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We carried out Langevin dynamics simulations to study the effect of the direction of a uniform external

force on the crystallization of colloidal particles in a V-shaped groove. When the inclination of the side walls

of a groove was set to a suitable value and the external force bisected the angle, the face-centered-cubic

(fcc) structure grew with a {100} growth interface. When the external force was inclined, the number of

solidified particles decreased with increasing inclination, which is different from the growth in an inverted

pyramidal container.

1. Introduction

The sedimentation of colloidal particles is one of the useful methods of forming a close-

packed colloidal crystal.1) When colloidal particles settle on a flat plane, a triangular

lattice is formed on the plane to maximize the particle density. Since the face-centered-

cubic (fcc) structure is more stable than the hexagonal-close-packed (hcp) structure,2,3)

the triangular lattice acts as the {111} face of the fcc structure and a colloidal crystal

with the fcc structure grows. However, since stacking faults are easily formed on the

{111} face of the fcc structure, the random hexagonal-close-packed (rhcp) structure is

formed frequently.1,4)

van Blaaderen et al.5) used a patterned substrate to avoid the formation of the

rhcp structure. They formed a square lattice with a suitable lattice constant on the

substrate. Affected by the square lattice, the particles settling on the substrate form

a square lattice, which acts as the {100} face of the fcc structure. Since the stacking

is unique on the {100} face of the fcc structure, the formation of the rhcp structure

is suppressed and large grains with the fcc structure are formed. The method is called

colloidal epitaxy and is a promising method for forming large colloidal crystals. However,

to obtain a colloidal crystal with high quality, it is necessary to fabricate the patterned

substrate precisely.

Another approach for forming a large colloidal crystal with the fcc structure is to
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grow a colloidal crystal on a pyramidal pit or V-shaped groove.6) In both cases, a

triangular lattice acting as the {111} plane of the fcc structure is formed spontaneously

on the walls of the container. The triangular lattice acts as a substrate for colloidal

particles. Affected by the lattice, large grains with the fcc structure are formed.

When a colloidal crystal is grown in a pyramidal pit, the growth interface is directed

toward the ⟨100⟩ direction if the external force causing the sedimentation of particles

is parallel to the center axis. Owing to the unique stacking on the {100} face, grains

with the hcp structure hardly appear, irrespective of the particle size, when the apex

angle of the pyramidal pit is suitable. The hcp-structured grains, which act as defects

in the fcc-structured crystal, increase in number with increasing deviation of the apex

angle7,8) but their number hardly depends on the inclination of the force direction.7)

In the growth of colloidal particles in a V-shaped groove,6) the growth interface is

directed toward the ⟨110⟩ direction if the external force bisects the angle between the

two walls of the groove. It is easily expected that the number of defects increases with

increasing deviation of the angle between the walls from a suitable value. However,

the dependence of defect formation on the force direction may be different from that

in the case of growth in a pyramidal pit. Thus, we carried out Langevin dynamics

simulations and studied how the force direction affects the crystallization of colloidal

particles during growth in a V-shaped groove. In Sect. 2, we introduce the model we

used. In Sect. 3, we show the results of simulations. In Sect. 4, we summarize the results

and give a brief discussion.

2. Model

We assume that the motion of the ith particle obeys the following equations:

mv̇i = −ζvi + Fext +
∑
i ̸=j

Fij + FB
i , (1)

vi = ṙi, (2)

where m, t, and ri represent the mass of a particle, time, and the position of the ith

particle, respectively. In Eq. (1) , the first term in the right-hand side represents the vis-

cous force, which is proportional to the particle velocity. The second term is the external

force expressed as Fext = Fexteext, where Fext and eext represent the magnitude of the

force and a unit vector in the force direction, respectively. The third term is the sum of

the internal forces from the other particles. We assume that the internal force between

the ith and jth particles is given by the gradient of the Weeks–Chandler–Anderson
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(WCA) potential9) U(rij). The short-range repulsive potential U(rij) is defined as

U(rij) =


4ϵ

[(
σ

rij

)12

−
(

σ

rij

)6

+
1

4

]
(rij ≤ rin),

0 (rij ≥ rin),

(3)

where rij = |rj − ri|, σ is a characteristic length representing the particle diameter,

ϵ represents the strength of the repulsion and rin is given by 21/6σ. The fourth term

represents the random force caused by thermal noise. We assume that FB
i satisfies

⟨F B
i ⟩ = 0 and ⟨FB

k,i(t)F
B
l,j(t

′)⟩ = 2ζkBTδijδklδ(t − t′), where FB
k,i(t) is the k component

of the random force acting on the ith particle at time t.

