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A NOTE ON THE THEOREM OF K.J.
ARROW AND D.LEVHARI CONCERNING
THE UNIQUENESS OF THE INTERNAL
RATE OF RETURN

Chikara Watanabe

1. Introduction
Consider an investment project having a finite life of # period. Let r

be an internal rate of return, then it satisfies the equation

0=—rot 32 R,

&t AT @

where A, is the current replacement cost of the asset, 4, >0,
A, is the expected net yield in period &,

R, is the expected scrap value of the asset in period #,R.= 0.

If some of the net vields are negative,then (1) may have multiple
positive solutions. To obtain the uniqueness of the internal rate of
return, P.H.Karmel introduced the idea of the truncation of the
period and proved by considering the positive maximum value of r at
each truncated period that there exists a truncation of period at which
the internal rate of return is uniquely determined [1]. K.J.Arrow
and D.Levhari extended the above problem to the case of continuous

variable life [2]. One of their results obtained are as follows.

Let x(¢) be a continuous stream of net income in period ¢ which cuts
the t—axis a finite number of times and vanishes for all sufficiently

large ¢ .Then the function ¢ (#) defined by



T _u
¢ O)=max ([, ¢"xWab)

is continuous and monotone decreasing,therefore for any positive

constant ¢,the zeros of ¢ (#) —c¢ is uniquely determined if it exists.

However, in their situation ,variable life is essentially finite since

x(2) is assumed to be zero for all sufficiently large ¢ .

In this note we investigate the case that variable life is infinite and
prove by following their idea that the same result holds under some

assumptions.

2. The case of infinite variable life
Notations:

exp(x)=¢*,

D)= [[exp(—mxdt >0,
¢ (r)=0glras>§° ¢ @1,

M) ={T,€ERU{oo}; ¢ r,T)=¢ ()}.

Assumptions:

(1) The initial value of net income is negative, that is, x(0)<0 .

(2) The set S of zeros of x(f) contains infinitely many elements and -
has no finite accumulating point, that is if {T}CS and T;— T,
then 7,=o0,

(3) ¢ (r,) is absolutely integrable, that is,

JoT exo(=mx@ | at



converges for each r>0.

(4) M(r) contains a finite number for any r>0.
Remark 1. M(v)C S for any #>0.

Remark 2. The assumption 4 means that there exists a finite

truncation of period which maximize the present value.

Lemma 1. fo t* exp(—rt)x(#)dt is absolutely integrable for any £>0
and r>0.
Proof. We fix >0 and £>0 . Since

}_ig} t* exp(—r)=0,

there exists a positive number T, such that # exp (—%t) <1 for all
t> To. Moreover, by assumption (3), we may assume that the foll

.owing inequality holds for any ¢ >0 and T>7} ;
[dexo~"Dyxw) | ar<
7l €XD 5 x <e.
Therefore,
[t exp =z lar< [ 1 exo(="0050) | dt<ce .
This shows that fot"exp(—rt)x(t)dt is absolutely integrable. Q.E.D.
Lemma 2. Let {r;} be a positive sequence which converges to ;>0

and let {T;} be a non-negative sequence which converges to To,

here Ty may be infinity oo . Then it holds that

}Lng)qs (rjl T]) = ¢ (rO:TO) .
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Proof. We show the case when Ty is infinity. It is easily seen that
Ik | texp(%)z | 1 —exp(—ht)| when |k |<%and t>0.

From this inequality,

T o T
Ijoexp( -ri)x(@)dt- foexp(—rot)x(t)dt < fol {exp(-r;t)-exp(-rot) }x(t) |dt -
+frgxp(—rot)x(t) ldt< |ri—7o l_fo Itexp(-rﬂzz)x(t) |dt+J'TJ| exp(-rot)x(t) |dt.

Therefore by assumption (3) and Lemma 1,
T =)
;11.12 ‘fo exp(—r;)x(t)dt— J; exp(—r ) x(®)dt |=0. Q.E.D.

In the same manner as Lemma 2,we can show the following remark.

Remark 3. Put

L

YO={xER; |x—y < ¢ },009={x€R; |x [>1},and MG))=U T
eMly

Then for any ¢ >0 , there exists a ¢ >0 such that for » with
|7—7,|< 6 , the inclusion relation Mr)C(M(rs))" holds.

Lemma 3. For any 7,>0, Trg%)gﬁ . (ro, T) exists , where ¢ ,(r,,T)= a—%(rr"—n

Proof. Since ¢,(,,T) is bounded with respect to T,
ré%.)"ﬁ r (ro’T) =4

is a finite number. Take a sequence {Tj}CM(r,) such that {¢,(,T)}
converges to 4 . If {T}} is a finite set, then this lemma is trivial.

If this set is infinite, then infinity oo is an accumulating point and



since the value ¢ (#,T,) does not depend on j , it holds that
coeM(r,) and

Z:fi%¢r(rOyT])=¢ (7’0100)' ' Q.E.D.

