estimated asf=0.13. Figures
Fv, which comes from the second term in EG1). Whether  12(a) and 12b) represent the step bunching with the step-
the surface is in sublimation or in growth, the wanderingdown drift (v=0.4). In the initial stagetE=9.6x 10%) [Fig.
instability occurs with step-down drift in the slow step kinet- 12(a)], the equidistant step train becomes unstable for the
ics. The critical drift velocity is independent of the step ki- long-wavelength fluctuation. Later at=1.9x10° [Fig.
netic coefficient in growtHif \ is large enough while it is 12(b)], the contrast of the step density becomes clear, and
proportional to\ in sublimation £=0). large bunches appear. Since the wandering occurs with the

wqxg 1 (

Qcips A
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FIG. 10. Time evolution of the position of a permeable step in 0 64 128 192 256
growth. The impingement rate B=2x10"3, (a) with the step-up (© X
drift (v=-0.2), (b) without the drift, and(c) with the step-down _ . - )
drift (v=0.2). FIG. 11. Time evolution of the position of an impermeable step

in growth. The impingement rate B=2x10"3, (a) with the step-
?own drift (v=0.2), (b) without drift, and(c) with the step-up drift

drift of the opposite direction, the steps in the bunches ar »=—0.2)

rather straight. Figures 1@ represents the stable step train
with v =—0.4. Though the drift is in the step-up direction,
the wandering instability does not occur because of the larggot change in growth and in sublimation. When the step
critical drift velocity v'=16.9 estimated from Eq7.2). distance is longal/2xs>1, Eq.(D2) is positive with the
step-down drift in growtht® Thus the equidistant step train is
unstable with the step-down drift in growth. The drift direc-
tion to induce the bunching changes in growth and in subli-
If steps are impermeable, the difference of the amplificamation with a long step distance.

D. Bunching instability of impermeable steps

tion rate in sublimation and in growth appearsgin(l) and Figure 13 shows the bunching of impermeable steps with
oy(l) of Egs. (6.2 and (6.3. When the step distance is fast kineticsK . =3.3 andK_=3.9 in growth. The system
small, al/2xs<1, wu,(l) is given by Eq.(D4) size is 12& 256, and the number of the steps is 32. The
B parameters arg/kgT=1.35, cg;=0.18, F=2x10 3, and
a1~ 2u\ (7.6 Al/kgT=15. The vicinal face is unstable with the step-down

drift [Figs. 13a) and 13b)]. Long bunches appear in the late
stage[Fig. 13b)] in contrast to Fig. &), where both bunch-
which does not depend on the impingement Fatdhe step ing and wandering occur. The fluctuation of the bunches is
distance is so short that the effect of impingement is neglifarger than that of the permeable st¢pg). 12b)]. When the
gible. Thus the drift direction to induce the bunching doesdrift is in the step-up direction, the vicinal face is stable and

[(N2+1)T/2+0]%
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FIG. 12. Snapshots of bunching of permeable steps with the repulsive interA¢kgfi=10 in growth,(a) in the initial stage (=9.6
x10% and (b) in the late stagetE1.9x10°) with the step-down drift §=0.4), and(c) at t=3.8x 10* with the step-up drift {=
—-0.4),

