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Abstract

On a Si(001) vicinal face, where the direction of fast surface diffusion alternates on consecutive

terraces, step bunching has been observed under direct current heating. By using a one-dimensional

step model with drift of adatoms, we study growth laws of step bunches. If evaporation is negligible,

the average number N of steps in a bunch increases with time as N ∝ tβ with β <≈ 1/2. The growth

exponent β weakly depends on the repulsive interaction potential between steps. When steps at a

distance l interact with the repulsive potential ζ ∝ 1/lν , the average step distance in a bunch lb

decreases as lb ∝ N−α with α ≈ 3/2(ν + 2). The exponents α and β are related as β ≈ 1/(2 + α).

The simulation results are consistent with experiment if we take account of both logarithmic and

ν = 2 potentials, which are expected in this system. The growth rate of the bunch size with

step-down drift is faster than that with step-up drift. If evaporation of adatoms is significant, the

difference of the growth rate in the opposite drift directions becomes small. The apparent exponent

β depends on the drift direction, and is larger with step-up drift.

PACS numbers: step bunching, Si(001) vicinal face, drift of adatoms, growth law
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I. INTRODUCTION

On a Si(001) vicinal face, the surface is reconstructed by dimerization of surface atoms.

Due to the dimerization, the surface diffusion is anisotropic and adsorbed atoms (adatoms)

move faster along dimer rows than perpendicular to those. When the vicinal face is tilted in

the 〈110〉 direction, dimer rows are parallel or perpendicular to the steps and terraces with

1 × 2 structure and those with 2 × 1 structure appear alternately. The diffusion coefficient

perpendicular to the steps changes alternately.

When a Si(001) vicinal face is heated by direct electric current [1, 2], the vicinal face is

unstable and step bunching occurs irrespective of the current direction. The type of large

terrace between bunches changes with the current direction. The cause of the step bunching

is considered to be drift of adatoms induced by the current [3]. By taking account of the

drift in a one-dimensional step model, Stoyanov [4] theoretically studied the stability of the

vicinal face, and showed that pairing of steps occurs if the diffusion coefficient perpendicular

to the steps changes alternately. The behavior of step pairs has been studied numerically [5–

8]. In our previous studies [7, 8], we showed that large step bunches grow and the type of

large terrace between bunches is determined by the drift direction, which agrees with the

experiments [1, 2].

In the experiment [2], Latyshev and co-workers found growth laws of steps on a Si(001)

vicinal face. The number of steps N in a bunch increases with time as N ∝ tβ with β ≈ 1/2,

and the average step distance lb in a bunch decreases as lb ∝ N−α with α ≈ 1/2.

On a Si(111) vicinal face, the growth laws have been studied theoretically [9–12] and the

results agree with the experiments [13–16]. However, the growth laws on a Si(001) vicinal

face have not been studied. In this paper, with the Si(001) vicinal face in mind, we study the

growth laws in the drift-induced step bunching with the alternating diffusion coefficient. In

Sec. II, we introduce a one-dimensional step flow model. In Sec. III we carry out numerical

simulation, and find the growth laws of the bunch size and the average step distance. In

Sec. IV we summarize results with a brief discussion.
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II. MODEL

We use a one-dimensional step flow model in which the drift of adatoms is taken into

account. We consider a vicinal face, where the y-axis is in the step-down direction. On

the mth terrace, adatoms diffuse with the diffusion coefficient Dm and evaporate with the

lifetime τ . Impingement of atoms is neglected. We assume that the drift is in the y-direction.

The diffusion equation of the adatom density c(y, t) is given by

∂c

∂t
= Dm

∂2c

∂y2
− DmF

kBT

∂c

∂y
− 1

τ
c, (1)

where F is the force to cause the drift.

Solidification and melting of atoms occur at steps. In our previous studies [7, 8], we found

that the step bunching occurs as observed in the experiment [2] if the kinetic coefficient of

steps is large. In this paper we consider the limit of large kinetic coefficient, where the

permeable step and the impermeable step are indistinguishable. The adatom density is in

equilibrium with steps at the step position:

c|ym± = cm, (2)

where ym is the position of the mth step, +(−) indicates the lower(upper) side terrace and

cm is the equilibrium adatom density of the mth step.

