
Simulation of Triple Line Dynamics by
Interface-Fluid Coupling

言語: eng

出版者:

公開日: 2017-10-05

キーワード (Ja):

キーワード (En):

作成者:

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/2297/40538URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Simulation of Triple Line Dynamics

by Interface-Fluid Coupling

NUR SHOFIANAH

September 30, 2014

ii

This dissertation is dedicated to my beloved parents,
Ibu Masyhudah and Bapak M. Muchibbin,

for their amazing love, pure sincerity,
endless support and encouragement,

and for everything that I can not describe it in words.

iii

iv

Acknowledgements

In the name of Allah, the Most Merciful, the Most Compassionate. All
praise be to Allah, the Lord of the worlds. I would not be able to finish my
study without His amazing help. Prayers and peace be upon Mohammad,
His servant and messenger.

In this opprtunity, I would like to thank my supervisor, professor Karel
Svadlenka for endless support and valuable advice in both academic matter
and practical life during my study. I can learn many things in my new
research field, and also I can learn from him, how to be a good supervisor
for my students in the future.

I would like to thank the Committe, professor Karel Svadlenka, profes-
sor Seiro Omata, professor Masato Kimura, professor Hiroshi Ohtsuka, and
professor Katsuyoshi Ohara, for valuable suggestions in my dissertation.

I would like to thank the Directorate General of Higher Education (DIKTI),
Ministry of National Education, Indonesia for the generous scholarship that
made my study in Kanazawa University possible. And also for University of
Brawijaya, especially Department of Mathematics, Faculty of Mathematics
and Natural Sciences, for the approval and support for my study.

I would like to thank all of my Teachers for their great effort and sincerity
since I was child and did not know everything until I can be myself now.
May Allah give more reward for all of you.

My thanks also to my labmate, Rhudaina Z. Mohammad who help me
checking the grammar and many things. She is the creator of the BMO
program and numerical example of interface in Section 4.1. Also thanks to
all my friends that I can not mention one by one, for all the supports.

Finally, I would like to thank my beloved parents and my beloved family.
Your endless support and doa gave big influence for me. May Allah give us
rahmah until together in Jannah.

v

vi

Abstract

The dissertation develops a coupled interface-network and fluid model which
can serve as a first step to simulate triple line dynamics. The main ingre-
dients of this coupled model are the interface model with nonsymmetric
junctions and the fluid model in moving domain. We build an interface
model based on the gradient flow of surface energy and develop a method
for its numerical solution by generalizing the reference vectors and diffusion
system in vector-valued BMO algorithm. Moreover, we improve the scheme
by using vector-valued projection triangle and use a vector type DMF to
handle volume constraint via penalization. For the fluid part, we implement
a numerical method adopting DSD/SST-SUPS, a stabilized space-time finite
element method in moving domain. We also apply the appropriate bound-
ary condition which is related to a moving triple line. We couple these two
models weakly via pressure acting from the fluids on the interfaces and by
the fact that the interfaces determine the domain for fluid motion. In the
end, we present results of numerical experiments.

vii

viii

Contents

1 Introduction 1

2 Basic Model 5

2.1 Problem Setting . 5

2.2 Fluid Model: Navier-Stokes Equation 6

2.3 Interface Model: Equations of Triple Junction 7

2.4 Coupling Strategy . 10

3 Numerical Method 13

3.1 Numerical Solution of Interface Model: 13

3.1.1 Vector-valued BMO 14

3.1.2 Junction Stability . 15

3.1.3 Interface Velocity . 17

3.1.4 Correction by Projection Triangle 23

3.1.5 Generalized Vector-valued BMO Algorithm 27

3.1.6 Generalized Vector-valued BMO Algorithm with Vol-
ume Constraint . 28

3.1.7 Appendix: Computation of General Reference Vectors 29

3.1.8 Appendix: Formal Analysis of Nonsymmetric Triple
Junction . 31

3.2 Numerical Solution of Fluid Model: 34

3.2.1 Space-Time Finite Element Method 34

3.2.2 DSD/SST-SUPS Formulation 35

3.2.3 Solution of Discrete Problem 38

3.2.4 Linear Finite Element in Global and Local Description 39

3.2.5 Shape Functions of Space-Time Element 41

3.2.6 Computation of Component System Matrix and Right-
hand Side of The Linearized System 46

3.2.7 Appendix: The Core of Stabilization 71

ix

x CONTENTS

3.2.8 Appendix: Stabilization in DSD/SST-SUPS formulation 74
3.2.9 Appendix: GMRES 76
3.2.10 Appendix: Gaussian Quadrature 80
3.2.11 Remark on Optimization and Acceleration of The Al-

gorithm . 81
3.3 Sequential Coupling . 81

3.3.1 The Algorithm . 82
3.3.2 Boundary Condition 83
3.3.3 Elasticity Equation . 86

4 Numerical Examples 89
4.1 Interface Model . 89

4.1.1 Junction Stability Test 89
4.1.2 Triple Junction Motion 91
4.1.3 Volume-preserving 150◦−90◦−120◦ Double Bubble . . 94
4.1.4 Moving Bubble . 96

4.2 Fluid Model . 97
4.2.1 Cavity Flow . 97
4.2.2 One-way Coupling . 97

5 Conclusion 105

List of Figures

1.1 Experimental results taken from [48]: Air bubble formation
in case blowing of air from a small hole in the bottom of
a container filled with water with (a) stainless steel surface
(wetting) (b) waxed surface (less wetting) 2

2.1 Physical setting . 5

2.2 Triple Junction . 8

2.3 Relating surface tensions to junction angles. 10

2.4 Physical setting . 11

2.5 Vicinity of triple line . 12

3.1 Configuration of a stable junction. 16

3.2 Configuration of the interface. 19

3.3 Projection triangle T in vector-valued setting. 25

3.4 Projection triangle for (a) 150◦ − 90◦ − 120◦ and (b) 135◦ −
90◦ − 135◦ triple junctions. 26

3.5 Space-time slabs Qn−1 and Qn. 35

3.6 Numerical algorithm for coupled model 83

3.7 normal vectors ni, nj and consisten normal na2 at boundary
node a2 . 85

3.8 Example of fluid mesh around the bubble 87

4.1 (a) Initial condition. (b) The stationary interface network
around junction J1 after time 100∆t using dot product (red)
and projection triangle (black) for phase detection. 91

4.2 Evolution of the triple junction for case 1. 92

4.3 Relative error of the junction angles at each time step. 92

4.4 Evolution of the triple junction for case 2. 93

xi

xii LIST OF FIGURES

4.5 Transport velocities of the numerical interface solution at
y = 0.45, 0.47, 0.49 (colored) vs the constantly transported
solution (black). 93

4.6 The shape of the numerical interface at time t = 30∆t (black)
vs the constantly transported solution (red). 94

4.7 (a) Initial Condition. (b) The stationary numerical solution
in case 1. 95

4.8 Relative error of the top junction angles at each time step. . . 95
4.9 Bubble motion with (a) θ = 60◦, ∆t = 0.005 (b) θ = 120.1◦, ∆t =

0.001 . 96
4.10 Velocity field of cavity flow for fluid 1 98
4.11 Velocity field of cavity flow for fluid 2 99
4.12 Velocity field of cavity flow for fluid 3 100
4.13 Hydrophilic setting . 101
4.14 One-way coupling in hydrophilic case at t = 0 and t = 10 ∆t . 102
4.15 Hydrophobic setting . 103
4.16 One-way coupling in hydrophobic case at t = 0 and t = 10 ∆t 104

List of Tables

3.1 Coefficients of Diffusion System in some Cases 22
3.2 Numerical parameters for case 1 and case 2 26
3.3 Two-points quadrature rule 81

4.1 Numerical parameters for case 1 and case 2 90
4.2 Relative Error in Junction Angle Measures 90
4.3 Phase Volumes under penalty parameter ε = 10−6. 96
4.4 Parameter of fluid test problems 97

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

In this dissertation, we are interested in studying the dynamics of triple line.
The term triple line refers to the intersection point between the interface of
two immiscible fluids and a solid. At equilibrium state, based on the Young’s
law, the wetting properties of a fluid in contact with a solid are defined by
the static contact angle with nonmoving triple line. Triple line dynamics
arises when the triple line is moving due to the influence of some factors
such as interface (surface) energy, fluid motion and inertial effects. In order
to get the correct description of triple line dynamics, one needs to consider
these factors in the system. In two dimension problem, triple line is also
well-known with triple point, contact line, contact point, triple junction or
junction. In the sequel, we will use the term triple line and triple junction
term interchangeably.

Triple line has a number of impacts on material behaviors which is of
great interest in material science [1]. Besides that, understanding the triple
line dynamics is very useful to realize some kinds of important motions such
as the motion of small droplets or bubbles which has important application in
nanotechnology, the two-phase flow in microfluidic devices, inkjet printing,
etc. An example of such a phenomenon is blowing of air from a small hole in
the bottom of a container filled with water. Depending on the surface tension
of the container’s material, the air bubble evolution and its departure size
vary significantly due to the different contact angle dynamics as can be seen
on the experimental results taken from [48] in Figure 1.1. Moreover, there is
a need to accurately model and simulate triple line dynamics in multiphase
flow, an important phenomena in a wide range of industrial applications
[2, 48].

Numerical simulation of flows with moving triple line have been devel-

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Experimental results taken from [48]: Air bubble formation in
case blowing of air from a small hole in the bottom of a container filled
with water with (a) stainless steel surface (wetting) (b) waxed surface (less
wetting)

oped such as using the front tracking method [3], level set method [41, 48, 2,
4], volume-of-fluid method [5], phase field method [6, 23], immersed bound-
ary method [7]. To model triple line motion, Bronsard et al. [23] uses the
reaction-diffusion equation. This so-called phase-field method represents the
phase boundary as an interfacial layer. In [23], the authors showed that the
interfaces in the solution of reaction-diffusion equation move with a velocity
proportional to the curvature of the interface and in its sharp interface limit
(ε→ 0), where ε > 0 is a small parameter representing the thickness of in-
terface, one obtains the Young’s law at the junction. However, this method
has difficulties in the numerical solution when ε < ∆x, where ∆x is the spac-
ing grid. The only remedy to overcome these difficulties is to take ∆x

ε � 1,
which is numerically impractical [17]. Merriman, Bence and Osher [17] in-
troduced BMO method, an implicit scheme for realizing interfacial motion
by mean curvature for symmetric junctions, which alternately diffuses and
sharpens characteristic function for each phase region. Zhao et al. [41] de-
veloped a numerical algorithm capturing the interfaces based on the level
set method of Osher et al. [42]. This method is able to deal with topologi-
cal singularities and nonsmooth data. Moreover, it can be extended to the
multiphase setting by introducing as many level set functions as there are
phases and imposing additional constraint on the constrained flow problem
so that the level sets do not overlap or create vacuums. However, such a con-
straint has an unwanted influence on the motion and the volume of phases
is not sufficiently controlled by the method. Ruuth [12] and Esedoglu et al.
[49] generalized the BMO method to nonsymmetric triple junctions by re-

3

placing the thresholding step using projection triangle and using an update
procedure which is analogue to the standard tresholding step of the BMO
algorithm, respectively. However, these methods are in the scalar setting
while we need a vector setting for implementing the volume constraint in
the multiphase case. For this reason, Svadlenka et al. [11] reformulated
the BMO algorithm [17] in vector setting. However, it is restricted to the
symmetric triple line. Here, we propose numerical scheme which considers
nonsymmetric triple line using BMO algorithm in vector-valued formula-
tion and develop a coupled interface-network and fluid model weakly which
requires incorporating the volume preservation for stable coupling.

The main purpose and contribution of the dissertation is to develop a
coupled interface-network and fluid model which can serve as a first step to
more complicated and precise models, such as those including inertia (hyper-
bolic mean curvature flow), hysteresis or transport [8]. In this dissertation,
we focus mainly on triple junction motion with arbitrary surface tensions
and discuss about DSD/SST-SUPS, formulation of fluid model in moving
domain, in view of its application in the coupled problem.

We build an interface model based on gradient flow of surface energy
and develop numerical model for interface motion with arbitrary surface
tensions leading to interface-network with nonsymmetric triple junctions.
We achieve the simulation of such a triple junction by generalizing the two
main ingredients of the method in [11]: the reference vectors and the dif-
fusion step. Moreover, we improve the scheme by including a modification
of the projection step in [12]. The developed method is applicable to con-
strained motions. Another model that we build is the fluid model based
on incompressible Navier-Stokes equations in moving domain. We use the
Deforming-Spatial-Domain/Stabilized Space-Time with SUPG/PSPG Sta-
bilization (DSD / SST-SUPS) which is developed for moving boundaries and
interfaces [13, 14].

We couple weakly the interface model and fluid model via pressure acting
from the fluids on the interfaces and by the fact that the interfaces deter-
mine the domain for fluid motion. Such kind of coupling strategy has lower
computational cost but encounters instability related to global conditions as
volume constraint and to violation of boundary condition on the interfaces
[15]. We handle the first issue by incorporating the volume constraint in
the interface model via penalization. In the fluid model, the second issue
is handled by applying appropriate boundary conditions which is related
to a moving triple line (in case two immiscible fluids in contact with solid
surface).