In our previous studies,7,8, 10–15) we neglected the inertial term mr̈i for simplicity,

but this term may affect the crystallization of particles. Thus, we take account of the

inertial term and carry out simulations using a simple Verlet-type algorithm.16) The

difference equations of Eqs. (1) and (2) are given by16)

r̃i(t̃n+1) = r̃i(t̃n) + b∆t̃ṽi(t̃n) +
b

2
γ(∆t̃)2

[
F̃ext +

∑
i ̸=j

F̃ij(t̃n)

]
+

b

2
γ∆t̃F̃ B

i (t̃n+1), (4)

˜̃vi(t̃n+1) = aṽi(t̃n) +
γ∆t̃

2

{
(a+ 1)F̃ext +

∑
i ̸=j

[
aF̃ij(t̃n) + F̃ij(t̃n+1)

]}
+ bγF̃ B

i (t̃n+1),(5)

where the scaled variables r̃i, t̃, F̃ext, F̃
B
i , and F̃ij satisfy ri = σr̃i, t = σ2ζt̃/ϵ, Fext =

ϵ ˜Fext/σ, F
B
i = ϵF̃ B

i /σ, and Fij = ϵF̃ij/σ, respectively. ∆t̃ is defined as ∆t̃ = t̃n+1 − t̃n.

The other parameters are defined as

γ =
ζ2σ2

mϵ
, (6)

a =

(
1− γ∆t̃

2

)(
1 +

γ∆t̃

2

)−1

, (7)

b =

(
1 +

γ∆t̃

2

)−1

. (8)

The normalized thermal noise for the ith particle, F̃ B
i (t̃n), satisfies ⟨F̃ B

i (t̃n)⟩ = 0 and

⟨F̃B
k,i(t̃n)F̃

B
l,i(t̃m)⟩ = 2R̃B∆t̃δklδnm with R̃B = kBT/ϵ. When we neglect the inertial term,

we obtain a simple difference equation given by17)

r̃i(t̃n+1) = r̃i(t̃n) +

[
F̃ ext +

∑
i̸=j

F̃ ij(t̃n)

]
∆t̃+∆r̃B

i (t̃n+1), (9)

where
⟨
∆r̃Bk,i(t̃n)∆r̃Bl,j(t̃m)

⟩
= 2R̃B∆t̃δklδijδnm. We also carry out simulations using

Eq. (9), and compare the results of the simulations with the results obtained using
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Eqs. (4) and (5).

3. Results of simulations

Figure 1 shows a snapshot of the V-shaped container we used in our simulations. The po-

sitions of the corners are given by A(0, 0, 0), B(L, 0, L/
√
2), C(−L, 0, L/

√
2), D(0, 2L, 0),

E(L, 2L,L/
√
2), and F(−L, 2L,L/

√
2), where L is determined so that the volume frac-

tion of particles is 0.1. The angle ∠BAC is −180 tan−1(2
√
2)/π◦; thus, the horizontal

plane becomes the {110} face of the fcc structure if a triangular lattice is formed on

the side walls ABED and ACFD.

A

B

C

D

E

F

x y

z

Fig. 1. (color online) Typical shape of a V-shaped groove.

The number of particles is 20000 and σ = 1. Initially, we placed the particles in the

container at random and set the velocities of the particles to be 0. After we moved the

particles by a random force with RB = 0.1 during 0 < t̃ < 1000, we set the time to

t̃ = 0 again and added an external force, which causes the sedimentation of particles.

The particles have a radius of 0.5 and act as hard spheres at the walls of the container,

so that perfectly elastic collision occurs between the walls and the particles. In our

simulations, ∆t̃ is smaller than 10−3.

Figure 2 shows snapshots during sedimentation with Fext = 0.8(0, 0,−1), which are

shown from the y-direction. Particles are represented as small circles. The particles are

distributed uniformly at an early stage [Fig. 2(a)]. With increasing time, the particles

settle and the particle density increases near the side walls [Fig. 2(b)]. First, ordering of

the particles in the direction normal to the walls proceeds and layers parallel to the side

walls are formed [Fig. 2(c)]. Then, ordering proceeds in each layer and a spotted pattern

appears in the lower region [Fig. 2(d)]. Figure 3 shows a snapshot from the x-direction.

