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I Count data

Regression analysis of the poisson distributed data has been discussed by
several authors ([3],[4],[7]). But Nelder and Wedderburn formulated
the generalized linear model in 1972 ([5]) and since then we can view this
problem in a wider scope including the usual normal regression. The poisson
is, theoretically and practically, the most important distribution, when we
analyse the count data. But we often observe covariables, or factors, together
with response variable in economic or sociological studies, or in other fields.
In these cases, multiple regression analysis provides an interesting techmique
to interprete data and obtain information about an underlying mechanism.
However, we somtimes obtain the poor fit in regression analysis, especially in
analysing the count data. This may be because the count observations are
aggregated over some factors, or important explanatory variables are not ob-
served or unavailable. As a result, overdiversification is suspected.

Here we examine a method to accomodate such unexplained variations
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due to misspecification by introducing normally random part into the linear
regression model for the poisson distribution.

I Model and a method of estimation

Nelder and Wedderburn propose the generalized linear model which re-
lates the natural parameter or some function of it of exponential family dis-
tributions to explanatory variables ([5]). Likelihood function and linear

regression part are given by

fy 16.8) =exp {#[0y—a(8)]Iblg,y) oervreemnimcninnnes. (1)
and

7)(0) =h'B ....................................... (2)

where ¢ is the natural parameter, ¢ is the scale parameter, h isa p x 1 vector
of explanatory variables, and 8 is a px 1 vector of regression coefficients in-
cluding constant term. When y follows the standard poisson distribution, ¢
=1, a (8 )= e’. Continuous distributions of exponential family are as
flexible as to account for the variation in the data by giving a variety of values
to the scale parameter. However, discrete distributions have fixed value of ¢
and are not so flexible. West ([7]) discusses this problem in detail from
the Bayesian point of view, and proposes scaled exponential family likelihood
as an approximate sampling model which keeps the scale parameter free and
uses the deviance function. The scaled exponential family likelihood has the
same mean/variance relationship that of original formulation, and reduces to
the original N-W model when ¢ =1. If we keep ¢ free and try to learn its
behavior, some approximation is necessary, because factor b ( ¢, y ) is
usually difficult to be incorporated in the analysis of discrete data. Sweeting
([6]) discusses this problem in more general conteéxt with scale parameter
having improper prior. Our formulation introduces normally random part
into the regression relation (2), for the purpose of finding the sources of such
variations and interpreting data in a more appropriate model.

Suppose we observe n samples of y, and lety = (yi....... ,¥n). We suppose
the components of y follow independently the exponential family distri-
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butions of the same type.. Then, likelihood function is given by
p(y16.9) =1 | exp [#(.y: ~a(0) |blys, 8)] woevviv ®

where @' =(8,, -+ , @) is a vector of the natural parameters. We suppose
the following linear relation instead of (2 ).

() =hy By sreeeereermermiiiii {4)

The added term u accomodates errars due to the misspecification or the fail-
ure of observing some important factors. In the case of the poisson of
parameter A; , relation ( 4 ) may reduce to

B:=loge Adi =hy B 41U +reeerrreeesnicrmminieniniiiiiieereerereennnns (5)

Let u be a vector of u term. As for the prior distributions, we have no conju-
gate analysis here except the simplest case, and we assume B and u are
independent and normally distributed, and also u have zero means. Then

joint prior distribution is as follows
p(B,ulb, B, V) =p(8|b, B) p(u| V)

« exp{ 5 (8-bYB(8=b) } -exp { ~Lu'vu} @

where b is a vector of prior means of 8, Band V are precision matrices of
B and u respectively. It is not practical to assume that precision matrix B
and V are known completely. An unknown scale factor is assumed to exist
in each matrix and it has some hyper prior distribution. Namely, we set
B = yBo, V=uvV,, where Bo, V, are specified. Unknown factors 7, v
follow chi-square distributions for some fo, do, ko, 8o, thatis, fo¥~x’d,,
kov~2x%s . Then integrating ( 6 ) with respect p (¥ ), p ( v ) gives

p(8, ul b, fo, do, Ko, o)
o<[fo+(8—b) Bo(B—b)1"F" [ko+u Vou ] -roreeeeeens )

The kernel of posterior distribution is given by making product of (3 ) and
(7), and incorporating the relation (4 ). Posterior means of parameters are
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not obtaind analytically in this formulation, so we take the posterior modes as
convenient estimates. Let ¥'=(g",u’), then the posterior score function
and information function are defined respectively by

g(Tly, ¢ = log p(T|y.8) e, 8)
and

G(!P‘Iy ¢)__ g(yr|y ¢) ....................................... (9)