To summarize our work, we propose a new numerical scheme to simulate

4 CHAPTER 1. INTRODUCTION

triple line dynamics:

1. We develop an interface model for arbitrary surface tensions / nonsym-
metric junctions, a new contribution in numerical analysis of interface
motion. In particular, we construct a numerical scheme for interface
model that

• stably imposes contact angles at junctions;

• gives correct velocity of interfaces;

• preserves volume.

2. We construct a fluid model in a moving domain, that is, a domain that
changes as time progresses.

3. We propose a coupled interface-network and fluid model which can
be extended to include other aspects such as inertia, hysteresis and
transport.

In this dissertation, we simplify the situation by considering only the 2D
problem.

The dissertation is organized as follows: In Chapter 2, we discuss the
basics of interface and fluid models and their coupling strategy. Chapter 3
presents the numerical method for each of the interface and fluid models.
Sequential coupling is also be addressed in this chapter. Finally, in Chapter
4, we present several numerical examples.

Chapter 2

Basic Model

In this chapter, we start the discussion by showing the physical setting of
the problem. Then we derive equation of triple junction and present the
incompressible Navier-Stokes equations as a model for fluid flow. In the
2D case, triple line is actually a triple point, called also a contact point or
triple junction. Thus, our model problem is to simulate the motion of three
immiscible fluids whose interfaces meet at one triple junction.

2.1 Problem Setting

To clearly illustrate the problem, we take a bubble rising from the bottom
of the container filled with fluid as an example. The physical setting of the
two phase problem is depicted in the Figure 2.1, where Ωb and Ωf denotes
gas and fluid, respectively.

Figure 2.1: Physical setting

5

6 CHAPTER 2. BASIC MODEL

2.2 Fluid Model: Navier-Stokes Equation

Let Ωt ∈ R2 be the fluid domain with boundary Γt at time t ∈ [0, T]. The
Navier-Stokes equation for incompressible flow in moving domain can be
written as

ρ

(
∂u

∂t
+ u · ∇u− f

)
−∇ · σ̂ = 0, in

⋃
t∈(0,T)

Ωt × {t}, (2.1)

∇ · u = 0, in
⋃

t∈(0,T)

Ωt × {t}, (2.2)

where ρ,u and f are the density, velocity and the external force, respectively.
We consider only gravity g as an external force. The stress tensor σ̂ can be
represented as

σ̂(p,u) = −pI + 2µε(u),

where p is pressure, I is the identity tensor, µ is viscosity, ε(u) is the strain-
rate tensor,

ε(u) =
1

2
((∇u) + (∇u)T).

The initial condition consists of a specified divergence-free velocity field

u(x, 0) = u0,

and hydrostatic pressure

p(x, 0) = P0 + ρgh,

where P0 is atmospheric pressure, g is gravitational acceleration, and h is
the depth.

The following boundary conditions are prescribed in general,

u = g on (Γt)g,

n · σ = h on (Γt)h, (2.3)

where (Γt)g and (Γt)h are complementary subsets of the boundary Γt, n
is the unit normal vector, g and h are given functions. Specific boundary
conditions arise based on the fact that the boundary of the fluid domain Ωf

is moving, i.e., interface γb. We consider interface γb as a thin membrane
that has mass and its motion is described by the Newton’s second law,

ma = F

m
dv

dt
= σ̂ · n + σκn− ffr,

2.3. INTERFACE MODEL: EQUATIONS OF TRIPLE JUNCTION 7

where the third term of the right-hand side, ffr is the friction force. The first
and second terms are the influence from the fluid and interface, respectively.
Writing out the components of stress tensor σ̂ and the proportionality of
the friction force to the velocity,

m
dv

dt
= −pI · n + 2µε(u) · n + σκn− Cv

where C is a constant. In this case, we assume that C � m and that both
the membrane and the fluid are composed of the same material, we obtain

Cv = −pI · n + σκn, (2.4)

which implies that by the absence of the pressure term, the motion of the
interface γb according to mean curvature flow.

At this stage, we have the boundary condition on the interface. We need
another boundary condition on the moving triple line as free boundary in
this problem. Based on what we got in (2.4), the interface evolves according
to mean curvature flow. Such kind of motion is derived as the gradient flow
of surface energy. Thus, we consider a system that describes the evolution
of triple junction under gradient flow of surface energy as explained in the
next section.

2.3 Interface Model: Equations of Triple Junction

We write the total surface energy of a curve network and compute its first
variation to get the normal velocity for each interface and the condition
that has to be satisfied at triple junction. In particular, we consider three
evolving curves γi(s) = (γi1(s), γi2(s)), s ∈ [pi, qi], i = 1, 2, 3, which lie inside
a fixed smooth region Ω of R2, meet the outer boundary ∂Ω at a right angle
and get together at a triple junction xTL = γi(qi). Each curve has different
surface tension σi.
Then the surface energy of all curves is given by

L(γ) =
3∑
i=1

∫
γi

σi dl =
3∑
i=1

∫ qi

pi

σi |γ′i(s)|ds =

3∑
i=1

∫ qi

pi

σi

√
(γ′i1)2 + (γ′i2)2ds

8 CHAPTER 2. BASIC MODEL

Figure 2.2: Triple Junction

The gradient flow of surface energy can be found from its variation. For a
smooth vector field ϕ = (ϕ1, ϕ2) vanishing near the boundary ∂Ω,

d

dε
L(γ + εϕ(γ))

=
d

dε

3∑
i=1

∫ qi

pi

σi |γ′i + ε
d

ds
(ϕ(γ))| ds

=
d

dε

3∑
i=1

∫ qi

pi

σi

√(
γ′i1 + ε

d

ds
(ϕ1(γ))

)2

+

(
γ′i2 + ε

d

ds
(ϕ2(γ))

)2

ds

=
d

dε

3∑
i=1

∫ qi

pi

σi

√
(γ′i1 + ε(ϕ1(γ))′)2 + (γ′i2 + ε(ϕ2(γ))′)2 ds

=

3∑
i=1

∫ qi

pi

σiA
− 1

2

(
γ′i1(ϕ1(γ))′ + ε

(
(ϕ1(γ))′

)2
+ γ′i2(ϕ2(γ))′ + ε

(
(ϕ2(γ))′

)2)

2.3. INTERFACE MODEL: EQUATIONS OF TRIPLE JUNCTION 9

where A = (γ′i1 + ε(ϕ1(γ))′)2 + (γ′i2 + ε(ϕ2(γ))′)2

d

dε
L(γ + εϕ(γ))|ε=0 =

3∑
i=1

∫ qi

pi

σi
(γ′i1(ϕ1(γ))′ + γ′i2(ϕ2(γ))′)√

(γ′i1)2 + (γ′i2)2
ds

=
3∑
i=1

∫ qi

pi

σi
γ′i · (ϕ(γ))′

|γ′i|
ds

=
3∑
i=1

∫ qi

pi

σiti · (ϕ(γ))′ ds

=

3∑
i=1

(
σiti ·ϕ(γ(s))|qis=pi −

∫ qi

pi

σiϕ(γ) · t′i ds

)

=

3∑
i=1

(
σiti ·ϕ(xTL)−

∫
γi

σiϕ(γ) · t′i
1

|γi|
dl

)

=
3∑
i=1

(
σiti ·ϕ(xTL)−

∫
γi

σiκini ·ϕ(γ) dl

)
where the tangential vector ti, curvature κi and outer normal ni of curve γi
are given by

ti =
γ′i
|γ′i|

, κi = −γ
′
i1γ
′′
i2 − γ′i2γ′′i1
|γ′i|3

, ni =
1

|γ′i|
(γ′i2,−γ′i1).

From this result, the motion by gradient flow satisfies

1. the normal velocity of interface

vi = σiκi. (2.5)

2. condition at triple junction

3∑
i=1

σiti = 0. (2.6)

The junction condition (2.6) is the balance of forces which is well-known
to be equivalent to the Young’s law

sin θ1

σ1
=

sin θ2

σ2
=

sin θ3

σ3
,

10 CHAPTER 2. BASIC MODEL

Figure 2.3: Relating surface tensions to junction angles.

where θ1, θ2, θ3 are the angles at the junction as be described in Figure 2.2.
Note the connection of the above formula to the triangle in Figure 2.3. Using
the law of cosines, we obtain the junction angles as in [26]:

cos(π − θ1) =
σ2

3 + σ2
2 − σ2

1

2σ2σ3
,

cos(π − θ2) =
σ2

1 + σ2
3 − σ2

2

2σ1σ3
, (2.7)

and θ1 + θ2 + θ3 = 2π.
Note that we can compute the stable angles for any given triple of surface
tensions, as long as the triple satisfies the triangle inequality.

2.4 Coupling Strategy

In this section, we summarize the coupling strategies in our case. We treat
the problem as depicted in the Figure 2.1 by considering three-phase case as
in Figure 2.4. We add solid as an additional phase which does not change the
original setting since the solid interface is straight and thus it will not move.
We do so from the beginning in order to be able to suitably treat triple line
motion based on the interface model in Section 2.3. Here, Pi, i = 1, 2, 3
denotes the i-th phase. In particular, P1, P2, P3 represents gas, fluid and
solid, respectively.

2.4. COUPLING STRATEGY 11

Figure 2.4: Physical setting

The interface and fluid models are coupled at interface γ3 through pres-
sure p acting from the fluid on the interfaces and by the fact that the inter-
faces determine the domain for fluid motion. Based on the conditions that
we got from the previous sections, the coupling problem can be formulated
as follows,

v3 = σ3 κ3 + p, at γ3(t),

3∑
i=1

σiti = 0, at (xTL)(t),

ρ

(
∂u

∂t
+ u · ∇u− f

)
−∇ · (−pI + 2µε(u)) = 0, in

⋃
t∈(0,T)

P2(t)× {t},

∇ · u = 0, in
⋃

t∈(0,T)

P2(t)× {t}.

Here, xTL are the triple points and P2(t) ⊂ R2 is the fluid domain with
boundary given by Γt = γ1(t) ∪ γ3(t) ∪ ∂Ωt, where ∂Ωt is the part of the
external boundary which has contact with the fluid.

In this problem, we have to apply appropriate boundary conditions which
can handle moving triple line. At gas-fluid interface, we apply free-slip
boundary condition, while at solid-fluid interface we apply no-slip bound-
ary condition. The discrepancy of these conditions at triple line causes a
nonphysical divergence of the hydrodynamic pressure and of the viscous dis-
sipation at triple line [43, 44]. To avoid this discrepancy, we use some kind

12 CHAPTER 2. BASIC MODEL

of slip-boundary condition. We smoothly connect these two conditions at
triple line by using smoothing length as in the formula below.

Figure 2.5: Vicinity of triple line

• If x = xTL
u · tb = 0, u · nb = v,
u · t = v sin θ, u · n = v cos θ,

• If x ∈ A
tb · σ · nb = 0, u · nb = v,

• If x ∈ B
γ tb · σ · nb = β(u · tb), u · nb = v,

• If x ∈ C
u · t = α v sin θ, u · n = α v cos θ,

• If x ∈ D
u · t = 0, u · n = 0,

where β = |xAB − x|, γ = |xTL − x|, α = |x−xCD|
|xTL−xCD| are the smoothing

lengths, u is the velocity of the fluid, v is the normal velocity of the interface,
tb, t, nb, n are tangential and normal vectors of γ3 and γ1, respectively.

Note that in the coupling problem, volume preservation is essential for
stable computation. In the numerical method, we incorporate the volume
constraint in the interface model.

Chapter 3

Numerical Method

3.1 Numerical Solution of Interface Model:

BMO Algorithm with Arbitrary Surface

Tensions

The problem of simulating the motion of interfaces with triple junction ac-
cording to some curvature-dependent speed arises in many applications, e.g.,
grain growth [9], image processing [10], multiphase flow [11]. Equal surface
tensions lead to symmetric triple junction, which is well-known as the sym-
metric Herring condition (interfaces meeting at 120◦). On the other hand,
arbitrary surface tensions lead to nonsymmetric triple junctions.

To treat such motions, several methods have been developed. As has
been mentioned in the introduction, Bronsard et al. [23] uses the reaction-
diffusion equation

ut = ε∆u− 1

ε
∇uW (u), (3.1)

to model triple junctions. Here, ε > 0 is a small parameter and W is
a well potential, a non-negative function which has three minima for the
three-phase case. This so-called phase-field method represents the phase
boundary as an interfacial layer. In [23], the authors showed that the in-
terfaces in the solution of (3.1) move with a velocity proportional to the
curvature of the interface and in its sharp interface limit (ε → 0), one ob-
tains the Young’s law at the junction. However, this method has difficulties
in the numerical solution when ε < ∆x, where ∆x is the spacing grid. The
only remedy to these difficulties is to take ∆x

ε � 1, which is impractical
numerically [17]. Moreover, it is also necessary to appropriately determine
parameters of the well-potential function which amounts to a complicated

13

14 CHAPTER 3. NUMERICAL METHOD

minimization problem. Garcke et al. [24] performed numerical simulations
for a multiphase field model and showed that for suitably chosen parameters
(determined based on numerical experiments), numerical results agree with
the formal asymptotic expansion of [25] and yield the correct motion.