Lemma 4. For any #,>0 and for any finite element 7€M(r,) , there

exists a positive constant ¢ which depends only on 7>0 such that
#,(r,T)<—c.
This Lemma has been proved in [2]. But for the sake of self-

containment we will give a simple proof.

Let T be a finite element of M(#;) . Since the number of zeros of
x(t) not exceeding T is even,we can put them ¢;<tz....<tom- 1<
tam=T(Fig.1).

f
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Since T'€M(r,),it holds that

f:exp(—rot)x(t)dt— [ oo (—raa= [ exp(—roDx(®)d>0.



Therefore,

T tomz (2
| texo(=nt)is@at= [T exp(~r )z )at+[ texp(~nHx (Dt

T (258 ton
+ [ texo(=nxOdt> [ Texp(—r D xO)dt-+t o], oxp(—r,Hx()dt

T

T tom2
s [, ex0(—n DO dt= [ Texp(—rDxOdi+tansf,_exp(—nDa®dt

t

T

tom2
> fo texp(—rt)x(t)dt+t Zm_afw(:,xp(—ro Hxt)dt.

t

In the same manner as above,

ton—2

tom—4 tom-3
o1 exp (=7, t)x(t)dth0 texp(—#o D) x(B)dt+ty_s J;zg_)fp(—ro Hx(t)dt

t2m—2 tom—4 tom—2
- [, exp(—roDx(dt= [, T exp(—ro ) x(B)dt+ sy [, exo(—nnx(tat.
From these inequalities, we can obtain
T » toam—a T
[y texp(=r D2t [, Texn(—r D xOdi+tomms [, exp(—r st
. 2n—4
By continuing this process,we obtain

T tom—a T
fo texp(—r, t)x(t)dz.‘ZJ-0 texp(—7, t)x(t)dt+t1ﬁmg§p (—ret)x(Ddt.

T
e+t [ exp(—rt)x@dt,
where,
4
c= [ t—t)exp(—rD)x(t)dt>0,
T
that is, ¢,(r0,T) = [, ¢ exp(—rot)x()dt<—c. Q.E.D.
Remark 4. If M(7,) contains infinitely many elements, then Lemma 4

holds for T=o0 . But if {o0}&M(r,) and if M(r,) — {0} is a finite

set, then it is open that whether Lemma 4 holds or not.



Theorem 1. The function ¢ (#) is continuous and strictly monotone

decreasing on (0,0).

Proof. (i). Continuity of ¢ (*). Suppose that ¢ (#) is not continuou
s at 7,>0. Then there exists an ¢ >0 which satisfies the following

condition:

for any d >0, there is an 7 with |r—7, |< d such that | ¢ (r)-¢ () |
> €o.

Then we can choose a positive sequence {#;} converging to #, such
that |¢ (7)) — ¢ (r) |> €. Let T,EM(r) (T;<), and let T, be an
accumulating point of {7} (T, may possibly infinity). For simplicity,we
may assume that {7} converges to T;. Then ¢ ()= ¢ (r;,T,) conve
rges to ¢ (#,,7,) by Lemma 2.

Now, for any T>0, ¢ (r;,T}) ,hence

¢ (r, To) =‘lim # (o, Ti)_Z_lim ¢ (r,T)= ¢ (n,T).
j— oo j— oo
This means that T,EM(r,) and ¢ (5, 70)= ¢ (,). But this is a contr-

adiction since |¢ (7)) — ¢ (o) |> ¢ .

(ii ).We will show that the following inequality (2) holds for any #
>0:

¢ (o) — ¢ (ro) <

’ 0 (2)

& () =lim
In fact, let Ty€eM@,),T,<oo. Then

¢ (re—h) > ¢ (ro+h,Ty) = ¢ (r0,T0) + ¢ (o, To)h+o0(h)
=¢ o)+ ¢,(r, To)h+o(h),
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here o(h) is a Landau’s symbol. Therefore if 2<0 ,

¢ (ro+h)— ¢ (ro) < b T+ o(h)

h h
The above inequality implies that
+h)—
lim sup ('IJ(L%—(#—(%) <L ¢,(r0,T0) (3)

Next, for T'(h) EM(r,+h), it holds that

& (ro+h)= ¢ (ro+h, TR) = ¢ (ro, T(h)) + ¢ ,(ro, T(h) Y t+0(h)
- L ¢ )+ ¢,(r0, T(h))hto0(h)

Therefore if <0,

¢ (ro+h) ~— ¢ () > 6,00 T) + o(h) ‘

h h
Put
T ¢ (ro+h)— ¢ (ro)
a =lim inf
-0 h

then there exists a negative sequence {%;} which converges to 0

such that
li ¢ (roth ) — ¢ (1) _
im =a

Froo hj

Let T* be an accumulating point of {T'(%;)}. For simplicity, we
may assume that T'(k;)—T*. Then T*€M(,) and ¢ (r,, T*)<La, so
that :

¢ (rot+h)— ¢ (ry)
h

) o s
¢ (o, T*) <lim inf

+h)—
Slihnlgup ¢ (o I)z ¢ (o) <L ¢,(r,To).