We can see inverted triangular regions at y = 28, y = 53, and y = 80 (Fig. 3), which

are disordered regions remaining in the ordered region.
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Fig. 2. (color online) Snapshots during sedimentation with Fext = 0.8(0, 0,−1), which are shown

from the y-direction. t̃ is (a) 0, (b) 5, (c) 30, and (d) 250.
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Fig. 3. (color online) Snapshot during sedimentation with Fext = 0.8(0, 0,−1) at t̃ = 250, which is

shown from the x-direction.

From Figs. 2 and 3, we find that the fcc structure is mainly formed in the container.

However, to determine the ordering of the particles more quantitatively, we introduce

order parameters dl(i, j), Ql(i), and wl(i).
4,18,19) The parameter dl(i, j) is used to de-

termine a property of the relation between the ith and jth particles. dl(i, j) is defined

by

dl(i, j) =
l∑

m=−l

ql,m(i)q
∗
l,m(j), (10)

where

ql,m(i) =
1

nn

nn∑
j=1

Y m
l (θij, ϕij), (11)

and ql,m(i)
∗ is the complex conjugate of ql,m(i). In Eq. (11), nn represents the number

of neighbors of the ith particle, Y m
l (θij, ϕij) is the spherical harmonic, and θij and ϕij

represent the polar and azimuthal angles for rj − ri, respectively. When d6(i, j) > 0.7,

we regard the connection between the ith and jth particles as a solid-like one. A particle

with four or more solid-like connections is regarded as a solid-like particle.

In our simulations, the hcp and fcc structures are possibly close-packed structures.

To distinguish these two structures, we use Ql(i), and wl(i). They are defined as

Ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|ql,m(i)|2, (12)

wl(i) =
∑

m1,m2,m3

 l l l

m1 m2 m3

(
4π

2l + 1

)3/2
ql,m1(i)ql,m2(i)ql,m3(i)

Ql(i)3
, (13)
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where the integers m1, m2, and m3 satisfy −l ≤ m1,m2,m3 ≤ l and m1 + m2 +

m3 = 0. The first term in the right-hand side of Eq. (13) represents the Wigner 3–j

symbol. When n ≤ 9, we may not be able to distinguish the fcc structure from the hcp

structure properly. Thus, we regard a solid-like particle with less than nine neighbors as

a disordered solid-like particle. We use Ql(i) and wl(i) for the particles with 10 or more

neighbors. We regard the local structure around the ith particle as the fcc structure

when −0.18 < w4(i) < −0.01 and 0.175 < Q4(i) < 0.2. When 0.02 < w4(i) < 0.15 and

0.06 < Q4(i) < 0.15,7,8, 10–15) the structure is regarded as the hcp structure. When w4(i)

and Q4(i) have other values, we regard the ith particle as a disordered solid.
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Fig. 4. (color online) Time evolutions of (a) Nfcc and (b) Ndefect with Fext = 0.8 and γ = 10.

We investigate how the number of particles with the fcc structure, Nfcc, depends on

Fext. Figure 4(a) shows the time evolutions of the average value of Nfcc with various θ

values. The data are averaged over 10 individual runs. Error bars represent the standard

errors. θ represents the angle between (0, 0,−1) and Fext. Nfcc increases with increasing

time at an early stage and finally saturates. The saturated value of Nfcc clearly decreases

with increasing θ; thus, the dependence of Nfcc on θ is different from that in the case of
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solidification in a pyramidal pit.7) Figure 4(b) shows the time evolution of the number

of particles acting as defects, Ndefect, which is the sum of the numbers of hcp-structured

particles and disordered solid-like particles. We want to know how many defects there

are in the ordered region. Thus, to estimate Ndefect, we exclude the disordered particles

and the particles with the hcp structure, which are on top of the ordered region. Ndefect

increases in the initial stage. Then, it decreases slightly and saturates at a later stage.

Different from Nfcc, the saturated value of Ndefect hardly depends on θ. From Figs. 4(a)

and 4(b), we find that the ratio of Ndefect to Nfcc increases with increasing θ.
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Fig. 5. (color online) Time evolutions of (a) Nfcc and (b) Ndefect with Fext = 0.8 obtained from

Eq. (9).

In the above simulations, we used a larger γ so that the inertial term was small. If

we carry out simulation with Eq. (9), we will probably obtain similar results. Figure 5

represents the time evolutions of Nfcc and Ndefect in a simulation with Eq. (9). Both

Nfcc and Ndefect are as large as those in Fig. 4, which agrees with our expectation.