On the other hand, Zhao et al. [41] developed a numerical algorithm
capturing the interfaces based on the level set method of Osher et al. [42].
This method is able to deal with topological singularities and nonsmooth
data. Moreover, it can be extended to the multiphase setting by introducing
as many level set functions as there are phases and imposing additional
constraint on the constrained flow problem so that the level sets do not
overlap or create vacuums. However, such a constraint has an unwanted
influence on the motion and the volume of phases is not sufficiently controlled
by the method.

Merriman, Bence and Osher [17] introduced the BMO method, an im-
plicit scheme for realizing interfacial motion by mean curvature for symmet-
ric junctions, which alternately diffuses and sharpens characteristic function
for each phase region. For two-phase case, it has been shown that the
method converges to motion by mean curvature [18, 19, 20]. Ruuth [12]
generalized the BMO method to nonsymmetric triple junctions by replacing
the thresholding step with a new decision, i.e., by using a projection triangle.
This generalized method also allows for normal velocity equal to a positive
multiple of the curvature of the interface plus the difference in bulk energies
for prescribed junction angles. Svadlenka et al. [11] reformulated the BMO
algorithm in vector-valued formulation for multiphase motion. This vector-
valued formulation is essential for implementing constraints and for dealing
with more general motions. However, it is restricted to the symmetric case.
Mohammad et al. [21, 22] improved the symmetric multiphase BMO algo-
rithm of [11] by introducing a signed distance vector-valued function.

In this work, we consider three evolving curves meeting at a junction and
having arbitrary surface tensions. We achieve the simulation of such a triple
junction by generalizing the two main ingredients of the method in [11]:
the reference vectors (corresponding to the positions of wells in the phase-
field method) and the diffusion step. Moreover, we improve the scheme
by including a modification of the projection step in [12]. The developed
method is applicable to constrained motions.

3.1.1 Vector-valued BMO

The basis of our method is the vector-valued BMO algorithm [11]:

1. Define reference vectors pi of dimension two, each corresponding to a

3.1. NUMERICAL SOLUTION OF INTERFACE MODEL: 15

phase Pi for i = 1, 2, 3.

2. Given a partition Pi, i = 1, 2, 3, set u0(x) = pi for x ∈ Pi.

3. Repeat

• Solve the vector-valued heat equation with initial condition u0:

ut(t, x) = ∆u(t, x) for (t, x) ∈ (0,∆t]× Ω,

∂u

∂n
(t, x) = 0 on (0,∆t]× ∂Ω.

• Update u0 by identifying the reference vector which is closest to
the solution u(∆t, x):

u0(x) = pj ,

where pj · u(∆t, x) = maxi=1,2,3 pi · u(∆t, x).

This redistribution of reference vectors determines the configura-
tion of each phase after time ∆t.

Note that this algorithm deals only with symmetric junctions, the use of
symmetric reference vectors and simple heat equation in the diffusion step.
However, for arbitrary junction angles, this setting is not sufficient and has
to be generalized. We will do so in the following two sections.

3.1.2 Junction Stability

Consider three straight lines meeting at the origin with the given stable
angles as in Figure 3.1. The fact that this configuration is stable will yield
a condition on the selection of reference vectors for the BMO algorithm.

The triple junction does not move if u(t, 0, 0) = 0 for all t > 0, where u
is the solution of the heat equation. This means

1

4πt

3∑
i=1

pi

∫
R2∩Pi

exp(−|x|
2

4t
) dx = 0.

Since by radial symmetry, we can compute the integral of the wedge Pi as∫
Pi

e−|x|
2
dx =

θi
2
,

16 CHAPTER 3. NUMERICAL METHOD

Figure 3.1: Configuration of a stable junction.

we get

θ1p1 + θ2p2 + θ3p3 = 0. (3.2)

The above relation is a one-dimension higher BMO analogue of Young’s
law (2.6) in the sense that the reference vectors pi are distributed in the
whole phase regions Pi and, thus, the equilibrium condition is related to
area integrals, which results in weights equal to junction angles.

The vector equation (3.2) and the condition obtained in the next section
that the lengths of pi, i = 1, 2, 3, must be equal, form a systems of equations
for the components of pi:

θ1p
1
1 + θ2p

1
2 + θ3p

1
3 = 0

θ1p
2
1 + θ2p

2
2 + θ3p

2
3 = 0

(p1
1)2 + (p2

1)2 = 1

(p1
2)2 + (p2

2)2 = 1

(p1
3)2 + (p2

3)2 = 1

Since the reference vectors are determined up to rotation and scaling, we
can choose one reference vector arbitrarily, e.g., we set p3 = (1, 0). This
closes the system and its solution can be written as

3.1. NUMERICAL SOLUTION OF INTERFACE MODEL: 17

p1
1 = 1− 2π

θ1θ3
(π − θ2),

p2
1 = ± 2

θ1θ3

√
π(π − θ1)(π − θ2)(π − θ3),

p1
2 = 1− 2π

θ2θ3
(π − θ1),

p2
2 = ∓ 2

θ2θ3

√
π(π − θ1)(π − θ2)(π − θ3).

(3.3)

The possible choices for the sign of the second component follow from the
invariance of the reference vectors with respect to flipping.

3.1.3 Interface Velocity

Here, we study the modification of the original BMO algorithm yielding the
correct interface velocities vi = σiκi. The idea is to consider, instead of the
heat equation, the general diffusion system

u1
t + du2

t = a∆u1 + b∆u2,

du1
t + eu2

t = b∆u1 + c∆u2,(
u1

u2

)
(t = 0) =

(
u1

0

u2
0

)
,

(3.4)

and determine its coefficients a, b, c, d, e, so that we obtain the desired in-
terface velocities. We will show that this leads to a system of nonlinear
equations for a, b, c, d, e. Moreover, we check that the change of the underly-
ing diffusion system does not influence the arguments of the previous section
on junction stability.

Note that we restrict our considerations to symmetric coefficient ma-
trices. This is due to the fact that in order to incorporate phase-volume
preservation, we use the variational structure of the system in an essential
way (see subsection 3.1.6).

The system (3.4) can be rewritten in the form

ũt = A∆ũ,

where

ũ =

(
ũ1

ũ2

)
=

(
1 d
d e

)(
u1

u2

)
,

18 CHAPTER 3. NUMERICAL METHOD

and

A =
1

e− d2

(
ae− bd b− ad
be− cd c− bd

)
.

We assume that A is positive definite and diagonalize it in the following
form

A = KΛK−1 with Λ =

(
λ1 0
0 λ2

)
.

The eigenvalues of A are given by

λ1,2 =
ae+ c− 2bd± r

2(e− d2)
,

where r =
√

(ae− c)2 + 4(ad− b)(cd− be).
Hence, we get the matrix K consisting of eigenvectors as

K =
1

2r

(
ae− c+ r 2(ad− b)
2(be− cd) ae− c+ r

)
.

The original problem is transformed into
w1
t = λ1∆w1,

w2
t = λ2∆w2,(
w1

w2

)
(t = 0) =

(
w1

0

w2
0

)
= M

(
u1

0

u2
0

)
,

(3.5)

where

(
w1

w2

)
= M

(
u1

u2

)
, with M = K−1

(
1 d
d e

)
.

The solution to the transformed problem (3.5) in the whole R2 is

wi(t, x) =
1

4πλit

∫
R2

wi0(ξ)e
− |x−ξ|

2

4λit dξ, i = 1, 2, (3.6)

where

wi0|Pj = ((Mu0)|Pj)i = (Mpj)
i, i = 1, 2, j = 1, 2, 3.

Now, let us calculate the velocity of the interface for the above diffusion
system. We consider a point on the interface γ = ∂Pij between phase Pi and
Pj . We translate and rotate the coordinate system so that the chosen point
lies in the origin and the outer normal at the point agrees with the positive
x2-direction. We define Q = [−1, 1] × [−1, 1]. Then the normal velocity v

3.1. NUMERICAL SOLUTION OF INTERFACE MODEL: 19

Figure 3.2: Configuration of the interface.

of the interface is found from the relation, expressing the condition on the
interface position along the x2-axis after time t, i.e.,

u(t, 0, vt) · (pi − pj) = 0. (3.7)

We can write the solution of the transformed problem (3.5) as

w(t, 0, vt) =


1

4πλ1t

∫
R2 w

1
0(ξ)e

− |ξ−(0,vt)|2
4λ1t dξ

1

4πλ2t

∫
R2 w

2
0(ξ)e

− |ξ−(0,vt)|2
4λ2t dξ

 .

By the techniques in [18] and [27], we get

1

4πλ1t

∫
Q∩Pi

e
− |ξ−(0,vt)|2

4λ1t dξ =
1

2
+

√
t

2
√
πλ1

(λ1κ− v) +O(t
3
2), (3.8)

where κ is the curvature of ∂Pij at the origin. Hence, we have for l = 1, 2,

20 CHAPTER 3. NUMERICAL METHOD

and some C > 0,

wl(t, 0, vt)

=
wl0|Pi
4πλlt

∫
Q∩Pi

e
− |ξ−(0,vt)|2

4λlt dξ +
wl0|Pj
4πλlt

∫
Q∩Pj

e
− |ξ−(0,vt)|2

4λlt dξ +O(e−
C
t)

= wl0|Pi
(

1

2
+

√
t

2
√
πλl

(λlκ− v)

)
+ wl0|Pj

(
1

4πλlt

∫
R2

e
− |ξ−(0,vt)|2

4λlt dξ

)
− wl0|Pj

(
1

2
+

√
t

2
√
πλl

(λlκ− v)

)
+O(t

3
2)

= wl0|Pi
(

1

2
+

√
t

2
√
πλl

(λlκ− v)

)
+ wl0|Pj

(
1

2
−
√
t

2
√
πλl

(λlκ− v)

)
+O(t

3
2)

=
wl0|Pi + wl0|Pj

2
+
wl0|Pi − wl0|Pj

2

√
t√
πλl

(λlκ− v) +O(t
3
2).

We obtain from (3.7) the identity

M−1

[
M

pi + pj
2

+

√
t√
π
DM

pi − pj
2

]
· (pi − pj) = O(t

3
2),

where

D =


1√
λ1

(λ1κ− v) 0

0
1√
λ2

(λ2κ− v)

 .

Notice that if the first dot product on the left-hand side does not vanish,
then the order in time of the equation does not match. This leads to the
condition (pi + pj) · (pi − pj) = 0, meaning that the lengths of reference
vectors have to be equal (see subsection 3.1.2). Then we obtain

(pi − pj)
TM−1DM(pi − pj) = O(t),

which is, up to order O(t), equivalent to

µ1

(√
λ1κ−

1√
λ1
v

)
+ µ2

(√
λ2κ−

1√
λ2
v

)
= 0,

where

µ1 = m11m22(p1
ij)

2 −m12m21(p2
ij)

2 + (m12m22 −m11m21)p1
ijp

2
ij ,

µ2 = −m12m21(p1
ij)

2 +m11m22(p2
ij)

2 − (m12m22 −m11m21)p1
ijp

2
ij ,

3.1. NUMERICAL SOLUTION OF INTERFACE MODEL: 21

with pij = pi − pj and m11,m12,m21,m22 denote the entries of the matrix
M . Finally, we get the velocity of interface γk (k 6= i, j) in the form

vk =
µ1

√
λ1 + µ2

√
λ2

µ2

√
λ1 + µ1

√
λ2

√
λ1λ2 κk.

Since there are only three types of interfaces, it is expected that we
need only three parameters in order to design the velocities. Hence, it is
reasonable to try to set d = 0, e = 1, so that our diffusion system becomes

ut = A∆u, (3.9)

with A =

(
a b
b c

)
. We could have done so from the beginning of this section

but, as we will see below, the resulting nonlinear system for a, b, c is hard to
analyze theoretically, which led us to keep the parameters d and e as a last
resort in case the three-parameter system cannot be solved. In this case, we
get the interface velocities

vk =
µ1(a+ c+ r) + 2µ2

√
ac− b2

µ2(a+ c+ r) + 2µ1

√
ac− b2

√
ac− b2 κk, (3.10)

where

r =
√

(a− c)2 + 4b2

µ1 = [(a− c+ r)(p1
i − p1

j) + 2b(p2
i − p2

j)]
2,

µ2 = [2b(p1
i − p1

j)− (a− c+ r)(p2
i − p2

j)]
2.

From (3.10) and (2.5), we have a nonlinear system consisting of three equa-
tions for the coefficients a, b and c, which is solved numerically. First, we
simplify it by setting

x =
α+

√
β2 + 1√

α2 − β2 − 1
,

y = β +
√
β2 + 1,

z = b
√
α2 − β2 − 1,

where α = (a + c)/(2b) and β = (a − c)/(2b). Then the above system in
terms of x, y, z becomes

(p1
ijy + p2

ij)
2x+ (p1

ij − p2
ijy)2

(p1
ij − p2

ijy)2x+ (p1
ijy + p2

ij)
2
z = σk

22 CHAPTER 3. NUMERICAL METHOD

for (i, j, k) = (2, 3, 1), (1, 3, 2), (1, 2, 3). We take any two equations from this
system and solve for x, z analytically, which is possible, since the correspond-
ing equation is quadratic. Due to this fact, we get two different solutions
for x, z. For each such pair of x, z, we use a numerical method (such as
Newton’s method) to find the root y of the remaining equation. There may
exist several roots for y. For each such combination of x, y, z we recover α, β
and b by

α =
(x2 + 1)(y2 + 1)

2(x2 − 1)y
, β =

y2 − 1

2y
, b = ±x(y2 + 1)

(x2 − 1)y
.