In the case of relation (5 ), they are

$Hz — 7()Bo(f—D)

57| y'¢)={z—7(¥’)vou

where H is px n matrix with column h;,
z isnx 1 vecter with elements  (yi—a’ (hif+u)), i=1...n,

do+p
+(B8=b) B.(8—Db)

S -8« WS e S O PTUUURR
rotn Vo m E(v|y, ¥) (12)

G(Z|y,¢)

nw)= £ E(y|y, &) «ooeverreermrenniainnnns 1)

w(T)=

“(¢HA(!P')H'+77(W)B0—2D1 HA(7) )
\A@H $A(F)+0(¥F) Vo—2D,

where A ( ¥ ) is nxn matrix with diagonal elements 2" (hi B+u:),
and

D, =& g‘”” Bo(p—b) (p—b)' Bo’
_2
D= g(m Vo uu' Vo,

The posterior modes are obtained iteratively by usual Newton- Raphson
method. Let ¥; be the value of & of i’th iteration, and the iteration equation
is as follows

i =T+G(T: |y, )7 g( Ty, 8) oo 10
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I Numerical examples

1. A medified formulation

We show two numerical examples in this section. For convenience, we mod-
ify the formulation. Assume we have m groups of observations on the poi-
sson variable y and i’th group consists of r: observations, and we have p
explanatory variables with observations h'; = (hyy, +++++++ , hp:), where hy; =1
for all i, i=1, ..., m. Then we have m poisson parameters A;,i=l,...mand
logedA: = 8: . 8; is expressed by regression model as (5).

As for priors, we suppose in section 2 £ and u have independent normal
distributions, but between components of £ and u , there may be corre-
lations respectively. Here we simply assume that components of Band u
distribute independently each other with different scale parameters 7, v:.
Then, the prior distribution of 2 and u is

p(B8,u| 7,v,b) o~:)‘li[l 7,,*exp[—7"(ﬂk2—_b“)2] IL:I exp[—l-im—
As hyper priors of v;, 7., we assess that fo¥x ~ Xao> Kov:~ xg.2. Then
prior distribution of 8 and u is

do+1 Ku"'l

p(B, ul fo.ko,do,go)cckli[l [(ﬁk"‘bk)z +fo]— i [u: +k ]

I=1

Let si= 34 ., Posterior i given by
p(Buly.h)
P [f‘-‘ {sitni p+u _r,.eh,l,,“,,}]
< f1[(B-bz 6|5 i [ 4k 5

; +1

Let 7k(w)='fo—+d(—o'm' le=1, seemeeeer D
so(w)y=-8tl_ ., ...
v.(!l")— k°+uf 1‘ ,m,

z bemx 1 vector with elements (s; —r;e™**%),
I'(¥ ) be px p matrix with diagonal elements 7, (¥),
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and  N(¥)bemxm matrix with diagonal elements v (¥).

It follows similar relations like (11) and (12).

g(7| Y)=(Hz—1’(!l") (B—b)
z—N(¥)u

G@|y)=(HA@)H +1(F) ——2=-D, HA(¥)
do+1
A(P)H’ A(!F’)-i—N(Ll")—go_'_1 D
where A ( & ) is pxp matrix with diagonal elements  r;e" ***,

D, =I"(¥)*(8—b) (B—Db)’

D:=N(¥)*u u" .

2 Electronic equipment

Jorgenson ([4]) discusses the number of failures of a complex piece of
electronic equipment using regression analysis of the poisson distribution.
Explanatory variables are times spent in two operating regimes at the cycle of
operation. The observations are shown in Table 1. Dependent variable is the
number of failures in the i’th cycle. ’

Jorgenson’s formulation is
yi=BtiitBatas, i=1, soeereen .

Alternatively, we set

loghi=RBo+ B 1 t1:+L2t2: +us.