On a Si(001) vicinal face, the two kinds of terraces are separated by monoatomic height

steps. The alternation of structural anisotropy of terraces produces elastic force monopoles at

the steps. The repulsive potential ζm is given by ζm = −A0 ln lm [17], where lm = (ym+1−ym)

is the terrace width.

When the repulsive interaction is taken into account, the equilibrium adatom density is

given by

cm = c0
eq

(
1 +

Ω

kBT

∑
n

∂ζn

∂ym

)

= c0
eq

[
1 + Ãν

(
1

lν+1
m−1

− 1

lν+1
m

)]
, (3)

where c0
eq is the equilibrium adatom density of an isolated step, and Ω the atomic area. The

parameters Ã and ν in eq. (3) are given by Ãν = ΩA0/kBT and ν = 0. In order to study

the dependence of the growth laws on the step interaction, we also carry out numerical
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simulation with various potentials, ζm = Aνl
−ν
m . The parameters Ãν and Aν are related by

Ãν = νΩAν/kBT .

We solve the diffusion equation, eq. (1), with the boundary conditions, eqs. (2) and (3).

By using the quasi-static approximation (∂c/∂t = 0), we obtain the adatom density c(y).

The adatom current jm on the mth terrace is given by

jm = −Dm
∂c

∂y
+

DmF

kBT
c, (4)

and the velocity of mth step Vm is

Vm = Ω
(
−jm|ym+ + jm−1|ym−

)

= Ω

(
Dm

∂c

∂y

∣∣∣∣
ym+

− Dm−1
∂c

∂y

∣∣∣∣
ym−

)
, (5)

where the terms proportional to the drift vanish because c|ym+ = c|ym− = cm. Calculating

the step velocity eq. (5) numerically, we can trace the positions of steps.

FIG. 1: A Si(001) vicinal face. Short lines represent dimers.

In the following we assume that two types of terraces with different diffusion coefficient

appear alternately as in Si(001) (Fig. 1). On the odd number terraces dimer rows are in the

x-direction, and on the even number terraces dimer rows are in the y-direction. We call the

odd number terraces TA and the even number terraces TB. In the y-direction, the diffusion

coefficient DA in TA is smaller than that DB in TB. The lower side step of TA is called SA

and that of TB is called SB.
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III. SIMULATION RESULTS

In this section we summarize the result of numerical simulations. We first neglect the

evaporation and find the growth laws in a conserved system, where the results are simple.

Then we study how evaporation influences the growth laws.

A. Step bunching without evaporation

Without evaporation (τ → ∞), the step velocity is given by [11]

Vm =
ΩDm−1f(cm−1e

flm−1 − cm)

eflm−1 − 1

−ΩDmf(cmeflm − cm+1)

eflm − 1
, (6)

where f = F/kBT . f−1 represents the characteristic length of the drift force.

For an equidistant step train, the step velocity is given by

VA = −VB = (DA − DB)f. (7)

SA recedes and SB advances with step-down drift (f > 0). The step motion is reversed with

step-up drift (f < 0). Neighboring steps move in the opposite direction and the pairing

of steps occurs [4–8]. The repulsive step-step interaction, which forbids the formation of

double atomic height steps, causes the change of the equilibrium adatom density. In a step

pair, the equilibrium adatom density of the upper side step is larger than that of the lower

side step.

Figure 2 shows the time evolution of step positions. The dotted lines represent the motion

of SA and the solid lines represent that of SB. The scaled time is defined as t̃ = Ωc0
eqt. The

characteristic length is f−1 = 5 and the initial step distance is l = 0.5 with a small random

fluctuation. In the initial stage, step pairing occurs as expected by the stability analysis.

Small bunches are produced via coalescence of step pairs.