The coefficients a and c are then obtained easily. The number of cases
double because of two possible signs for b. All triples (a, b, c) obtained in the
described way are then checked if they solve the system and the appropriate
triple is selected.

Since the nonlinear system is very complicated, we were not able to prove
the unique existence of solution using analytical methods, such as fixed point
theory. However, in using the above method, we can always find a solution,
except when b = 0 which occurs when two of the surface tensions are equal.
In that case, the system simplifies in such a way that it can be solved fully
analytically.

Table 3.1: Coefficients of Diffusion System in some Cases
(σ1, σ2, σ3) (a, b, c)

(1,1,1) (1,0,1)

(1,1.5,1) (1.43773,0.19887,0.86481)

(1.,1.8,1.) (1.76785,0.18910,0.68793)

(1.5,0.75,1.) (1.43308 -0.25468 0.67283)

(1.5,1.,1.) (1.43773,-0.19887,0.86481)

(1.5,1.25,1.) (1.50944,-0.10082,0.96859)

(1.5,2.,1.) (2.02618,0.12516,0.89890)

(1.8,1.,1.) (1.76785,-0.18909,0.68793)

(2.,1.5,1.) (2.02618,-0.12516,0.89890)

(2.,2.,1.) (2.2408,0,1)

Remark. For the initial condition in Figure 3.1, at the triple junction we

3.1. NUMERICAL SOLUTION OF INTERFACE MODEL: 23

have

wi(t, 0) =
1

4πλit

(∫
P1

+

∫
P2

+

∫
P3

)
wi0(ξ)e

− |ξ|
2

4λitdξ

=
1

π

(
θ1

2
wi0|P1 +

θ2

2
wi0|P2 +

θ3

2
wi0|P3

)
.

Therefore,

w(t, 0) =
1

2π
M (θ1p1 + θ2p2 + θ3p3) .

For junction stability, we require u(t, 0) = M−1w(t, 0) = 0. This condition
is equivalent to

θ1p1 + θ2p2 + θ3p3 = 0,

which is in agreement with (3.2).
This result shows that no matter how we change the diffusion equation,

the stability condition (3.2) will not be affected. Hence, the selection of
reference vectors can be done independently of the diffusion equation.

3.1.4 Correction by Projection Triangle

In the previous sections, we have derived an extension of the vector-valued
BMO algorithm to include the case of nonsymmetric junctions and general
interface velocities. We have shown that, for a suitably selected diffusion
system, if an interface point is sufficiently far from the junction, the interface
velocity at that point will satisfy the desired formula vi = σiκi, and that,
for a suitably selected reference vectors, the junction will be stationary for
the initial configuration of three straight lines meeting at the junction with
stable contact angles.

However, the above analysis does not address the close vicinity of the
triple junction. In fact, by formal calculations it can be made clear (see
Appendix 3.1.8) that the correct interface velocity is obtained only with an
exponentially decreasing error with respect to the distance of the considered
interface point to the junction. Indeed, numerical tests proved that the
stable configuration consisting of three straight lines slightly curves in the
neighborhood of the junction. This fact produces errors in the angles of the
moving junction.

Therefore, we include a correction step based on the notion of a projec-
tion triangle given by Ruuth [12]. The idea is to first investigate how the
stable configuration of three straight lines deforms, and use this information

24 CHAPTER 3. NUMERICAL METHOD

to project the phase regions back into the correct position in each step of the
BMO algorithm. For details of the construction of the projection triangle
we refer to [12].

The original method in [12] uses the scalar setting, i.e., it diffuses sep-
arately characteristic functions for each of the three phase regions of the
stable configuration (Figure 3.1) which yields three values of diffused func-
tion at every point in the domain. These three values are positive and
sum up to one, thus, taken as points in R3, which lie inside a triangle
on a hyperplane of R3. The straight lines of the stable configuration are
mapped on the triangle as dividing curves. In order to relate our vector-
valued formulation to the construction in [12], we introduce the functions
for (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 2, 1)},

fi(t, x) =
u(t, x) · (pj + pk)− 1− pj · pk

(pi − pj) · (pj + pk)
, (3.11)

Note that (3.11) is a generalization of the function wi(t, x) in [11], Section
2.2.2, for general reference vectors (3.3). Since u(0, x) = pi for x ∈ Pi, one
can easily check that

fi(0, x) = χi(x), i = 1, 2, 3,

where χi is the characteristic function of phase region Pi.
However, the advantage of our vector-valued approach is that we do not

have to perform separate diffusions and subsequently identity the hyperplane
x1 +x2 +x3 = 1. It is sufficient to diffuse the vector-valued initial condition
as in Figure 3.1 and record the images of the straight lines. In this way, we
obtain a projection triangle that can be used directly for the function u in
the BMO algorithm.

We summarize the construction of the projection triangle in the gener-
alized vector-valued formulation. Given an angle configuration θ1, θ2, θ3, we
perform the following steps:

1. Define the lines (in polar coordinates)

`12 = {(r, 1

2
θ1) : r > 0},

`13 = {(r,−1

2
θ1) : r > 0},

`23 = {(r, 1

2
θ1 + θ2) : r > 0},

and regions P1, P2, P3, as in Figure 3.1.

3.1. NUMERICAL SOLUTION OF INTERFACE MODEL: 25

2. Set u0(x) = pi for x ∈ Pi.

3. Apply the diffusion (3.4) to the initial condition u0 for a time τ ≤ ∆t,
where ∆t is the BMO time step.

4. Map the values of the solution of step 3 along each line `ij onto the
projection triangle to form the dividing lines ˜̀

ij :

˜̀
ij = {u(τ, x) : x ∈ `ij}.

Figure 3.3: Projection triangle T in vector-valued setting.

Notice that the values of the diffused function u fall inside the triangle T
formed by the vectors p1,p2,p3 (Figure). Moreover, because of (3.2), the
dividing lines ˜̀

12, ˜̀
13, ˜̀

23 will always meet at the origin which corresponds
to the circumcenter of T , and they approach the midpoints of edges of
T on their other ends. This is in contrast to the projection triangles in
[12], where the position of the junction shifts and the shape of dividing
lines is distorted, especially for junction angles strongly deviating from the
Herring symmetric case. This fact helps significantly to make the numerical
computations stable, especially for the volume-preserving problem.

Figure 3.4 shows the resulting projection triangles for the 150◦ − 90◦ −
120◦ junction and the 135◦− 90◦− 135◦ junction. Since these two cases will
be used in numerical tests, we list the coresponding parameters in Table 3.2.
As it sometimes happens in the numerical computations that the values of

26 CHAPTER 3. NUMERICAL METHOD

Table 3.2: Numerical parameters for case 1 and case 2

parameters case 1 case 2

surface tensions
σ1

1
2

√
2

2

σ2 1 1

σ3

√
3

2

√
2

2

angles
θ1 150◦ 135◦

θ2 90◦ 90◦

θ3 120◦ 135◦

coefficients
a 0.881 0.954

b 0.262 0.127

c 0.656 0.639

reference vectors
p1 (-0.8,-0.6) (-0.777,-0.628)

p2 (0,1) (-0.333,-0.943)

p3 (1,0) (1,0)

the function u fall out of the projection triangle, we extend the dividing
curves by straight lines connecting the junction to the midpoints of the
edges.

(a) (b)

Figure 3.4: Projection triangle for (a) 150◦−90◦−120◦ and (b) 135◦−90◦−
135◦ triple junctions.

Remark. There is a close relation between the BMO algorithm and a
splitting method for the phase-field equation (3.1), which repeats the fol-
lowing steps:

1. Diffuse for a time ∆t

ut = ε∆u,

with initial condition u(0, x) = u0.

3.1. NUMERICAL SOLUTION OF INTERFACE MODEL: 27

2. Solve

ut = −1

ε
W ′(u), (3.12)

with initial condition u(∆t, x).

One can see that (3.12) corresponds to the thresholding step in BMO in
the sense that the solution asymptotically separates into three regions with
values equal to the minima of W . The dividing lines between these regions
are the separatrices for the well potential W . The well potential can be
chosen as in [24] but, as mentioned earlier, it is not easy to calibrate its
parameters since they are not given by an explicit formula.

3.1.5 Generalized Vector-valued BMO Algorithm

In this subsection, we summarize the above deliberations into a generalized
vector-valued BMO scheme. First we present the basic version of the BMO
algorithm and then comment on the method of incorporating the volume
constraint. The generalized vector-valued BMO for three-phases motion is
as follows:

1. For given surface tensions, calculate junction angles θi by (2.7).

2. Define reference vectors pi according to formula (3.3).

3. Find the solution a, b, c of (3.10) and set A =

(
a b
b c

)
.

4. Construct projection triangle according to the algorithm in subsub-
section 3.1.4.

5. For a given three phase initial configuration P1, P2, P3, set

u0(x) = pi, x ∈ Pi.

6. Repeat until desired time

• Solve the diffusion system

ut = A∆u for (t, x) ∈ (0,∆t]× Ω, (3.13)

∂u

∂n
= 0 on (0,∆t]× Ω,

u(0, x) = u0(x) in Ω.

28 CHAPTER 3. NUMERICAL METHOD

• Threshold according to the projection triangle defined in step 4,
i.e.,

u0(x) = pi if u(x) ∈ Ri, i = 1, 2, 3,

where Ri are the regions in Figure .

The modified diffusion system is solved by using vector-type discrete
Morse flow (DMF) [28], i.e., at each step we solve (3.13) by discretizing
time ∆t = h×N and successively minimizing the following functionals
for n = 1, .., N over H1(Ω;R2):

Jn(u) =

∫
Ω

(a
2
|∇u1|2 + b∇u1 · ∇u2 +

c

2
|∇u2|2

)
dx

+

∫
Ω

(
|u− un−1|2

2h

)
dx. (3.14)

We approximate the functional (3.14) by using piecewise linear finite
elements. The minimizers are found by steepest descent method.

3.1.6 Generalized Vector-valued BMO Algorithm with Vol-
ume Constraint

The minimization formulation of the vector-valued algorithm allows the in-
clusion of volume constraints via penalization. In particular, instead of the
functional Jn in step 6, we minimize

Fn(u) = Jn(u) +
1

ε

3∑
i=1

|Vi −meas(Pu
i)|2.

Here ε > 0 is a small penalty parameter, Vi is the prescribed volume of
region Pi and the volumes corresponding to u are obtained from the sets

Pu
i = {x ∈ Ω;u(x) ∈ Ri}.

This means that we have to employ the projection triangle each time we
evaluate the functional Fn.

3.1. NUMERICAL SOLUTION OF INTERFACE MODEL: 29

3.1.7 Appendix: Computation of General Reference Vectors

In this appendix, we show the computation of general reference vectors in
more detail. We have a system of equations for the components of pi:

θ1p
1
1 + θ2p

1
2 + θ3p

1
3 = 0 (3.15)

θ1p
2
1 + θ2p

2
2 + θ3p

2
3 = 0 (3.16)

(p1
1)2 + (p2

1)2 = 1 (3.17)

(p1
2)2 + (p2

2)2 = 1 (3.18)

(p1
3)2 + (p2

3)2 = 1 (3.19)

p1
3 = 1 and p2

3 = 0 (3.20)

Substitute (3.20) into (3.15)-(3.19), we obtain four equations,

p1
1 =
−θ3 − θ2p

1
2

θ1
(3.21)

θ1p
2
1 = −θ2p

2
2 (3.22)

(p2
1)2 = 1− (p1

1)2 (3.23)

(p2
2)2 = 1− (p1

2)2, (3.24)

for unknowns p1
1, p

2
1, p

1
2 and p2

2. Substitute (3.23), (3.24) and (3.21) into
(3.22),

θ1p
2
1 = −θ2p

2
2

θ1

(
1− (p1

1)2
) 1

2 = −θ2

(
1− (p1

2)2
) 1

2

θ2
1

(
1−

(
−θ3 − θ2p

1
2

θ1

)2
)

= −θ2
2(1− (p1

2)2)

p1
2 =

θ2
1 − θ2

2 − θ2
3

2θ2θ3
(3.25)

Substitute (3.25) into (3.21),

30 CHAPTER 3. NUMERICAL METHOD

p1
1 =
−θ3 − θ2p

1
2

θ1

=

−θ3 − θ2

(
θ2

1 − θ2
2 − θ2

3

2θ2θ3

)
θ1

=
−θ2

1 + θ2
2 − θ2

3

2θ1θ3

=
θ2

2 − θ2
1 − θ2

3 − 2θ1θ3 + 2θ1θ3

2θ1θ3

=
θ2

2 − (θ1 + θ3)2 + 2θ1θ3

2θ1θ3

=
θ2

2 − (θ1 + θ3)2

2θ1θ3
+ 1

=
(2π − (θ1 + θ3))2 −−(θ1 + θ3)2

2θ1θ3
+ 1

=
2π (π − (θ1 + θ3))

θ1θ3
+ 1

=
2π (2π − (θ1 + θ3)− π)

θ1θ3
+ 1

= 1− 2π

θ1θ3
(π − θ2). (3.26)

3.1. NUMERICAL SOLUTION OF INTERFACE MODEL: 31

From (3.26) and (3.17), we can conclude that θ2 ≤ π should be taken.
Substitute (3.26) into (3.23) to get p2

1,

(p2
1)2 = 1− (p1

1)2

= 1−
(

1− 2π

θ1θ3
(π − θ2)

)2

=
4π

θ1θ3
(π − θ2)

(
1− π

θ1θ3
(π − θ2)

)
=

4π

θ1θ3
(π − θ2)

(
θ1θ3 − π(π − θ2)

θ1θ3

)
=

4π

θ2
1θ

2
3

(π − θ2) (θ1θ3 − π(π − (2π − (θ1 + θ3))))

=
4π

θ2
1θ

2
3

(π − θ2) (θ1θ3 − π(−π + (θ1 + θ3)))

=
4π

θ2
1θ

2
3

(π − θ2)
(
θ1θ3 + π2 − π(θ1 + θ3)

)
=

4π

θ2
1θ

2
3

(π − θ2)(π − θ1)(π − θ3)

p2
1 = ± 2

θ1θ3

√
π(π − θ1)(π − θ2)(π − θ3). (3.27)

where we take θ1 ≤ π and θ3 ≤ π. In similar way, we obtain,

p1
2 = 1− 2π

θ2θ3
(π − θ1) (3.28)

p2
2 = ∓ 2

θ2θ3

√
π(π − θ1)(π − θ2)(π − θ3). (3.29)

3.1.8 Appendix: Formal Analysis of Nonsymmetric Triple
Junction

We look at the formula for the solution of the system (3.4) with initial
condition as in Figure 3.1 in more detail. From this, we will see that the
interfaces close to the triple junction will not remain straight lines but will
curve slightly.