We also carry out a simulation with a small γ. Figure 6 shows the time evolutions

of Nfcc and Ndefect with γ = 0.1. These numbers decrease with increasing inclination of
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Fig. 6. (color online) Time evolutions of (a) Nfcc and (b) Ndefect with Fext = 0.8 and γ = 0.1.

the force direction. The tendency is the same as that in the case of solidification with

γ = 10. However, Nfcc is smaller and Ndefect is slightly larger than those in Fig. 4. The

ratio of the defects increases with decreasing γ.

Finally, we also investigate how the saturated values of Nfcc and Ndefect depend on

γ and the container shape. Figure 7 shows the dependence of the saturated values of

Nfcc and Ndefect on θ with Fext = 0.8. When we use Eq. (9) or Eqs. (4) and (5) with

γ = 10, Ndefect hardly depends on θ and Nfcc decreases slightly with increasing θ. When

we use Eqs. (4) and (5) with γ = 0.1, Ndefect increases and Nfcc decreases with increasing

θ, but the change in Nfcc is much larger than that in Ndefect. Thus, irrespective of γ,

the change in the ratio of Ndefect to Nfcc is mainly caused not by a decrease in Ndefect

but by an increase in Nfcc. Figure 8 shows the dependence of the saturated value of

Nfcc(θ)/Nfcc(0) on the container shape. We carried out simulations using Eq. (9) as

the difference equation. The magnitude of the force is given by Fext = 0.2, which is

smaller than that in previous simulations. The containers are a pyramidal container

and a V-shaped groove. In both containers, Nfcc(θ)/Nfcc(0) decreases with increasing θ.

However, the decrease in the ratio in the V-shaped groove is much larger than that in
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Fig. 8. (color online) Dependence of the saturated value of Nfcc(θ)/Nfcc(0) on the container form

with Fext = 0.2, where we use Eq. (9).

the pyramidal container. When the colloidal crystal grows in the V-shaped groove, the

effect of the inclination of the force direction on Nfcc is larger than that in the case of

growth in the pyramidal container.
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4. Summary and discussion

In this paper, we studied the effect of the force direction on the crystallization of colloidal

particles by sedimentation. When we used a V-shaped groove with a suitable angle as a

container, the fcc structure whose {111} face was parallel to the side walls was formed.

When the force direction was parallel to the z-direction, the growth interface became the

{100} face and Ndefect was small. Different from the results of our previous simulations

in a pyramidal container, the ratio of Ndefect to Nfcc increased with increasing inclination

of the force direction. The main reason was the decrease in Ndefect. In the case of growth

in a pyramidal container, the growing crystal was surrounded by four pyramidal planes.

When the force direction was slightly inclined, the layers formed by settled particles

were not so thin; thus, the effect of the force direction was small. On the other hand,

the growing crystal was surrounded by only two walls in the case of growth in a groove.

When the force was tilted, the layers of settled particles spread on one of the walls. The

layers were thinner than those obtained in the pyramidal container. Thus, the number

of solidified particles decreased more than that in the pyramidal container.

In our simulations, we used a Verlet-type algorithm in which the inertial term was

taken into account. When γ ≫ 1, the effect of the inertial term was small and the

results of the simulations were similar to those with Eq. (9). When γ ≪ 1, owing to

the inertial term, Nfcc decreased. When we used Eq. (9), the motion of particles did

not depend on their velocity. The particles moved toward the low-potential direction;

thus, a regular structure was formed easily. On the other hand, when γ was small,

the direction of particle motion was determined not only by the potential decrease but

also by the particle velocity; thus, the particles did not always move toward the low-

potential direction. If the particle density was increased quickly by the external force

before the particles moved to suitable positions determined by the potential energy, the

disordered particles remained in the bulk. The increase in γ decreased defect formation

in the bulk. Thus, if the particle size is fixed, we should use particles made from a

light material to form a high-quality colloidal crystal. The parameter γ is expressed

as γ = 54πησR̃B/(ρKBT ), where η is the viscosity and ρ is the particle density. For

polystyrene particles in water, ρ = 1.05 g/cm3 and η = 8.51 × 10−4 Pa · s. When the

diameter of the particles is given by ρ = 1 µm, γ is estimated as γ = 2.8× 107R̃B. We

could not estimate γ precisely because R̃B = kBT/ϵ is an unknown parameter, but R̃B

is probably not so large and γ is small. Thus, the effect of the inertial term is neglected
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and we can use Eq. (9) to consider the crystallization of polystyrene particles in Ref. 6.

However, if we consider the crystallization of smaller particles with a high density, we

need to use the Verlet-type algorithm given by Eqs. (4) and (5).
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