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Introduction
The analysis of the failure of mechanical, structural and geotechnical systems is one of the main
challenging tasks in the engineering computations. The challenge arises especially in the modeling of
the localized failures in these systems. The failure is often characterized by the concentration of strains
in narrow bands, usually referred to as the shear band. And the propagation of these bands can lead to
the failure of the soil and structural foundation. In saturated porous media, the localized failure is
strongly influenced by the coupling between the solid skeleton deformation and the pore fluid flow.
The material point method (MPM) is one of the latest developments in particle—in—cell (PIC)
methods. MPM takes the combination of Lagrangian and Eulerian methods and has the advantages
such as no need to search for contact surfaces, no distorted grid in the simulation of large strain
problems. In this work, MPM is extended into the analysis of dynamic problems in saturated porous
media in the framework of Biot’s theory, especially the strain localization phenomenon under dynamic
loading conditions.

Governing equations and their discretization

For the simulation of failure phenomena of geomaterials like saturated porous media, the u-U form
governing equations are adopted:

Solid momentum equilibrium equations
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Fluid momentum equilibrium equations
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Mass conservation equation
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where o is the effective stress, p is the pore fluid pressure, u, and U, are the displacements of

solid skeleton and pore fluid respectively, « is Biot constant, # is porosity, K is the permeability, K

and K; are the bulk moduli of solid skeleton and pore fluid, Q=[n/K,+(a-n)/ K. y, is the bulk

density of the fluid, p’. =np, and p’ =(1-nr)p., in which and are the density of the solid
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phase and the fluid phase. g, and f£ are the body and external forces, respectively.

Because saturated porous medium is composed of solid skeleton and pore fluid, two sets of
material points are invoked to characterize solid skeleton and pore fluid respectively (see Figure 1(a)).
In each subdomain Q,, there is a pair of material points, which denote solid and fluid phase
respectively. Each pair of material points is defined by the position vectors X, X7, which are the
function of time 7 and X (s°)= X7 (*) at initial time #°, the fixed mass A3, M/, where M =p7,,
ML =p\V, V, is the volume of subdomain P. With time passing, subdomain QY deforms into

subdomain Q,, and the pair of material points locates in the different position, x;(tk) and Xﬁ(t"),
as shown in Figure 1(b). In Figure 1, the background element is the typical computational grid. The
scripts s and /' mean that the variables are relative to solid skeleton and pore fluid.
Based on the virtual work principle and considering the particular form of density, it has
N, Np
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where Np is the number of subdomains or the number of material point pairs. It is easy to obtain the
discrete form of governing equations (1) as following

Miiiy = (FpYoe +(Fo + F)imy T =10N, (3a)
M{U, = (F) + )l 4 (e 1 =1V, (3b)

nt ext

are the mass matrices, F
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where M7, M/

] F.. F,, represent the vectors of internal force,
external force and artificial damping force respectively. Scripts P and / mean that the variables are
defined on the material points and the computational grid nodes respectively. Owing to the limitation

of the paper length, the derivative process is ignored.
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Figure 1. Sketch of the typical computational grid and material element (a) original configuration (b) configuration at time #* (solid dot
denotes material points of solid skeleton, hollow one denotes pore fluid)

An explicit algorithm as mentioned in [1] for MPM is applied. A Druck-Prager model and a
strong decohesion model [2] of the solid skeleton are introduced to simulate the elastoplastic
behaviour and predict the evolution of localization. The two models above are coupled through the
bifurcation analysis. To get the pore pressure, a linear relation is established as indicated in Equation

(1¢).

Numerical Example

The numerical example concerns a homogeneous rectangle panel of saturated porous media in plane
strain problem. The panel is subjected to uniaxial compression between two rigid plates applied by
displacement control as shown in Figure 2(a). Owing to the symmetric condition, as the gravity is
neglected, the computation is only carried out a quarter of the panel. The load-displacement curve in
Figure 2(b) shows the load history applied on the top of specimen and the softening behavior versus
the vertical displacement.
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Figure 2. (a) Compression problem of a rectangle panel in the plane strain (b) Load-displacement curves obtained from different meshes
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