Recalling the solution of the transformed problem (3.6), the solution of
the original system is given by

u(t, x) = M−1w = M−1

(
w1

w2

)
, (3.30)

32 CHAPTER 3. NUMERICAL METHOD

where w1, w2 are obtained from the formula

wi(t, x) =

 3∑
j=1

(Mpj)
i

∫
Pj

 1

4πλit
e
− |x−ξ|

2

4λit dξ, i = 1, 2.

The main idea is that the above interface configuration should not change
after one step of BMO algorithm if the junction has stable contact angles.
To see the specific form of the respective terms, set

erfc(s) = 1− erf(s) =
2√
π

∫ ∞
s

e−σ
2
dσ,

and

α(ϑ) = x1 cosϑ+ x2 sinϑ,

β(ϑ) = x1 sinϑ− x2 cosϑ.

then compute the integral

∫
P1

e−
|x−ξ|2

4λt dξ =

∫ ∞
0

∫ θ1
2

− θ1
2

e−
|(r cosϑ,r sinϑ)−(x1,x2)|2

4λt rdϑdr

=

∫ ∞
0

∫ θ1
2

− θ1
2

e−
r2−2rα(ϑ)+|x|2

4λt rdϑdr

=

∫ ∞
0

∫ θ1
2

− θ1
2

e−
(r−α(ϑ))2+β(ϑ)2

4λt rdϑdr

=

∫ θ1
2

− θ1
2

e−
β(ϑ)2

4λt

∫ ∞
− α(ϑ)√

4λt

(√
4λtz + α(ϑ)

)√
4λte−z

2
dzdϑ

=
√

4λt

∫ θ1
2

− θ1
2

α(ϑ)
π

2
e−
|x−ξ|2

4λt erfc

(
− α(ϑ)√

4λt

)
+
√
λte
−α(ϑ)2√

4λt dϑ

=
√
πλt

∫ θ1
2

− θ1
2

α(ϑ)e−
β(ϑ)2

4λt erfc

(
− α(ϑ)√

4λt

)
dϑ

+ 2λt

∫ θ1
2

− θ1
2

e−
β(ϑ)2+α(ϑ)2

4λt dϑ.

3.1. NUMERICAL SOLUTION OF INTERFACE MODEL: 33

Rearranging the terms, we get∫
P1

e−
|x−ξ|2

4λt dξ =
√
πλt

∫ β̄

ν
e−

β2

4λt erfc

(
±
√
|x|2 − β2

√
4λt

)
du+ 2λtθ1e

− |x|
2

4λt

= 2λt
√
π

∫ β(
θ1
2)

√
4λt

β(
−θ1

2)
√

4λt

e−z
2
erfc

(
±
√
|x|2
4λt
− z2

)
dz + 2λtθ1e

− |x|
2

4λt .

Writing x = (s cosϕ, s sinϕ), we get

1

2λt

∫
P1

e−
|x−ξ|2

4λt dξ =
√
π

∫ s sin(
θ1
2 −ϕ)

√
4λt

s sin(
−θ1

2 −ϕ)
√

4λt

e−z
2
erfc

(
±
√

s2

4λt
− z2

)
dz + θ1e

− s2

4λt ,

(3.31)

1

2λt

∫
P2

e−
|x−ξ|2

4λt dξ =
√
π

∫ s sin(
θ1
2 +θ2−ϕ)
√

4λt

s sin(
θ1
2 −ϕ)

√
4λt

e−z
2
erfc

(
±
√

s2

4λt
− z2

)
dz + θ3e

− s2

4λt

(3.32)

1

2λt

∫
P3

e−
|x−ξ|2

4λt dξ =
√
π

∫ s sin(−ϕ)√
4λt

s sin(θ3−ϕ)√
4λt

e−z
2
erfc

(
±
√

s2

4λt
− z2

)
dz + θ1e

− s2

4λt

(3.33)

From (3.31)-(3.33) we can conclude that:

1. If s√
t

is close to zero, (3.31)-(3.33) approach θ1, θ2, θ3, respectively since

the first term is negligible. Hence, from (3.30) we get the value of the
solution

u(t, x) ≈ θ1

2π
p1 +

θ2

2π
p2 +

θ3

2π
p3,

which is in agreement with (3.2).

2. If the point x is away from the triple junction and close to some of the
interfaces, for instance the interface between phases P1 and P2, then
the second term is exponentially small. Moreover, ϕ ≈ θ1

2 , and so the
first integral will be close to π. Similarly, the integral over the region
P2 will be close to π and the integral over P3 will be close to zero.
Therefore, the solution (3.30) at this point x will be

u(t, x) ≈ 1

2
(p1 + p2),

34 CHAPTER 3. NUMERICAL METHOD

which means that the interface will remain stationary as a straight
line.

3. If the point x is in other position than the two cases mentioned above,
the values of the above integrals will depend not only on x and t but
also on the values of λ1, λ2. As a consequence, the solution u will
depend also on the coefficients a, b, c, and the corresponding interfaces
may curve.

3.2 Numerical Solution of Fluid Model:

Stabilized Space-Time Finite Element

in Moving Domain

In this section, we focus on the fluid model in moving domain. Solving fluid
model involving moving domain is also the source of the computational
challenges that we have. The spatial domain occupied by the fluid changes
in time and the model to be used should be able to handle it. Here we
use DSD/SST formulation that was introduced by the Team for Advanced
Flow Simulation and Modeling (T?AFSM) in 1991 as a general-purpose
interface-tracking technique for computation of flow problems with moving
boundarieas and interfaces [13, 14, 39, 40].

3.2.1 Space-Time Finite Element Method

Deforming-Spatial Domain/Stabilized Space-Time is a method based on
space-time finite element. In space-time finite element method, the dis-
cretization is applied not only in space but also in time. Consequently, the
spatial deformation is taken into account automatically and the dimension
of the problem increases by one. In our case, a 2D problem becomes a 3D
problem including the time dimension.

As will be shown in the next subsection, the formulation of DSD/SST is
written over a sequence of nt spacetime slabs Qn, where Qn is the slice of the
space-time domain between the time levels tn and tn+1. In order to construct
the finite element function spaces, we partition the time interval [0, T] into
subintervals Tn = (tn, tn+1), where n = 0, ..., nt−1, t0 = 0 and tn+1 = T . Let
Ωn be the spatial domain at time level tn with its boundary Γn. We denote by
Pn, the surface described by the boundary Γn as t traverses Tn. Surface Pn
can be decomposed into (Pn)g and (Pn)h where the Dirichlet and Neumann-
type boundary conditions (2.3) are enforced, respectively. We define the

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 35

space-time slab Qn as the domain enclosed by the surfaces Ωn,Ωn+1 and
Pn. Each Qn is decomposed into elements Qen, where e = 1, 2, .., (ne)n, and
the number of space-time elements may different for each space-time slab.
In each space-time slab Qn, we define the finite element trial function spaces
(Shu)n for velocity and (Shp)n for pressure and the test function spaces (V h

u)n
and (V h

p)n = (Shp)n as follows

(Shu)n = {uh ∈ [H1h(Qn)]2,uh = gh on (Pn)g},
(V h
u)n = {uh ∈ [H1h(Qn)]2,uh = 0 on (Pn)g},

(Shp)n = (V h
p)n = {ph ∈ [H1h(Qn)]}.

Here, H1h(Qn) represent the finite dimensional function space over the do-
main Qn,

H1h(Qn) = {uh : Qn → R | uh, ∂u
h

∂x
,
∂uh

∂y
,
∂uh

∂t
∈ L2(Qn),

uh|Qen = polynomial in x, y, t} (3.34)

Figure 3.5: Space-time slabs Qn−1 and Qn.

3.2.2 DSD/SST-SUPS Formulation

Deforming-Spatial Domain/Stabilized Space-Time SUPG-PSPG (DSD/SST-
SUPS) is DSD/SST formulation based on Streamline-Upwind/Petrov-Galerkin
(SUPG) stabilization and Pressure-Stabilizing/Petrov-Galerkin (PSPG) sta-
blization. These stabilization terms assure the numerical stability of the

36 CHAPTER 3. NUMERICAL METHOD

computations in advection-dominated flows and when using equal order
interpolation functions for velocity and pressure, which simplifies the im-
plementation. Moreover, we also use Least-Square on Incompressible Con-
straint (LSIC) stabilization. We will review these stabilization terms in the
Appendix 3.2.8.

DSD/SST-SUPS Formulation for incompressible flow can be written as
follows,
Given (uh)−n , find uh ∈ (Shu)n and ph ∈ (Shp)n such that ∀wh ∈ (V h

u)n and

∀qh ∈ (V h
p)n :

∫
Qn

wh · ρ(
∂uh

∂t
+ uh · ∇uh − fh) dQ+

∫
Qn

ε(wh) : σ(ph,uh) dQ

−
∫

(Pn)h

whhh dp+

∫
Qn

qh∇ · uh dQ+

∫
Ωn

(wh)+
n ρ ((uh)+

n − (uh)−n) dΩ

+

(nel)n∑
e=1

∫
Qen

1

ρ

[
τ1 ρ (

∂wh

∂t
+ uh · ∇wh) + τ2∇qh

]
·
[
ρ(
∂uh

∂t
+ uh · ∇uh − fh)−∇ · σ(ph,uh)

]
dQ

+

(nel)n∑
e=1

∫
Qen

τ3∇ ·whρ∇ · uh dQ = 0, (3.35)

where

(uh)±n = lim
ε→0

u(tn ± ε).

The first four integrals are the Galerkin formulation of the problem.
Here, ε(wh) : σ(ph,uh) represents component-wise scalar product between
strain-rate tensor ε(wh) and stress tensor σ(ph,uh). The fifth integral en-
forces, weakly, the temporal continuity of the velocity field since the basis
functions are discontinous from one space-time slab to another. The remain-
ing terms are the stabilization terms. Note that this stabilization leads to
a consistent formulation, in the sense that an exact solution still satisfies
the stabilized formulation. In this formula, τ1, τ2, τ3 are the stabilization
parameters, τSUPG, τPSPG, τLSIC , respectively.

After space-time discretization, we obtain a nonlinear system of equa-

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 37

tions

K(U)U = F (3.36) K1 K2 K3

K4 K5 K6

K7 K8 K9

 ū
v̄
p̄

 =

 F1

F2

F3

 .
Here, ū, v̄, p̄ are the approximate solutions and matrix K consists of 9 block
matrices. Each block matrix Ki, i = 1, ..., 9 represents the corresponding
terms in (3.35). The size of each block matrix is (2np)× (2np) where np is
the number of nodes at each time level in the space-time slab Qn. We will
write each term of DSD/SST formulation and use the index i to emphasize
that it is related to the position in block Ki. We calculate the integrals for
element Qen of space-time slab and then assemble for all elements to get the
global system matrix.

Matrix K can be written in more detail as

K =

 K1 K2 K3

K4 K5 K6

K7 K8 K9

 ,
with

K1 = TD1 +B1 + C1(U) +M1 + S11(U) + S51

K2 = B2 + S12(U) + S52

K3 = GT3 + S23

K4 = B4 + S14(U) + S54

K5 = TD5 +B5 + C5(U) +M5 + S15(U) + S55

K6 = GT6 + S26

K7 = G7 + S47(U)

K8 = G8 + S48(U)

K9 = S39

The individual terms above have the following meaning:

• Time-dependent term (TD):
∫
Qen
ρwh ∂uh

∂t dQ

• Component-wise scalar product:
∫
Qen
ε(wh) : σ dQen

This term consist of Gradient matrix for pressure (GT) and Diffusion
term (B).