the train of straight step is equidistdifig. 13c)]. Figure 14  result of the change of the step velocity, which is determined
contains a snapshot of the bunching of impermeable stefsy the total current flowing intgor out from the step. The
with the long step distanceyl/xs>1. The system size is wandering instability is a Mullins-Sekerka instability, which
128x 256 and the number of steps is 16. The parameters aiig controlled by the diffusion current at the step. Irrespective
K,.=3.3, K_=3.9, x;=16, B/kgT=2.76, cgq=0.18, F of the step permeability the gradient of the adatom density is
=5x10 2, andA/kgT=10. Steps are also unstable with the steeper in the up-stream direction. Thus the diffusion current
step-down drift. The drift direction to induce the bunchingin this direction is dominant, and the wandering instability
remains the same as that with a small step distance. Theccurs if the up-stream direction coincides with the step
fluctuation of steps is large because of the large step disnotion#? with the step-down drift in sublimation and with
tance. the step-up drift in growtHif the step kinetics is too slow,
In growth, the step bunching occurs with the step-down\ -1, this simple argument does not hpld
drift for both permeable and impermeable steps. The reversal |n experiment the current direction to induce the bunching
of the drift direction to induce the bunching does not occurreverses several times in sublimation:?®the bunching oc-
with growth. curs with the step-down current in the low- and high-
temperature ranges, and with the step-up current in the
VIII. DISCUSSION middle-temperature range. In growtf:® however, the rever-
sal does not occur, and the bunching is always induced by
The conditions to induce instabilities are summarized inthe step-down current. The wandering is observed in the
Table I. The physical reasons for these instabilities in a vicimiddle temperature range with the step-down dfifiyhich
nal face (<xs) are the following. The bunching of perme- is opposite to the current direction to induce the step bunch-
able step is explained by the change of adatom deffsity. ing. All these results are explained if the steps, withix,
With the step-up drift in sublimation, if the step density is <1, are impermeable in the low- and high-temperature
high in some region the adatom density increases there duyanges, and permeable in the middle-temperature range, with
to the melting, and the high-adatom-density region is cona positive effective charge irrespective of temperature as pro-
veyed to the upper part of the vicinal face and decelerates thgosed by Stoyanot? Very recently, Degawat al 2 found,
steps there. Steps are accumulated, and the density fluctusy observation of the change of a surface profile, that the
tion is amplified. With the step-down drift in growth, con- drift is always in the direction of the electric current. This
versely, the adatom density in the high-step-density regiomeport also supports the present explanation.
becomes low, and the steps in the lower part are In a Si111) vicinal face, the surface diffusion length is
decelerated?® Thus steps are also accumulated. The bunchx,=1.3x10° A, and the diffusion constant i$.=1.8
ing of impermeable steps is explained by the change of thec10'° A?%/s at 945°C(in the low-temperature rangeand

terrace widtH:* Due to the drift, neglecting the asymmetry in x .=5.7x10* A and D =1.6x 10! A /s at 1273°Q(in the
the step kinetics, a step that has a larger terrace in the dowﬂigh-temperature rang® The scaled drift velocity is given
stream moves faster in sublimation. In growth, conversely, a "~ . .
step that has a larger terrace upstream moves faster. In ba v _steE./kB.T’ whereZqe is the effectn_/e charge a!Ei
cases a step overtakes the next one if the drift is in the stef the electric field. Wherk =500 _V/m’ Wh'fh, 'S a.typlcal

down direction, and a step pairing occurs. Repulsive interacvalue, andZ=0.1, the scaled drift velocity is estimated

tion between steps changes the pairing instability to the into bev=0.06 at 945 °C and =0.002 at 1273 °C. Since the

stability of the step densit}/. The bunching instability is a typical step distance in the experimeénts'>%is 1<4000
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FIG. 13. Snapshots of impermeable steps in growth. The initial step distahee8iswith x;=16. Bunching(a) in the initial stage {
=1.9x10% and(b) in the late stagetE3.1x10% with the step-down drift §=0.2), and(c) a stable train with the step-up drift &

—0.2) att=3.1x10%

A, al/x,<1 is satisfied. At 1190° C, where bunching oc- in the impermeable case we found in the sublimation, we
curs with the step-up current in sublimation, the parametergeed to take account of the step interaction in all directions
are estimated aB=1.0x 10'* A/s andx,=1.0x10° A®. If = and to remove the SOS condition. For the particular case
bunching occurs with a step distanke 10° A, the kinetic  where both bunching and wandering occur simultaneously,
coefficient isK>5x10° A/s with a perfectly permeable we have derived a two-dimensional continuum model to de-
step. Since the estimation &f by using the impermeable scribe the surface morphologyBy numerical integration of

model isK~5.5x 10" A/s,> bunching occurs with a much the continuum evolution equation we have found domains of
smaller kinetic coefficient if the steps are perfectly diagonal ridges. The correlated pattern of bunching and wan-

permeable.

dering in Fig. Tc) is reminiscent of this ridge pattern. How-

In the Monte Carlo simulation, we only take account of ever, to obtain realistic surface pattern in a Monte Carlo
step interaction in thg direction. When bunches are straight simulation, we need to use a more realistic model and to
as in the permeable case, this simulation is valid, andgerform larger scale simulation.
bunches similar to that in the experiments are obtained.