Posterior modes and estimates of A are also shown in Table 1, where we
take fo, ko, do, 2 as 5.
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Table 1
T T, y A 0
333 25.3 15 14.10 0.86
52.2 144 9 8.79 0.18
64.7 32.5 14 13.63 0.32
137.0 20.5 24 24.13 —0.11
125.9 97.6 27 27.35 -0.29
116.9 53.6 27 26.88 0.10
131.7 56.6 23 23.34 -0.29
85.0 87.3 18 18.05 -0.04
91.9 47.5 22 21,66 0.29

N A Al
Bo=1.135, B =0.015, B2=0.006

3 Quine’s sociological data

Aitken ([1]) analyses data of a sociological study about Australian school
children. A response variable is the number of days absent from school
during school year. Children were sampled by four factors, i.e. age, sex,
cultural background and learning ability. Aitken analyses the data in terms of
the analysis of variance, and seeks to find the minimal adequate model. He
obtains six final minimal models and shows fitted values on each model. Fit
seems to be not so good. We suppose the response variable is poisson variate,
and the logarithm of parameter has a regression part and error part. Unfortu-
nately, we cannot refer to Quine’s original data but only Aitken’s summarized
data (sample means) with sample sizes. Data are shown in table 2. Under
above modified formulation, A;s are estimated and fitted to sample means.
Explanatory variables are as follows,

C:1 = Aboriginal, 2 = white,

S:1 = Female, 2 = Male,

A:l =Primary, 2 = First form, 3 =Second form, 4 = Third form,

L:1 =slow, 2 = average (learning ability).
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We try also the case with explanatory variables including Sx A, Cx A without
u-term, for comparison. Aitken obtains the best fit in this case under his
formulation. The result is shown in table 2. Here we take fo, ko, do, 2o as
5. In table 2, ,’{\A is estimate for our formulation and A g is estimate for

model {SA, CA} without u.

1987. 3

Table 2
A

C S A L y T //1\/« ﬁ As

1 1 11 9.00 3 8.971 0.0730  14.34
1 1 1 2 1300 5 12.907 0.3998  10.96
1 1 2 1 9,00 3 9.059  —0.1493  21.02
1 1 2 2 1050 2 10521 -0.0366  16.06
1 1t 3 1 3700 4 36.747 1.0188  30.81
1 1 3 2 2729 i 27321 0.6855  23.54
1 1 4 2 2714 7 27.069 0.4441  34.50
1 2 1 1 3.00 1 3.878  -0.8330  21.35
1 2 1 2 2125 4 21,033 0.8209  16.32
1 2 2 1 2260 10 22523 0.6942  21.66
1 2 2 2 11.40 5 11405 —0.0232  16.55
1 2 3 1 3638 8 35008 0.9031  21.97
1 2 3 2 2.00 1 3245 —1.5122  16.79
1 2 4 2 1456 9 14587 -02414  17.03
2 1 1 1 3000 3 29613 1.2863 8.55
2 1 1 2 5.33 6 5420  —0.4488 6.53
2 1 2 1 6.14 7 6.225  —0.5055  12.43
2 1 2 2 3.50 2 3.995  —0.9859 9.50
2 1 3 1 2933 3 29.049 0.8027  18.07
2 1 3 2 9.14 7 9.207  —0.3831  13.81
2 1 4 2 2728 7 27.209 0.4683  20.07
2 2 1 1 2500 1 23994 1.0086  12.73
2 2 1 2 1850 4 18.308 0.7013 9.73
2 2 2 1 600 11 6.061  —0.5994  12.81
2 2 2 2 1100 6 11.008 —-0.039 9.79
2 2 3 1 6.22 9 6.316  —0.7904  12.89
2 2 3 2 1.00 1 2315  —1.8308 9.85
2 2 4 2 1350 10 13535 —0.2972 9.91

A A A
B. = 1.804, Bc=-0,0191, As =0.0672

IA)

Br=0.2321, B, =0.0369
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IV Discussion

It is not a easy task to interprete the estimated u terms appropriately, but
we may examine in a usual analysis of residuals manner. As mentioned above,
we cannot refer to the original Quine’s data, so we estimate X s and examine
the fit to sample means only. Then we do not have the problem of over-
diversification. However, if we try to fit to the original individual obser-
vations, extravariation may arise. This problem may be approached either by
the coumpound distribution which is a mixture with respect to some distri-
bution for the parameter, or by the method that West proposes, which keeps
scale parameter unristricted and uses his approximate likelihood. But, if we
can consider extravariations as consequences of the misspecification, u-term
may convey some information about the kind of misspecification, or, missing
explanatory variables. That some important explanatory variables are over-
looked may mean, in this example, observations of dependent variable which
belong to different distributions are aggregated into the same distribution;
and then give rise to the extravariations. An ad hoc method to deal with this
problem may be to group observations according to u values. But some
formal procedure for exploiting the information that u conveys is necessary.

Finally, as for the prior distribution of u-term, some smooth prior might
be used, which is related to values of the explanatry variables in the sense of
expressing the judgement that the changes of values of u are not so large
among y having similar values of explanatory variables, as in Blight and Ott

([2D.
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