38 CHAPTER 3. NUMERICAL METHOD

• Convection term (C(U)):
∫
Qen
ρwh(uh.∇uh) dQ

• Jump term (M):
∫

Ωln
ρ(wh)+

n (uh)+
n dΩ where Ωl

n is spatial domain of
l-th triangle element at time level tn.

• Gradient term (G);
∫
Qen
qh.∇uh dQ

• Stabilization terms (S(U)) :

(nel)n∑
e=1

∫
Qen

1

ρ

[
τ1 ρ (

∂wh

∂t
+ uh · ∇wh) + τ2∇qh

]
·
[
ρ(
∂uh

∂t
+ uh · ∇uh − fh)−∇ · σ(ph,uh)

]
dQ

+

(nel)n∑
e=1

∫
Qen

τ3∇ ·whρ∇ · uh dQ

Stabilization terms consist of five parts: S1(U), S2, S3, S4(U), S5. as
in (3.48) - (3.52). We discuss more about the stabilization parameters
τ1, τ2, τ3 in the stabilization section.

The right-hand side is written as

F =

 F1

F2

F3

 =

 Ff1 + Fs11 + Fh1 + FM1

Ff2 + Fs12 + Fh2 + FM2

Fs43

 .
The vectors F1, F2, F3 have size (2np). The detailed of each term will be
explained in the next subsections.

3.2.3 Solution of Discrete Problem

In order to solve the nonlinear system (3.36), we use Newton-Raphson
method. We compute a correction ∆U of a current solution Ul at each
iteration l, which yields a linear system

J(Ul) ∆Ul = F−K(Ul)Ul, (3.37)

where J is the Jacobian matrix. We solve (3.37) by using GMRES with
diagonal preconditioner.

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 39

As in matrix K, matrix J also consists of nine block matrices.

J =

 J1 J2 J3

J4 J5 J6

J7 J8 J9


with
J1 = TD1 +B1 + C1(U∗) + CC1(U∗) +M1 + S11(U∗) + S51 + SS11(U∗),
J2 = B2 + S12(U∗) + S52 + SS12(U∗) + CC2(U∗),
J3 = GT3 + S23,
J4 = B4 + S14(U∗) + S54 + SS14(U∗) + CC4(U∗),
J5 = TD5 +B5 + C5(U∗) + CC5(U) +M5 + S15(U∗) + S55 + SS15(U∗),
J6 = GT6 + S26,
J7 = G7 + S47(U∗),
J8 = G8 + S48(U∗),
J9 = S39,

where U∗ = Ul, the current U at each iteration, CC(U∗) and SS1(U∗)
be given by

• CC(U∗) : ρ
∫
Qkn
ρwh(∆uh · ∇u∗) dQ,

• SS1(U∗) : τ1ρ
∫
Qkn

(u∗ · ∇wh)(∆u · ∇u∗),

and similarly for other terms as in matrix K.
The right-hand side F is slightly different with the previous F,

F =

 F1

F2

F3

 =

 Ff1 + Fss11 + Fh1 + FM1

Ff2 + Fss12 + Fh2 + FM2

Fs43

 , (3.38)

where Fss1 is the right-hand side that comes from the derivative of stabiliza-
tion S1, thus depend on U∗ and since U∗ is known, Fss1 be a component
of the right-hand side. We compute Fss1 for each Newton’s iteration; while
other component of F are computed once in the beginning of Newton’s it-
eration since they are independent of U∗. The detailed computation of all
terms will be explained in the next subsections.

3.2.4 Linear Finite Element in Global and Local Description

The construction of finite element basis functions begins at the level of
individual element. Firstly, we construct the element-level interpolation

40 CHAPTER 3. NUMERICAL METHOD

functions and then put together all elements into a finite element mesh. In
this way, we define the global basis functions.

In physical domain, elements in the mesh may have different size and
shape. However, every element can be considered as an image of parent ele-
ment, a simple geometrical shape which is defined in the parametric domain.

Generally, there are two points of view when dealing with linear finite
elements: global point of view and element or local point of view [30]. Let
us look at it in our case. We will work in two space dimension and use
triangular elements. In space-time finite element formulation, it becomes
a 3D problem. In this case, every space-time element has six nodes, i.e.,
three triangular nodes for each time level. In global point of view, the basis
functions are considered to be defined everywhere on the domain of the
boundary-value problem. Here, we have the quantities,

• Physical domain : Ω× [tn, tn+1].

• Coordinate of nodes of space-time slab Qen :

{xnA−1,x
n
A,x

n
A+1,x

n−1
A+1,x

n+1
A ,xn+1

A+1}.

• Degrees of freedom: {unA−1,u
n
A,u

n
A+1,u

n+1
A−1,u

n+1
A ,un+1

A+1}.

• Shape functions: {N̄n
A−1, N̄

n
A, N̄

n
A+1, N̄

n+1
A−1, N̄

n+1
A , N̄n+1

A+1}.

• Approximate solution:

uh(x) = unA−1N̄
n
A−1 + unAN̄

n
A + unA+1N̄

n
A+1 + un+1

A−1N̄
n+1
A−1 + un+1

A N̄n+1
A

+ un+1
A+1N̄

n+1
A+1

These quantities are in terms of global parameters, i.e., global coordi-
nates, global shape functions and global node ordering. The global point
of view is useful in establishing the mathematical properties of the finite
element method.

In local point of view, the above quantities are in terms of local param-
eters, i.e., local coordinates, local shape functions and local node ordering,
as follows,

• Parametrical domain : Ω̂× [θ1, θ2].

• Coordinate of nodes of space-time slab Q̂en : {r1
1, r

1
2, r

1
3, r

2
1, r

2
2, r

2
3}.

• Degrees of freedom: {u1
1,u

1
2,u

1
3,u

2
1,u

2
2,u

2
3}.

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 41

• Shape functions: {N1
1 , N

1
2 , N

1
3 , N

2
1 , N

2
2 , N

2
3 }.

• Approximate solution:

uh(r) = u1
1N

1
1 + u1

2N
1
2 + u1

3N
1
3 + u2

1N
2
1 + u2

2N
2
2 + u2

3N
2
3 .

In our implementation, we use θ1 = −1, θ2 = 1, r = (r, s)T , where r, s ∈
[0, 1], r + s ≤ 1. For the specific forms of shape functions, see the following
subsection. Note that in the local point of view, the nodal numbering is
represented by numbering beginning with 1 to show that this is in local
description. The local point of view is useful in the computer implementation
of finite element mehod. We will use this local point of view in computation
of the terms of DSD/SST that has been mentioned before.

The domains of the global and local description are related by the trans-
formation

ξ : Ω× [tn, tn+1]→ Ω̂× [θ1, θ2], (3.39)

such that ξ(xnA−1) = r1
1, ξ(x

n
A) = r1

2, ξ(x
n
A+1) = r1

3, ξ(x
n+1
A−1) = r1

1, ξ(x
n+1
A) =

r1
2 and ξ(xn+1

A+1) = r2
2, where x = (x, y)T , r = (r, s)T . Similarly, we also can

define the inverse of ξ,

ξ−1 : Ω̂× [θ1, θ2]→ Ω× [tn, tn+1],

3.2.5 Shape Functions of Space-Time Element

In order to get the component of system K and J in (3.36),(3.37) and right-
hand side F in (3.38), we need to understand the shape functions of space-
time element and their derivatives. Here, we assume some special features
of space-time slab Qn, i.e., Qn has uniform thickness in time direction and
all the nodes of the space-time slab are either on its upper or lower surface
(Special DSD/SST) [29]. Uniform thickness means that we take the same
time-step ∆t in the program. We also assume that the mesh on the upper
surface of the slab is obtained by a deformation of the mesh on the lower
surface which is governed by elasticity equation. The Special DSD/SST
formulation offers efficiency in computational cost, i.e., it simplifies both
the computation of shape function derivatives at Gaussian quadrature points
and the formation of the element-level vectors and matrices. Since for each
iteration at every time step, these computations need to be done for each
element of the space-time mesh, these improvements will give a significant
impact on the overall computational performance in a simulation.

42 CHAPTER 3. NUMERICAL METHOD

The Special DSD/SST formulation uses shape function having a form of
the tensor product of its spatial and temporal shape functions in parametric
domain,

Nα
a (r, θ) = Na(r)Tα(θ), (3.40)

where a = 1, 2, .., nel, α = 1, 2, with nel is the number of nodes in spatial
domain. We use triangular elements, i.e., nel = 3. In this case, the shape
functions Na(r) read

N1(r) = r, N2(r) = s, N3(r) = 1− r − s,

and their derivatives,

N1,r = 1, N2,r = 0, N3,r = −1,

N1,s = 0, N2,s = 1, N3,s = −1,

with r, s ∈ [0, 1] and r + s <= 1. The temporal shape functions can be
defined by

T 1(θ) =
1

2
(1− θ), T 2(θ) =

1

2
(1 + θ),

and their derivatives,

T 1
θ = −1

2
, T 2

θ =
1

2
,

with θ ∈ [−1, 1].

As the mapping (3.39), the spatial coordinate of each element in para-
metrical domain can be written as

x(r, θ) =

2∑
α=1

3∑
a=1

Nα
a (r, θ)xαa

=

2∑
α=1

3∑
a=1

Na(r)Tα(θ)xαa

=

3∑
a=1

Na(r)(T 1(θ)x1
a + T 2(θ)x2

a)

=

3∑
a=1

Na(r)xa(θ),

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 43

where xαa = (xαa , y
α
a) with a = 1, 2, 3; α = 1, 2, are the coordinate of space-

time element nodes in physical domain. We list formula for each component
of x(r, θ) and their derivatives:

x(r, θ) =

3∑
a=1

Na(r)xa

= N1(r)x1(θ) +N2(r)x2(θ) +N3(r)x3(θ)

= N1(r)(T 1(θ)x1
1 + T 2(θ)x2

1) +N2(r)(T 1(θ)x1
2 + T 2(θ)x2

2) +N3(r)(T 1(θ)x1
3

+ T 2(θ)x2
3)

=
r

2

[
(1− θ)x1

1 + (1 + θ)x2
1

]
+
s

2

[
(1− θ)x1

2 + (1 + θ)x2
2

]
+

1− r − s
2

[
(1− θ)x1

3 + (1 + θ)x2
3

]
.

xr(θ) = 1
2

[
(1− θ)(x1

1 − x1
3) + (1 + θ)(x2

1 − x2
3)
]
.

xs(θ) = 1
2

[
(1− θ)(x1

2 − x1
3) + (1 + θ)(x2

2 − x2
3)
]
.

xθ(r) =
r(x2

1 − x1
1) + s(x2

2 − x1
2) + (1− r − s)(x2

3 − x1
3)

2
.

y(r, θ) =
3∑

a=1

Na(r)ya

= N1(r)y1(θ) +N2(r)y2(θ) +N3(r)y3(θ)

= N1(r)(T 1(θ)y1
1 + T 2(θ)y2

1) +N2(r)(T 1(θ)y1
2 + T 2(θ)y2

2) +N3(r)(T 1(θ)y1
3

+ T 2(θ)y2
3)

=
r

2

[
(1− θ)y1

1 + (1 + θ)y2
1

]
+
s

2

[
(1− θ)y1

2 + (1 + θ)y2
2

]
+

1− r − s
2

[
(1− θ)y1

3 + (1 + θ)y2
3

]
.

yr(θ) = 1
2

[
(1− θ)(y1

1 − y1
3) + (1 + θ)(y2

1 − y2
3)
]
.

ys(θ) = 1
2

[
(1− θ)(y1

2 − y1
3) + (1 + θ)(y2

2 − y2
3)
]
.

yθ(r) =
r(y2

1 − y1
1) + s(y2

2 − y1
2) + (1− r − s)(y2

3 − y1
3)

2
.

44 CHAPTER 3. NUMERICAL METHOD

The temporal coordinate can be written as,

t(θ) =
2∑

α=1

3∑
a=1

Nα
a (r, θ)tαa .

Note that in special DSD/SST formulation, tαa = tα, a = 1, 2, 3 since the
nodes of a slab are either on its upper (α = 2) or lower surface (α = 1), we
have

t(θ) =
2∑

α=1

3∑
a=1

Nα
a (r, θ)tα =

2∑
α=1

3∑
a=1

Na(r)Tα(θ)tα =
3∑

a=1

Na(r)
2∑

α=1

Tα(θ)tα

= 1(T 1(θ)t1 + T 2(θ)t2) =
(1− θ)t1 + (1 + θ)t2

2
=
t1 + t2 + θ(t2 − t1)

2
,

and for derivatives,

tr = 0,

ts = 0,

tθ =
t2 − t1

2
=

∆t

2
.