When the bunches bend and become parallel to/tdvas as ACKNOWLEDGMENTS
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APPENDIX A: KINETIC COEFFICIENT IN THE MONTE
CARLO SIMULATION

In the lattice model simulation for the impermeable step,
the average number of atoms that solidify in a unit time
incrementone diffusion stepAt from the lower terrace is

ANS = N,

Ps; (A1)

and that from the upper terrace is

_ Lc_
ANs: N (17C+)p51 (AZ)
a

FIG. 14. Snapshots of bunching of impermeable steps in growtiwhereL is the system sizéhe step length in the direction,
with the step distance longer than the surface diffusion length. Thé\, is the number of adatoms, apd is the average solidifi-
drift is in the step-down directionu(=0.2), andt=8.8x 10°. cation probability:
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1 the net number of solidifying atoms from the upper terrace
(A3) per unit length is approximated in the linear order of the
concentration deviation from the equilibrium value as

The average number of melting atoms that go onto the lower

P v e ol

terrace is ANg —AN,, (1-c
: L == N eq)(c—_ceq)(ps+pm)
L 1 @
AN;]:—(l—c,)pm—, (A4) c
Na 2 + %(c;ceg). (A10)
and the number that go onto the upper terrace is :
. 1 The first term yields the kinetic coefficient
ANm:N_a(l_Cf)me(l_Cf)y (A5) AetaT L
K_=4(1-cCg)(pstpm) = 1+ )
wherep,, is the average melting probability: e (Pt P 1+e?keT 1+ e?/keT
(A11)
P= 2 _ (AB) which is slightly larger tharK . . The coefficient of the sec-
™ 1+ e?ksT ond term is smaller tharK_ by a factor pse~#/*eT/(p

+pm), Which is expected to be small at low temperatures.

To balance the solidification from both sides of the Step, therhe numbers cited in the paper are calculated with Ekﬁ)
melting of adatoms should occur twice as frequently as thagnd (A11).

of the permeable step, ami, should be twice as large as
that of the permeable step. In the equilibrium state
=c_, and the conditionsANJ =AN,, and ANg =AN_,

give the equilibrium density APPENDIX B: WANDERING OF THE PERMEABLE STEP
IN GROWTH
1
Ceq+ = Ceq= Ceq™ (A7) 1. Isolated step

1+edlkeT A step is isolated in an infinitely large facet, and atoms
which is equal to the equilibrium adatom density in the per-impinge from the vapor with the rate. When the perturba-
meable case. 16, andc_ deviate from this value, the net tion £;€'%"“d"is given to the straight step, the amplification
number of solidifying atoms from the lower terrace per unitfate g is calculated as
length, in the linear approximation, is

AN 0l —2AFT(Vor+a+452— o2+ 4)

s m Ps Pm = = = -
T TN, G+ Ced T oy (G- Ced (AB) QDL (2+AVo2+4) (24 A\ Vo2+4+452)

where we have used the equilibrium conditiiq. (A7)]. 2T G2V o2+ 4+ 492

This number depends not only @n but also onc_ , which - = —, (B1)

differs from boundary conditiori4.1). It is not possible to (2+NVv?+4+40%)

find a simple algorithm which reproduces boundary condi- ~

tions (4.1) and(4.2). The first term in eqA8) determines the Wwhere AF= Fr/cgq—l. For a long-wavelength fluctuation,
kinetic coefficientk , . We have chosen the time increment wg is expressed as

At=1/4N, to set the diffusion coefficieDs=1. With this

choice the kinetic coefficient for the upper terrace is wq%azqz—a4q4, (B2

4 where
K+:4pszm. (Ag)

a,  2[-2AFT-T(4+02)(2+ M2 +4)]
The coefficient in the second term is smaller théan by a =

factore~#*sT, and we suppose that at low temperatures the ~ 2D<Ceq (2+NVo2+4)2\v?+4
contribution from the second term is small enough. Similarly (B3)

s A — AFD(243NV02+4) + T (4+02)(2+ A V02 +4)]

QDgcox? (1A Vo2 +4)3(02+4)%2

(B4)
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If o is small andv? is negligible, the amplification rate is ~APPENDIX C: WANDERING OF THE IMPERMEABLE

given by STEP IN GROWTH
5 —_— 1. Isolated step
X - ~ |~ . . L . .
Pa’s _ 1 AFv —4T'|g? A step is isolated in an infinitely large facet with the im-
QDscgq 2(1+ M) [(1+0) pingement of atom&. The perturbatiory,e'%** “dt is given

L to the straight step. The amplification raig is calculated as

C8(1+\)2

~AFD(1+3)) ~}~4

(1+N) wqxg

_ (v—a)(ag—a)

[Mv+ag)+2][AMv+a)+2]

Then critical value of the drift velocity is (v+a)(ag—a)
q

[Mv—aq) = 2][N(v—a)—2]

~ }AT:
w_A0DBC1+N)

© keTH(co—TF)

(B6) (v—a)(aq—a)

[Nv+ag)+2][N(v+a)+2]

The instability occurs wheAFuv is negative, i.e., with step-
down drift in sublimation and with step-up drift in growth. (v+a)(aq—a)