The coalescence is induced by the fluctuation of terrace width between step pairs. When

the drift is weak enough, fL � 1, the adatom current j(L) on a large terrace is approxi-

mately given by [11]

j(L) ≈ −DL
∆c

L
+ DLfc0

eq, (8)
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FIG. 2: Time evolution of the step positions in a conserved system with (a) step-down drift and

(b) step-up drift. The number of steps is 32. Parameters are DB = 2, DA = 1, Ã2 = 10−4 with

ν = 2, and f = 0.2.

where DL is the diffusion coefficient on the large terrace and ∆c is the difference of the

equilibrium adatom density in a step pair. The current direction of the second term depends

on the drift direction, but that of the first term is always in the step-up direction. When the

terrace width between step pairs is much larger than the step distance in a pair, the change

of ∆c is determined by the step distance in the pair. If the terrace of the width L + δL and

that of L− δL appear alternately, the velocity of step pair whose upper side terrace is larger

is given by

Vpair = Ω[j(L + δL) − j(L − δL)]

≈ 2Ω
dj(L)

dL
δL = 2ΩDL

∆c

L2
δL. (9)

The step pair advances and the fluctuation of terrace width increases. The other step pair

with a small upper terrace recedes and the bunching of the step pairs occurs. This process

is repeated for larger step bunches successively. In a later stage, very large bunches are

produced successively via coalescence of small ones. The process of the step bunching is

similar to that on a Si(111) vicinal face [11, 12] except that the step bunching occurs

irrespective of the drift direction. The large terrace between bunches is TB with step-down

drift (Fig. 2(a)) and TA with step-up drift (Fig. 2(b)). The step bunches with step-down

drift grow faster than those with step-up drift. When the number of steps is the same, the
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width of the bunch with step-up drift is larger than that with step-down drift.

FIG. 3: Dependence of lb on N . (a) With step-down drift, � ν = 0 and Ã0 = 10−3, © ν = 2 and

Ã2 = 10−7, 
 with ν = 4 and Ã4 = 10−11, and ♦ with ν = 6 and Ã6 = 10−15. (b) With step-up

drift. Other parameters are |f | = 1.0, DA = 1, DB = 0.1.

Figure 3 represents the dependence of lb on the bunch size N . In order to get better

statistics, we performed simulations of a different initial condition [18]. We produced a tight

isolated bunch of the size N with various potentials and measured lb. With increasing the

bunch size, the average step distance lb decreases as lb ∼ N−α. The exponent α decreases

with increasing the exponent ν of the repulsion, and seems to fit the simple formula

α ≈ 3

2(ν + 2)
. (10)

If the drift velocity is the same, the bunch with step-down drift is tighter than that with

step-up drift, but the exponent α is the same.

In an isolated bunch, the step distance is small and the adatom current is approximately

given by

jm = Dm
cm+1 − cm

lm
+ Dmfcm (11)

where we have numbered the steps from the left to the right, m = 1 to N . One may neglect

the change of equilibrium density in the second drift term if the bunch is not too large so

that the density change is relatively small. In the steady state of a conserved system, the
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adatom current is a constant j0 on all terraces,

jm = j0. (12)

If the bunch is isolated in an infinite system, far from the bunch the adatom density is c0
eq

and the gradient of the adatom density vanishes. The adatom current j0 is given by

j0 = DLfc0
eq. (13)

When the bunches appear periodically, the gradient of the adatom density does not vanish

on a large terrace. The adatom current j0 is slightly smaller than DLfc0
eq.

Since the diffusion coefficient Dm alternates on consecutive terraces, the first diffusion

term in eq. (11) should compensate the change of the drift current to keep the current

constant. Thus on terraces between 2nth and (2n+1)th steps, where D2n = DL, the second

term in eq. (11) is as large as j0 and the gradient term is very small. On terraces between

(2n − 1)th and 2nth steps, where D2n−1 
= DL, the difference between the second term and

j0 is large. Thus the diffusion current, which is in the step-down direction, does not vanish.

The density change c2n−1 − c2n is positive and large.

FIG. 4: The equilibrium adatom density in a bunch with (a) step-down drift and (b) step-up drift.

Parameters are DA = 1.0, DB = 0.1, Ã2 = 10−4 with ν = 2, and |f | = 0.1.