The next step is to get the derivative of shape-function of space-time
element N̄α

a (x, t) (in physical domain) with respect to x, y and t since the
components of system matrix contain these derivative as well. By using
chain rule,

N̄α
a (x, t)

∂x
=
Nα
a (x(r, θ), t(θ))

∂r

∂r

∂x
+
Nα
a (x(r, θ), t(θ))

∂s

∂s

∂x
N̄α
a (x, t)

∂y
=
Nα
a (x(r, θ), t(θ))

∂r

∂r

∂y
+
Nα
a (x(r, θ), t(θ))

∂s

∂s

∂y

N̄α
a (x, t)

∂t
=
Nα
a (x(r, θ), t(θ))

∂θ

∂θ

∂t
,

which can be rewritten in the following matrix form, N̄α
a,x(x, t)

N̄α
a,y(x, t)

N̄α
a,t(x, t)

 = P

 Nα
a,r(r, θ)

Nα
a,s(r, θ)

Nα
a,θ(r, θ)

 = P

 Na,rT
α(θ)

Na,sT
α(θ)

Na(r)Tαθ

 (3.41)

where

P =

 rx sx θx
ry sy θy
rt st θt



3.2. NUMERICAL SOLUTION OF FLUID MODEL: 45

Note that we have already expressions for Na,r, Na,s and Tθ. However, we
do not have explicit expressions for r = r(x, y, t), s = s(x, y, t), and θ =
θ(x, y, t), so matrix P cannot be computed directly. It can be obtained from
P = Q−1, where

Q =

 xr yr tr
xs ys ts
xθ yθ tθ

 =

 xr(θ) yr(θ) 0
xs(θ) ys(θ) 0

xθ(r) yθ(r) ∆t
2

 .
We define

Jst(θ) = det Q =
∆t

2
det

[
xr(θ) yr(θ)
xs(θ) ys(θ)

]
=

∆t

2
Υ(θ),

the Jacobian of the transformation from physical domain to parametrical
domain in space-time element. Here, Υ(θ) can be written as,

Υ(θ) = det

[
xr(θ) yr(θ)
xs(θ) ys(θ)

]
. (3.42)

Computing the inverse of matrix Q, we get

Q−1 = P =
1

Jst(θ)


∆t
2 ys −∆t

2 yr 0

−∆t
2 xs

∆t
2 xr 0

−xθys + yθxs xθyr − yθxr Υ(θ)



=



ys(θ)

Υ(θ)
−yr(θ)

Υ(θ)
0

−xs(θ)
Υ(θ)

xr(θ)

Υ(θ)
0

Vr(r, θ) Vs(r, θ)
2

∆t


,

where

Vr(r, θ) =
−xθ(r)ys(θ) + yθ(r)xs(θ)

Jst(θ)
, Vs(r, θ) =

xθ(r)yr(θ)− yθ(r)xr(θ)

Jst(θ)
.

46 CHAPTER 3. NUMERICAL METHOD

Then (3.41) can be rewritten as

 N̄α
a,x(x, t)

N̄α
a,y(x, t)

N̄α
a,t(x, t)

 =



ys(θ)

Υ(θ)
−yr(θ)

Υ(θ)
0

−xs(θ)
Υ(θ)

xr(θ)

Υ(θ)
0

Vr(r, θ) Vs(r, θ)
2

∆t


 Na,rT

α(θ)
Na,sT

α(θ)
Na(r)Tαθ



=


ys(θ)Na,r − yr(θ)Na,s

Υ(θ)
Tα(θ)

−xs(θ)Na,r + xr(θ)Na,s

Υ(θ)
Tα(θ)

(Vr(r, θ)Na,r + Vs(r, θ)Na,s)T
α
θ +

(−1)α

∆t
Na(r)

 .
(3.43)

3.2.6 Computation of Component System Matrix and Right-
hand Side of The Linearized System

Using (3.43), we can compute all components of the finite element systems
matrices K and J in (3.36),(3.37) and right-hand side F in (3.38). The
components of system matrix and the right-hand side are decomposed from
spatial and temporal shape functions due to (3.40). We compute the integral
over temporal domain using Gaussian quadrature with Gaussian quadrature
points θ̃i and weights Wi (Appendix 3.2.10); while the integral over spatial
domain will be calculated analytically for efficiency of computation reason
[29]. It is possible to perform integration over spatial domain analytically,
since we use linear triangular as spatial element. Here, we use the formula
in [30] ∫

4
Nα

1 N
β
2 N

γ
3 d4 =

α!β!γ!

(α+ β + γ + 2)!
2A

where A is the area of triangular 4 that can be obtained from

2A = det

 1 x1 y1

1 x2 y2

1 x3 y3

 ,

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 47

with (xi, yi) is the coordinate of node i in triangular 4. In the computation
of component system matrix, we change the domain of integration from
physical domain into parametrical domain. In this case, A represent the

area of triangle in parametrical domain with A =
1

2
.

We will calculate the linear terms first and then nonlinear terms (convec-
tion term, stabilization stab1 term, stabilization stab4 term) in increment
form. We denote each term with its abbreviated name as we mentioned
in the earlier part of this section, e.g., TD for time-dependent term. In
TDe

i (a, b), index i represents the position of block matrix of this term, su-
perindex e is the number of space-time slab element Qen. This symbol also
emphasizes that this computation is done for each element separately. a and
b are the local numbers of spatial nodes in Qen, a = 1, 2, 3; b = 1, 2, 3, α and
β represent time level at Qen, 1 for time level tn and 2 for tn+1, Q̂en is Qen in
parametrical domain, Q̂4n represents the triangular (spatial element) in Q̂en.

1) Time-dependent term (TD),

∫
Qen

ρwh∂u
h

∂t
dQ (3.44)

TDe
1(a, b)

= ρ

∫
Qen

N̄α
a (x, t)N̄β

b,t(x, t) dx dt

= ρ

∫
Q̂en

N̄α
a (x(r, θ), t(θ))N̄β

b,t(x(r, θ), t(θ))Jst(θ) dr dθ

= ρ

∫
Q̂4n

2∑
i=1

Nα
a (r, θ̃i)N

β
b,t(r, θ̃i)J

st(θ̃i)Wi dr

= ρ
2∑
i=1

Jst(θ̃i)Wi

∫
Q̂4n

Na(r)Tα(θ̃i)N
β
b,t(r, θ̃i) dr

= ρ

2∑
i=1

Jst(θ̃i)Wi

[
Tα(θ̃i)T

β(θ̃i)

∫
Q̂4n

Na(r)(Vr(r, θ̃i)Nb,r + Vs(r, θ̃i)Nb,s)dr

]

+ ρ

2∑
i=1

Jst(θ̃i)Wi

[
Tα(θ̃i)

(−1)β

∆t

∫
Q̂4n

Na(r)Nb(r)dr

]

48 CHAPTER 3. NUMERICAL METHOD

We obtain time-dependent term,

TDe
1(a, b)


= ρ

2∑
i=1

Tα(θ̃i)
2A

24

[
A1 +A2 +2Jst(θ̃i)

(−1)β

∆t

]
, if a = b

= ρ

2∑
i=1

Tα(θ̃i)
2A

24

[
A1 +A2 +Jst(θ̃i)

(−1)β

∆t

]
, otherwise

TDe
1(a, b)


= ρ

2∑
i=1

Tα(θ̃i)
2A

24
[A1 +A2 +Υ(θ̃i)(−1)β] , if a = b

= ρ
2∑
i=1

Tα(θ̃i)
2A

24

[
A1 +A2 +Υ(θ̃i)

2
(−1)β

]
, otherwise

where

A1 = T β(θ̃i) (
∑
Nc(r)(−∆xc

2
−∆xa

2
)ys(θ̃i)+

∑
Nc(r)(∆yc

2
+ ∆ya

2
)xs(θ̃i))Nb,r

A2 = T β(θ̃i) (
∑
Nc(r)(∆xc

2
+ ∆xa

2
)yr(θ̃i)−

∑
Nc(r)(−∆yc

2
−∆ya

2
)xr(θ̃i))Nb,s

TDe
5(a, b) = TDe

1(a, b)
2) Component wise scalar product

∫
Qen

ε(wh) : σ dQen (3.45)

This term consist of

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 49

• Gradient matrix for pressure (GT)

(GT3)e(a, b) = −
∫
Qen

N̄α
a,x(t)N̄β

b (x, t) dx dt

= −
∫
Q̂en

N̄α
a,x(t(θ))N̄β

b (x(r, θ), t(θ))Jst(θ) dr dθ

= −
∫
Q̂4n

2∑
i=1

Nα
a,x(θ̃i)N

β
b (r, θ̃i)J

st(θ̃i)Wi dr

= −
2∑
i=1

Jst(θ̃i)Wi

∫
Q̂4n

Na,x(θ̃i)T
α(θ̃i)Nb(r)T β(θ̃i) dr

= −
2∑
i=1

Jst(θ̃i)WiT
α(θ̃i)T

β(θ̃i)Na,x(θ̃i)

∫
Q̂4n

Nb(r)

= −
2∑
i=1

∆t

2
Υ(θ̃i)WiT

α(θ̃i)T
β(θ̃i)Na,x(θ̃i)

2A

6

= −∆t

12

2∑
i=1

Υ(θ̃i)T
α(θ̃i)T

β(θ̃i)Na,x(θ̃i)

and similarly with (GT5)e(a, b) by changing Na,x with Na,y

(GT6)e(a, b) = −
∫
Qen

N̄α
a,y(t)N̄

β
b (x, t) dx dt

= −∆t

12

2∑
i=1

Υ(θ̃i)T
α(θ̃i)T

β(θ̃i)Na,y(θ̃i)

3) Diffusion term (B):

Be
1(a, b) = µ

∫
Qen

2N̄α
a,x(t)N̄β

b,x(t) + N̄α
a,y(t)N̄

β
b,y(t) dx dt

= µ

∫
Q̂en

2N̄α
a,x(t(θ))N̄β

b,x(t(θ))Jst(θ) dr dθ

+ µ

∫
Q̂en

N̄α
a,y(t(θ))N̄

β
b,y(t(θ))J

st(θ) dr dθ

50 CHAPTER 3. NUMERICAL METHOD

Be
1(a, b) = µ

∫
Q̂4n

2∑
i=1

2Nα
a,x(θ̃i)N

β
b,x(θ̃i)J

st(θ̃i)Wi dr

+ µ

∫
Q̂en

2∑
i=1

Nα
a,y(θ̃i)N

β
b,y(θ̃i)J

st(θ̃i)Wi dr

= µ
2∑
i=1

Jst(θ̃i)Wi

∫
Q̂4n

2Na,x(θ̃i)T
α(θ̃i)Nb,x(θ̃i)T

β(θ̃i) dr

+ µ

2∑
i=1

Jst(θ̃i)Wi

∫
Q̂4n

Na,y(θ̃i)T
α(θ̃i)Nb,y(θ̃i)T

β(θ̃i) dr

= µ

2∑
i=1

Jst(θ̃i)Wi2Na,x(θ̃i)T
α(θ̃i)Nb,x(θ̃i)T

β(θ̃i)

∫
Q̂4n

dr

+ µ

2∑
i=1

Jst(θ̃i)WiNa,y(θ̃i)T
α(θ̃i)Nb,y(θ̃i)T

β(θ̃i)

∫
Q̂4n

dr

= µ
2∑
i=1

∆t

2
Υ(θ̃i)Wi2Na,x(θ̃i)T

α(θ̃i)Nb,x(θ̃i)T
β(θ̃i)

2A

2

+ µ
2∑
i=1

∆t

2
Υ(θ̃i)WiNa,y(θ̃i)T

α(θ̃i)Nb,y(θ̃i)T
β(θ̃i)

2A

2

=
µ∆t

2

2∑
i=1

Υ(θ̃i)Na,x(θ̃i)T
α(θ̃i)Nb,x(θ̃i)T

β(θ̃i)

+
µ∆t

4

2∑
i=1

Υ(θ̃i)Na,y(θ̃i)T
α(θ̃i)Nb,y(θ̃i)T

β(θ̃i).

Similarly,

Be
2(a, b) = µ

∫
Qen

N̄α
a,y(t)N̄

β
b,x(t) dx dt

= µ

∫
Q̂en

N̄α
a,y(t(θ))N̄

β
b,x(t(θ))Jst(θ) dr dθ

= µ

∫
Q̂4n

2∑
i=1

Nα
a,y(θ̃i)N

β
b,x(θ̃i)J

st(θ̃i)Wi dr

= µ

2∑
i=1

Jst(θ̃i)Wi

∫
Q̂4n

Na,y(θ̃i)T
α(θ̃i)Nb,x(θ̃i)T

β(θ̃i) dr

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 51

Be
2(a, b) = µ

2∑
i=1

Jst(θ̃i)WiNa,y(θ̃i)T
α(θ̃i)Nb,x(θ̃i)T

β(θ̃i)

∫
Q̂4n

dr

= µ

2∑
i=1

Jst(θ̃i)WiNa,y(θ̃i)T
α(θ̃i)Nb,x(θ̃i)T

β(θ̃i)
2A

2

= µ
2∑
i=1

∆t

2
Υ(θ̃i)Na,y(θ̃i)T

α(θ̃i)Nb,x(θ̃i)T
β(θ̃i)

2A

2

=
µ∆t

4

2∑
i=1

Υ(θ̃i)Na,y(θ̃i)T
α(θ̃i)Nb,x(θ̃i)T

β(θ̃i).

Be
4(a, b) = µ

∫
Qen

N̄α
a,x(t)N̄β

b,y(t) dx dt

=
µ∆t

4

2∑
i=1

Υ(θ̃i)Na,x(θ̃i)T
α(θ̃i)Nb,y(θ̃i)T

β(θ̃i).