DNu—ag-2nw-a -2 "V

2. Steps in a vicinal face 01q+2)\(1+a2) -
For an equidistant step train with step distahcthe am- T+ )\Fq : (C1)
plification ratew,, for an in-phase fluctuation is given by (199t a

w2 AE ol o _ whereF =F7/cg,. When we take the the fast kinetics limit,
as _ ~ -y R,
00N xgol? smh7— a cosh7 +ae N—0, Eq.(CY) is simplified as
QcePs Y
2AF agl [~ al al wX2 AFo =
+ sinh—q(vsinh——acosh— g : = (Vo2 +4+402— o2 +4)
AgoJq 2 2 2 QCqus 2
4 ge-Tin|  AavAF L ~Tq? Vo2 +4+402, (C2)
J09q 2
~ —— ~ which is the same as E(1) in the fast kinetics limit. When
% coshﬂ— coshﬂ) _2AFa the step kinetics is slowy>1, the second term in E¢C1),
2 2 909q proportional tox "1, is larger than the first term, proportional
T ~ to A 2. For the long-wavelength fluctuation, the amplifica-
a v i i i
% cosh?— cosh?) tion ratew is given by
o T o T ~ wqxg 1 (ﬁ"' 2f‘l)~2 (03)
T ainh_d Qo ~—(Fv-2I")q°+---.
X | v sinh 5 +aq coshT aqe ) chqu N
ag aqT ol ~m Whether in growth or sublimation, with the impingement of
_g_q(COSI 2 cosh?)l“q : (B7) " atoms, the bunching instability occurs with the step-down

drift exceeding the critical value:
When the step distance is much smaller than the surface

diffusion lengthl <x4 and the wavelength of the perturbation

is long enoughy=qx.<1, wgq is expanded as vW= ZQDSTBCZQ_ (C4)
TFXskBT
wq :<—Aﬁ;T5_~T Pt 89)
QDchq 360 ' 2. Steps in a vicinal face
The critical drift velocity is given by For an equidistant train of straight steps, the adatom den-

sity is given by
w_ 360D 0 BCoX;

SO Preds B9
7 (O~ Fr)ksTI® (B9)

Coly)=Fr+c0 gl Acoshe +B sinhY. (C5)
0 ed® 2Xs 2Xs)’
The instability occurs wheAFu is negative, i.e., with step-

down drift in sublimation and with step-up drift in growth. wherel is the step distance, and the coefficieAtandB are
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A AF N haT N ha_T i haT +)\a =
= m 75”’] 7 TCOS > Sin 7 79
+T:E>\ \D haT Na h_| qal al )\a = -
ho() 7sm > ——CosS 5 sin > 2 —e , (Co)
B AF | [\v ha_l Na . hal ha_l
o || 2 cosh—-——-sinh—-— cosh—
N 1+)\; =i +|~35A \v ha_T Na | haT ha_T 1y v T c
7e m— 7005 Z—TSIH 7—003 5 —e . (C7)

When the step position is perturbed &g=nl+ ;€' MK+ 4t py the fluctuation, the amplification rate, is calculated as

5 ~
WX u ~ agl o agl  \v agl )\a ~—
q—so=ﬁ —\?(1+g?)sinh—- — qcoshi——:smh Syt el
QDSCeq q( ) 2 2 2
u_ -~ al  \a agl A\ agl )\a ~—
32 Nainh 4 74 Aq -~ q tTa vl
+ 0 )\(1+q)3|nh2 5 osh—+ sinh—— - }
1 |heqUs o @i Sl MaU- ik il
+hq(|) > (e’'7e e )+T(e e e )
AFN [~ hal hvl Fox \ ha_T ) _haT \ h;T
+h0(l) v sinh— — a sin 7] "ho) a cosh—-+2 sinh—-—\a sinh—-
O(1) T —2ikT
“ha) 2)\2(1+q2)smh—+)\aqcosh— )\aqcosh— (1— coskl),
q
r NP1 4T _haqT+)\ aql vT—2ikT ], ce
_hq(l) (1+9g9)sin - aqcosh—2 - aqcosh—2 q-, (C8
where
Xs dug N 1 ©9
U= o ay| Tt
neg, dy -
Xs dug 1
- ——Uu| (C10
A o -
Uo(y)=Co(y)—Fr. (C1)

We assume that the step distaihde much smaller than the surface diffusion length and all the steps are perturbed with the
same phase, i.ek=0. For the slow step kinetic/x;<\, the amplification ratev, is expressed as