We were not able to solve eq. (11) with alternating Dm analytically. In Figure 4 we

show the density profile in a bunch calculated numerically. The difference of the equilibrium

adatom density is large on the odd number terraces, which are terraces in the original step
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pairs, in contrast to the even number terraces. From the observation that the diffusion

current on the odd number terraces are approximately constant (c2n−1−c2n)/l2n−1 ≈ const.,

we conjecture that the following relation holds:

∆cB ≡ c1 − cN ∼
N/2∑
n=1

(c2n−1 − c2n) ∝ lbN ∝ N1−α. (14)

FIG. 5: Dependence of ∆cB on N in Fig. 3 with (a) step-down drift and (b) step-up drift.

Figure 5 shows the difference ∆cB of the equilibrium adatom density between the upper

side edge and the lower side edge. It increases in a power of N . When the drift is in

the step-down direction (Fig. 5(a)), the exponent is smaller than that given by eqs. (10)

and (14). This is probably because the change of the equilibrium adatom density is too

large (∆cB/c0
eq ≈ 0.4). When the drift is in the step-up direction (Fig. 5(b)), change of

the equilibrium adatom density is small (∆cB/c0
eq ≈ 0.1) and the exponent roughly agrees

with the expected value: (2ν + 1)/(2ν + 4) = 0.25, 0.625, 0.75, 0.8125 for ν = 0, 2, 4, 6,

respectively.

Since the bunching proceeds hierarchically as observed in Fig. 3, we can estimate the time

τb necessary for the bunch to double [12]. For a periodic array of N step bunches, pairing

instability occurs if the bunch position is shifted alternately. In a similar way to eq. (9), the

velocity of the bunch is given by

Vbunch ∼ ΩDL
∆cB

NL2
δL. (15)
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Then the time necessary for a pair of bunches to collide is

τb ∼ NL2

ΩDL∆cB

∼ N2+α. (16)

This hierarchical collision of bunches leads to the growth law of the bunch size as

N ∼ tβ (17)

with the exponent

β =
1

2 + α
. (18)

FIG. 6: Time dependence of the bunch size with various repulsive potential with (a) step-down

drift and (b) step-up drift. The exponent of the repulsive potential is � ν = 0, © ν = 2, 
 ν = 4

and ♦ ν = 6.

The growth law eqs. (17) and (18) is tested by the numerical simulation. Figure 6

shows the time dependence of the bunch size N . The simulation is carried out with 64

steps with the initial step distance 0.5. The force to cause the drift is |f | = 0.1, and the

diffusion coefficients are DA = 1.0 and DB = 0.1. The strength Ã of the repulsive potential

is adjusted to make the bunches to be tight; Ã0 = 10−2 for ν = 0, Ã2 = 10−4 for ν = 2,

Ã4 = 10−5 for ν = 4 and Ã6 = 10−6 for ν = 6. The step number N is averaged in each

sample and over 20 runs. The time axis of the data are shifted by 10(6−ν)/2 times for each

power of the potential ν. The dotted lines indicate the power

β =
2(ν + 2)

4ν + 11
(19)
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obtained from eq. (18) with the empirical values of eq. (10). For ν = 0 the slope looks

slightly larger than the expected value β = 0.36. Since the ν dependence of the exponent β

is weak, it is difficult to use the experimental data to determine the power of the potential.

In the experiment [2] β seems to be 0.5, but we do not think the exponent about 0.4 is

excluded by the experiment.

B. Step bunching with evaporation

In our previous study [8] for the simple one-dimensional step model, the difference of the

growth rate with the change of the drift direction is suppressed considerably by evaporation

of adatoms. Here we study the effect of evaporation (finite τ) on the growth laws.

If evaporation is taken into account, the step velocity is given by

Vm

Ω
=

(Dm−1 − Dm)fcm

2

− Dm−1αm−1(cm coshαm−1lm−1 − e−flm−1/2cm−1)

sinh αm−1lm−1

− Dmαm(cm coshαmlm − e−flm/2cm+1)

sinh αmlm
. (20)

The parameter αm is defined as

αm =
1

2

√
f2 +

4

x2
m

, (21)

where xm =
√

Dmτ is the surface diffusion length in the mth terrace. The parameter α−1
m

is the characteristic length of the surface diffusion in the mth terrace. It decreases as the

evaporation increases. If the step distance is larger than α−1
m , the interaction between steps

mediated by the surface diffusion is weak.