Now we will show that inequality (3) holds for To=o0,

_8_



For t > and h with —-%<h<0, put
_ h2 tz rot _ _
)= —-z—exp( —2—}——ht exp(—ht)+1.
Then f(0)=0 and

f@® =h2(7%+ t Jexp (r"—t) —h+hexp(—ht),

O =rmt+L >exp(’° Toly 4y (exp(“) —exp(—ht)) >0

Consequently, it holds that

h2t?

5 exp( )>exp( —ht)+ht—1.

By the same way,

het?
“—5—exp(

A —’;—t) Lexp(—h)+ht—1.

Therefore we can get
Wwe 7ol
| exp(— (rot-h) 1) +ht exp(—rot) —exp(—rd) | <=5~ exp(——5—
Then

| J:o {exp(— (ro+h)t) +ht exp(—7ot) —exp(—rot) }x(t)dt |

_<_—hz—f0t2exp(— r%—t) |vx(t) | d(=Kh2,

here , K is a positive constant. Hence

)

¢ (reth) > ¢ (g th, o) > ¢ (r0,0) +h o, (ry,0) —Ki*= ¢ (ro) +h g, (1o, °°) ~KR.

= ¢ (ro) +h ¢ ,(ro,0) —KIZ.

Thus,if £#<0, we can obtain



¢ (ro+h)— ¢ (r,)
h

lirhrlgup < 6, (r,00),

that is, (3) holds for T,=c0,

Now, if we take T, such as
¢ V(rOy TO) :7"%&%%)¢ 7(70) 7‘) ’

then

#:0,To) < 6,0, T%) < lim inf LL0tRI=¢ (1)

< lim sup ﬂro—i_h’)z_“ ¢ () < &,(r,To)

Therefore (2) holds by Lemma 4 for any 7,>0.

(ii). In the next place we will show that ¢(7) is strictly monotone
decreasing. Let 0<r,<r, and suppose that ¢ (r,)< ¢ (r,). Since

¢ (r) is continuous,

¢ (r)=max ¢ ()

n<rr;
exists. If r, <7 <7, , then for r with , <7 <, it holds that

o) — ¢ (r) >0
¥—"r

But from (2), this is a contradiction so that 7,=7, and ¢ (r,)=¢ ().
Next, put ‘

o) =31ngiflg K4 ®.

If ¢ (#)<¢ (r) then, by restricting ¢ () on [r",7], we get the
same contradiction, therefore ¢ (#) must be constant on [r,,7,]. But

this is impossible by (2). Therefore¢ (r,)>¢ (r,), that is, strictly



monotone decreasing. Q.E.D.

Now we add one more assumption:
(5) [, x(®adt=o0.

If the internal rate of return is 0, then the sum of total net income
during the infinite period will be infinity. Therefore (5) seems to

be a natural assumption.

Now, by summing up the contents obtained so far, we can get the

following main theorem under assumptions (1)—(5).

Theorem 2. For any positive constant ¢ ,there exists a unique
internal rate of return # which satisfies the equality ¢ () =c.
Proof. It is enough to show that

lim ¢ (r)=0, lim ¢ (r) =00,

r—00 r—0

(i). Take an increasing sequence {r;} such that 7;>co. Let T,€M(r;),
T;<oo, Fix a bositive number k and let r/=r,—h. Evidently we may
assume that 7;>0. Put f({)=exp(—ht)x(t) and rewrite 7; by 7;.
Then

51

[lexo(—r @ d<exo(-r;t0) [ fOat

ts t2
[ exo(=r ;) fDdt<exp(—r;t,) [, f(B)at.
Therefore, it holds that

J:Zexp(—r D@ di<exp(—r;t;) J;tzf(t)dt.



By proceeding this process, we can obtain
top top
f, exp(—r ;1) f#)dt<exp(—7; tzk—l)J-'” f®at,  (QLk<m),

here, 4%=0 and #,=T;.

From these inequalities,

8 ()=, exp(~r0 O Bexp(—rita [ 1O T exp(—rtd [ |10 la
k=1 k=1

T 4
=exn(rt) [ 1 f0) | dt<exp(rst) [ 1 £0) |ab.
Therefore ¢ (r )—0(r/~>). Since ¢ (») is monotone decreasing,
this shows that }_ig_}gb (r)=o0.
(ii). For any 70 ,it holds that
) T T
lim¢ () >lim [, exp(—m)x(dt= [ x(t)at.

Then by assumption (5) ,l'i_'lglgb (r)=c0. Q.E.D.
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