@-D)g%+- -, (C12

by

1517 |52+ - -, (C13

QDscgq_

which is a generalization of E¢3.22). This result coincides with the permeable cgse. (B8)], because the gap of the adatom
density at the step vanishes in the fast kinetics limit. The instability can occur with the step-down drift in sublimation and with
the step-up drift in growth.
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APPENDIX D: BUNCHING OF IMPERMEABLE STEPS IN GROWTH

With impingement of adatoms, the velocity of théh stepV, is given by

2XVy 2 (—2n—p)sinh T, /2)— a cosH aT . /2) — ae 1+
b ’ (1+\?)sinh(al . /2)+ a\ coshal . /2)

(—2\+0)sinhal_/2)— a cosial _12)— ae’' -2

+\oF 7 - = =
(1+N?)sinh(al _/2) + a\ cosKal _/2)

( 2\ —D)sinh( @l ,/2) — a cosh al ,/2) + ae V1 +2
(1+\?)sinh( @l ,/2)+ a\ cosial ,/2)

(—2\+0)sini(aT_/2)— a cosl{ @l _/2) + ae’' -2
(1+\?)sinh al _/2)+ a\ cosi al _/2)

RN —v)sinh(aT 4 /2)— a costal . /2x¢) e, + ae "1 +/%,
(1+1?)sinN al ,/2)+ a\ cosi al . /2)

[( 2\ +7)sinh el _/2) — a cost{al _/2) e+ ae’ -2c,_;
(1+\?)sinh(aT _/2) + a\ cosial _/2)

(D1)

The coefficientsuq (1) of Eq. (6.4) ando4(l) of Eq. (6.6) are modified as

d | 2\ sinh(@1/2) + a cosi a1/2) + a cosiv1/2) _d v sinh(a1/2) + a sinh(v1/2)
wi(l)=—2\vF— —2AF—=
dl (1+\?)sinh al/2) + e\ cosk a1/2) dl| (1+\2)sinn al/2)+ a\ coskal/2) |’

(D2

_d Fsinh al/2)— a cosiv1/2) _ d | 2\ sinh(al/2)+ a cosi al/2) — a coskv1/2)
oq(l)= A F— 5 F—= > — — , (D3)

dl [ (1+\?)sinh al/2) + a\ cosial/2) dl (1+\?)sinh al/2) + a\ cosi a1/2)
whereF =Fr/c, and AF = (Fr/c3;— 1). When the step distance is smaH,/2x;<1, u,(l) becomes
NAF+1)(NT/2+ 1) +AFT/2| 20\
Ml(l)%_ U_ o\ 2 ~ 27 (D4)
dl (L+N)T/2+ ) [(x +1)T/2+\]

which is the same as that without impingemgad. (6.8)]. Thus, irrespective of the impingement of the adatoms, the vicinal
face consisting of impermeable steps can be unstable with the step-down drift.
The derivatives in eqD2) are given by
d

dT

a?(1-\?)

2\ sinh(a1/2) + a cos a1 /2) + a cosvT/2) |
[(1+\?)sinh al/2)+ a\ cosh al/2)]?

(1+A?)sinh al/2) + e\ cosk «1/2)

_a(1+\?)[«costvT/2)costal/2) —v sinh(vT/2)sinh al/2)]
[(1+\?)sinh al/2)+ a\ cosh al/2)]?

M\« coshv1/2)sinh( a1/2)—v sinh(v1/2) cosi a1/2)] 05
[(L+\?)sinh «l/2)+ a\ cosial/2)]?

v\
2[(1+ A2)sinh(al/2) + a\ cosH a1/2)]?

v sinh(@1/2) + a sinh(v1/2)
(1+\?)sinh al/2) + e\ cosk a1/2)

d
dl

a1+ N[ a sinh(v1/2)cosi al/2)—v cosiv1/2)sinh( a1/2)]
[(1+\2)sinh al/2) + a\ cosh al/2)]?

- a®\[ a sinh(v1/2)sinh(a1/2) —v cosiv1/2)cosial/2)] 08)
[(L+\2)sinh al/2)+ a\ cosi{al/2)]? '
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When the step distance is much longer than the surface diterm in Eq.(D2) vanishes, and-AF=—1. Thenu,(l) is
fusion length, Eq(D5) is negative, irrespective of the drift positive, and the vicinal face is unstable with the step-up
direction. Equatior{D6) is negative with the step-down drift drift. In growth, (1) is positive, and the vicinal face is
and positive with the step-up drift. In sublimation the first unstable with the step-down drift.
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