Figure 7 represents time evolution of step positions with evaporation. The lifetime is

τ = 80 and the characteristic lengths are α−1
B = 7.8 and α−1

A = 6.7. Step bunches grow

via successive coalescence of small bunches similarly to the conserved system. In the initial

stage, coalescence of step bunches with step-down drift (Fig. 7(a)) occurs faster than that

with step-up drift (Fig. 7(b)). In a later stage, however, the coalescence with step-up drift

is more frequent than that with step-down drift. The size of step bunches with step-up drift

catches up with that with step-down drift. In both cases a large isolated bunch is formed

at t̃ ≈ 3000.
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FIG. 7: Time evolution of step positions in sublimation with (a) step-down drift and (b) step-up

drift. Parameters are f = 0.2, DB = 2, DA = 1, Ã2 = 10−4 with ν = 2 and the lifetime τ = 80.

The number of steps is 32 and the initial step distance is 0.5.

The above effect of evaporation is also seen in the exponent β. Figure 8 shows the bunch

size as a function of time. The data are obtained in the same way as in Fig. 6. In a later stage,

the step bunches grow as N ∼ tβ. The exponent is about β ≈ 0.55 with step-down drift and

β ≈ 0.75 with step-up drift. These values are larger than those without evaporation.

With increasing the evaporation rate, the growth process changes drastically. Figure 9

represents the time evolution of step positions for a large evaporation rate. The pairing of

steps occurs in the initial stage. With step-up drift (Fig.9(b)), only small bunches and step

pairs are seen. The bunches repeat collisions with isolated step pairs and the bunch size is

saturated. With step-down drift (Fig. 9(a)), a large bunch appears and collides with a step

pair in a later stage. With further increase of the evaporation rate, the motion of steps with

step-down drift becomes similar to that with step-up drift. These features are similar to the
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FIG. 8: Time dependence of bunch size in sublimation with the potential of ν = 0 and of ν = 2.

The parameters are the same as in Fig. 7 for ν = 2. For ν = 0, Ã0 = 10−2 and other parameters

are the same as in Fig. 7. The open marks indicate step-down drift (
 ν = 0 and © ν = 2), and

filled marks indicate step-up drift.

case of bunching on a simple vicinal face [12].

IV. SUMMARY AND DISCUSSION

By the use of a one-dimensional step model we studied the growth laws in the drift-

induced step bunching on a vicinal face of Si(001) with alternating diffusion coefficient. In

contrast to the case of Si(111) [12], the step bunching occurs both with step-up and step-

down drift. The origin of step pairing with drift in both directions is simple and evident,

but the formation of large bunches in both drift directions was surprising at first.

The reason of the difference between Si(111) and Si(001) is the following. If a bunch is

formed out of repulsive steps, the force acting on the upper edge step is negative (i.e. to

the left direction) and that on the lower edge step is positive (to the right). In terms of

equilibrium adatom density, this means that the density is high at the left and low at the

right edge of the bunch. For the step bunch to be stable against dissociation, the density

profile on the large terrace must be consistent with these values. This is attained by the

density distribution, which has the form c(y) = c1 +c2e
fy, in both drift directions if c2f > 0.

The density change in the bunch is achieved by the difference of the diffusion coefficient as
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FIG. 9: Time evolution of step positions with a large evaporation rate with (a) step-down drift

and (b) step-up drift. Parameters are |f | = 0.1, DB = 1, DA = 0.1, Ã2 = 10−4 with ν = 2 and the

lifetime τ = 50. The number of steps is 32.

seen in Fig.4.

In contrast, on Si(111) the density change occurs at the steps and is due to the kinetic

barrier for solidification (finiteness of the kinetic coefficient). The gradient of the adatom

density on terraces in the bunch is small. When the drift is in the step-down direction,

adatoms are incorporated to the bunch from the left and released from the right edge, and

the step bunch is stable. With the step-up drift, the adatoms are incorporated to the bunch

from the right and released from the left edge. Then the adatom density at the right edge of

the bunch should be higher than that at the left, which is not consistent with the equilibrium

adatom density at the steps. Thus the formation of a bunch with step-up drift is not possible

on Si(111). In both systems, once the stable bunch is formed, the coalescence of bunches

proceed in the same way.

The growth rate of bunch size with step-down drift is faster than that with step-up

drift. The average step distance lb in the bunch becomes small with the increase of the

bunch size as lb ∼ N−α. The exponents α obtained by the simulation fit the simple formula

α = 3/2(ν+2), where ν is the power of the repulsive potential between steps. In a conserved

system the bunch size N increases with time t as N ∼ tβ. In contrast to the case of standard

drift-induced bunching [12], the exponent β is weakly dependent on ν. The exponent α and
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β are related as β = 1/(2 + α).

In the experiment [2], the bunch size increases as N ∼ tβ with β ≈ 1/2, and the growth

rate with step-up drift is about the same as that with step-down drift. In our numerical

simulation, the exponent β in the conserved system is slightly smaller than that in the ex-

periment, and the growth rate changes with the drift direction (Fig. 6). The difference of

the growth rate is as large as that of the two diffusion coefficients. Since the experiment [2]

was carried out at high temperature, the evaporation may not be negligible. In our simu-

lation, the difference of growth rate decreases as the evaporation increases. However, the

exponent β is larger than that in a conserved system and depends on the drift direction.

In the previous studies [19–21], the ratio of the two diffusion coefficients are estimated to

be 2 ∼ 1000. Although the evaporation may have an important effect, the disagreement

between the experiment and the simulation is not resolved only by the evaporation.

On a Si(001) vicinal face, the step-step interaction potential is logarithmic repulsion [17].

The average step distance lb in a bunch decreases as lb ∼ N−α with α = 0.5 in the experi-

ment [2]. In our simulation with logarithmic interaction potential, the exponent is α ≈ 0.75.

In addition to the logarithmic potential between steps, which originates from the inequiva-

lent terraces, there must be a 1/l2 potential due to the force dipole at the step [22, 23]. The

1/l2 potential is important when the step distance becomes small in a tight bunch. Since the

exponent α is 0.38 for the repulsive potential ν = 2, we tried a potential ζ = −A0 ln l+A2/l
2.

Then the exponent α ≈ 0.5 and β ≈ 0.4 are reproduced as shown in Figs. 10(a) and (b),

respectively. The relation between α and β expected from eq. (18) is satisfied.

In the simulation, the step distance lb in a bunch is lb ∼ 10−2 when the step number is

N ≈ 10. The ratio of the two repulsive forces derived from A0 ln l and A2/l
2 is of the order

of unity: A0l
−2
b /A2l

−4
b ∼ O(1). On a Si(001) vicinal face, the coefficient A0 was estimated as

A0 ≈ 0.003 eV/Å [17]. In the experiment [2], which was carried out at T ∼ 1150−1170◦C, the

step distance is lb ≈ 2nm when the step number is N ≈ 10. The coefficient A2 is estimated

to be A2 = A0l
2
b ≈ 0.12 eV nm. This value A2 for Si(001) is as large as the estimated

repulsion strength on a Si(111) vicinal face: A
(111)
2 ≈ 0.17 eV nm at T ≈ 1160◦C [16]. Since

the origin of the dipole repulsion is in common, the estimated order of magnitude of A2 is

reasonable. Thus the experimental value of α is an indication that both the logarithmic

potential and the dipole potential are important in the step bunch.

Our simple model with alternating diffusion anisotropy gives a good account for the step
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FIG. 10: (a)Dependence of the step distance lb on the bunch size N and (b) time dependence of N .

The open marks are for step-down drift and the filled marks are for step-up drift. The repulsive

potential is ζ = −A0 ln l+A2/l2 with A0 = 5.0×10−4 and A2 = 5.0×10−8 for step-down drift and

A0 = 2.0× 10−4 and A2 = 2.0× 10−8 for step-up drift. Other parameters are DA = 1.0, DB = 0.1

and f = 1.0 (a), f = 0.1 (b).

bunching as well as the step wandering [24, 25] instabilities on Si(001). However, there are

two disagreements between our simulation and the experiment [2]. In our simulation, the

average width lb with the step-up drift is larger than that with the step-down drift if the

parameters are the same, which is the opposite to the experiment [2]. Also in our simulation

the bunches with step-down drift grows faster than that with step-up drift contrary to the

experiment. We think the latter problem is rather serious and further study is needed.
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