Be
5(a, b) = µ

∫
Qen

N̄α
a,x(t)N̄β

b,x(t) + 2N̄α
a,y(t)N̄

β
b,y(t) dx dt

=
µ∆t

4

2∑
i=1

Υ(θ̃i)Na,x(θ̃i)T
α(θ̃i)Nb,x(θ̃i)T

β(θ̃i)

+
µ∆t

2

2∑
i=1

Υ(θ̃i)Na,y(θ̃i)T
α(θ̃i)Nb,y(θ̃i)T

β(θ̃i).

4) Jump term (M), ∫
Ωln

ρ(wh)+
n (uh)+

n dΩ (3.46)

M e
1 (a, b) = ρ

∫
Qen

Na(x)Nb(x) dx = ρ

∫
Qen

Na(r)Nb(r)Υ̃ dr

=

{
ρΥ̃2A

12 = ρ
12Υ̃, if a = b

ρΥ̃2A
24 = ρ

24Υ̃, otherwise

M e
5 (a, b) = M e

1 (a, b)

5) Gradient term (G), ∫
Qen

qh.∇uh dQ (3.47)

52 CHAPTER 3. NUMERICAL METHOD

The integration is analogous to that of (GT) term

Ge7(a, b) =

∫
Qen

N̄α
a (x, t)N̄β

b,x(t) dx dt =
∆t

12

2∑
i=1

Υ(θ̃i)T
α(θ̃i)T

β(θ̃i)Nb,x(θ̃i)

Ge8(a, b) =

∫
Qen

N̄α
a (x, t)N̄β

b,y(t) dx dt =
∆t

12

2∑
i=1

Υ(θ̃i)T
α(θ̃i)T

β(θ̃i)Nb,y(θ̃i)

6) Stabilization terms (S(U)) :
(nel)n∑
e=1

∫
Qen

1

ρ

[
τ1 ρ (

∂wh

∂t
+ uh · ∇wh) + τ2∇qh

]

·
[
ρ(
∂uh

∂t
+ uh · ∇uh − fh)−∇ · σ(ph,uh)

]
dQ+

(nel)n∑
e=1

∫
Qen

τ3∇·whρ∇·uh dQ

In order to explain the calculation of stabilization terms, we divide the above
expression into five parts.
a. Stab1 :∫

Qen

τ1
1

ρ

[
ρ(
∂wh

∂t
+ uh · ∇wh)ρ(

∂uh

∂t
+ uh · ∇uh)

]
dQ (3.48)

Stab1 is nonlinear term, it will be explained later.
b. Stab2 ∫

Qkn

ρ(
∂wh

∂t
+ uh · ∇wh)

τ1

ρ
∇ph dQ (3.49)

In x-component : τ1

∫
Qen
ρ(∂w

h

∂t + u∂w
h

∂x + v ∂w
h

∂y)∂p
h

∂x dQ

S2e3(a, b)

= τ1

∫
Qen

[
N̄α
a,t(x, t) + N̄α

a,x(x, t)u+ N̄α
a,y(x, t)v

]
N̄β
b,x(t) dx dt

= τ1

∫
Q̂en

[
Nα
a,t(r, θ) +Nα

a,x(θ)(
∑2
γ=1

∑3
c=1 u

∗γ
c Nc(r)T γ(θ)

]
Nβ
b,x(θ)Jst(θ) dr dθ

+ τ1

∫
Q̂en

[
Nα
a,y(θ)(

∑2
γ=1

∑3
c=1 v

∗γ
c Nc(r)T γ(θ)

]
Nβ
b,x(θ)Jst(θ) dr dθ

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 53

S2e3(a, b)

= τ1

∫
Q̂4n

2∑
i=1

Jst(θ̃i)WiNb,x(θ̃i)T
β(θ̃i)

[
Na,x(θ̃i)T

α(θ̃i)(
∑2
γ=1

∑3
c=1 u

∗γ
c Nc(r)T γ(θ̃i)

]
+ τ1

∫
Q̂4n

2∑
i=1

Jst(θ̃i)WiNb,x(θ̃i)T
β(θ̃i)

[
Na,y(θ̃i)T

α(θ̃i)(
∑2
γ=1

∑3
c=1 u

∗γ
c Nc(r)T γ(θ̃i)

]
+ τ1

∫
Q̂4n

2∑
i=1

Jst(θ̃i)WiNb,x(θ̃i)T
β(θ̃i)

[
(Vr(r, θ̃i)Na,r + Vs(r, θ̃i)Na,s)T

α(θ̃i)
]

+ τ1

∫
Q̂4n

2∑
i=1

Jst(θ̃i)WiNb,x(θ̃i)T
β(θ̃i)

(−1)α

∆t
Na(r)

= τ1

2∑
i=1

Jst(θ̃i)Nb,x(θ̃i)T
β(θ̃i)Na,x(θ̃i)T

α(θ̃i)
[∑3

c=1(u∗1c T
1(θ̃i)+u

∗2
c T

2(θ̃i))
∫
Q̂
4
n
Nc(r)dr

]
+ τ1

2∑
i=1

Jst(θ̃i)Nb,x(θ̃i)T
β(θ̃i)Na,y(θ̃i)T

α(θ̃i)
[∑3

c=1(v∗1c T 1(θ̃i)+v
∗2
c T 2(θ̃i))

∫
Q̂
4
n
Nc(r)dr

]
+ τ1

2∑
i=1

Jst(θ̃i)Nb,x(θ̃i)T
β(θ̃i)T

α(θ̃i)

∫
Q̂4n

(
−xθ(r)ys(θ̃i) + yθ(r)xs(θ̃i)

Jst(θ̃i)

)
Na,rdr

+ τ1

2∑
i=1

Jst(θ̃i)Nb,x(θ̃i)T
β(θ̃i)T

α(θ̃i)

∫
Q̂4n

(
xθ(r)yr(θ̃i)− yθ(r)xr(θ̃i)

Jst(θ̃i)

)
Na,sdr

+ τ1

2∑
i=1

Jst(θ̃i)Nb,x(θ̃i)T
β(θ̃i)

(−1)α

∆t

∫
Q̂4n

Na(r)dr

54 CHAPTER 3. NUMERICAL METHOD

S2e3(a, b)

= τ1

2∑
i=1

Jst(θ̃i)Nb,x(θ̃i)T
β(θ̃i)Na,x(θ̃i)T

α(θ̃i) [
∑3
c=1(u∗1c T

1(θ̃i)+u
∗2
c T

2(θ̃i))
det
6

]

+ τ1

2∑
i=1

Jst(θ̃i)Nb,x(θ̃i)T
β(θ̃i)Na,y(θ̃i)T

α(θ̃i) [
∑3
c=1(v∗1c T 1(θ̃i)+v

∗2
c T 2(θ̃i))

det
6

]

+ τ1

2∑
i=1

Nb,x(θ̃i)T
β(θ̃i)T

α(θ̃i) (A3Na,r +A4Na,s)

+ τ1

2∑
i=1

Jst(θ̃i)Nb,x(θ̃i)T
β(θ̃i)

(−1)α

∆t

2A

6

=
τ1

6

2∑
i=1

Jst(θ̃i)Nb,x(θ̃i)T
β(θ̃i)Na,x(θ̃i)T

α(θ̃i) [
∑3
c=1(u∗1c T

1(θ̃i)+u
∗2
c T

2(θ̃i))]

+
τ1

6

2∑
i=1

Jst(θ̃i)Nb,x(θ̃i)T
β(θ̃i)Na,y(θ̃i)T

α(θ̃i) [
∑3
c=1(v∗1c T 1(θ̃i)+v

∗2
c T 2(θ̃i))]

+
τ1

6

2∑
i=1

Nb,x(θ̃i)T
β(θ̃i)T

α(θ̃i) (−∑ ∆xc
2
ys(θ̃i)+

∑ ∆yc
2
xs(θ̃i))Na,r

+
τ1

6

2∑
i=1

Nb,x(θ̃i)T
β(θ̃i)T

α(θ̃i) (
∑ ∆xc

2
yr(θ̃i)−

∑ ∆yc
2
xr(θ̃i))Na,s

+
τ1

6

2∑
i=1

Jst(θ̃i)Nb,x(θ̃i)T
β(θ̃i)

(−1)α

∆t
,

where

A3 =
(
−∑ ∆xc

2
ys(θ̃i)

∫
Q̂
4
n
Nc(r)dr+

∑ ∆yc
2
xs(θ̃i)

∫
Q̂
4
n
Nc(r)dr

)
A4 =

(∑ ∆xc
2
yr(θ̃i)

∫
Q̂
4
n
Nc(r)dr−

∑ ∆yc
2
xr(θ̃i)

∫
Q̂
4
n
Nc(r)dr

)

Similarly, in y-component : τ1

∫
Qen
ρ(∂w

h

∂t + u∂w
h

∂x + v ∂w
h

∂y)∂p
h

∂y dQ

(using Nb,y instead of Nb,x)

S2e6(a, b) = τ1

∫
Qen

[
N̄α
a,t(x, t) + N̄α

a,x(x, t)u+ N̄α
a,y(x, t)v

]
N̄β
b,y(t) dx dt

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 55

S2e6(a, b)

=
τ1

6

2∑
i=1

Jst(θ̃i)Nb,y(θ̃i)T
β(θ̃i)Na,x(θ̃i)T

α(θ̃i) [
∑3
c=1(u∗1c T

1(θ̃i)+u
∗2
c T

2(θ̃i))]

+
τ1

6

2∑
i=1

Jst(θ̃i)Nb,y(θ̃i)T
β(θ̃i)Na,y(θ̃i)T

α(θ̃i) [
∑3
c=1(v∗1c T 1(θ̃i)+v

∗2
c T 2(θ̃i))]

+
τ1

6

2∑
i=1

Nb,y(θ̃i)T
β(θ̃i)T

α(θ̃i) (−∑ ∆xc
2
ys(θ̃i)+

∑ ∆yc
2
xs(θ̃i))Na,r

+
τ1

6

2∑
i=1

Nb,y(θ̃i)T
β(θ̃i)T

α(θ̃i) (
∑ ∆xc

2
yr(θ̃i)−

∑ ∆yc
2
xr(θ̃i))Na,s

+
τ1

6

2∑
i=1

Jst(θ̃i)Nb,y(θ̃i)T
β(θ̃i)

(−1)α

∆t

c. Stab3, ∫
Qen

τ2

ρ
∇qh · ∇ph dQ (3.50)

S3e9(a, b)

=
τ2

ρ

∫
Qen

∇N̄α
a (x, t) · ∇N̄β

b (x, t) dx dt

=
τ2

ρ

∫
Qen

∇Nα
a (r, θ) ·Nβ

b (r, θ)Jst(θ) dr dθ

=
τ2

ρ

∫
Qen

(
Nα
a,x(θ)Nβ

b,x(θ) +Nα
a,y(θ)N

β
b,y(θ)

)
Jst(θ) dr dθ

=
τ2

ρ

∫
Qen

(
Na,x(θ)Tα(θ)Nb,x(θ)T β(θ) +Na,y(θ)T

α(θ)Nb,y(θ)T
β(θ)

)
Jst(θ) dr dθ

=
τ2

ρ

2∑
i=1

Tα(θ̃i)T
β(θ̃i)J

st(θ̃i)Wi

(
Na,x(θ̃i)Nb,x(θ̃i) +Na,y(θ̃i)Nb,y(θ̃i)

)∫
Q4n

dr

=
τ2

ρ

2∑
i=1

Tα(θ̃i)T
β(θ̃i)J

st(θ̃i)Wi

(
Na,x(θ̃i)Nb,x(θ̃i) +Na,y(θ̃i)Nb,y(θ̃i)

) 2A

2

56 CHAPTER 3. NUMERICAL METHOD

S3e9(a, b)

=
τ2

2ρ

2∑
i=1

Tα(θ̃i)T
β(θ̃i)J

st(θ̃i)
(
Na,x(θ̃i)Nb,x(θ̃i) +Na,y(θ̃i)Nb,y(θ̃i)

)
=
τ2∆t

4ρ

2∑
i=1

Tα(θ̃i)T
β(θ̃i)Υ(θ̃i)

(
Na,x(θ̃i)Nb,x(θ̃i) +Na,y(θ̃i)Nb,y(θ̃i)

)
d. Stab4,

τ2

∫
Qen

∇qh(
∂uh

∂t
+ uh · ∇uh) (3.51)

Stab4 is nonlinear term, it will be explained later.
e. Stab5,

τ3

∫
Qen

∇whρ∇uh dQ (3.52)

S5e1(a, b) = τ3ρ

∫
Qen

N̄α
a,x(t)N̄β

b,x(t) dx dt

= τ3ρ

∫
Qen

Nα
a,x(θ)Nβ

b,x(θ)Jst(θ) dr dθ

= τ3ρ
2∑
i=1

Tα(θ̃i)T
β(θ̃i)J

st(θ̃i)WiNa,x(θ̃i)Nb,x(θ̃i)

∫
Q4n

dr

= τ3ρ
2∑
i=1

Tα(θ̃i)T
β(θ̃i)J

st(θ̃i)WiNa,x(θ̃i)Nb,x(θ̃i)
2A

2

=
τ3ρ

2

2∑
i=1

Tα(θ̃i)T
β(θ̃i)J

st(θ̃i)Na,x(θ̃i)Nb,x(θ̃i)

=
τ3ρ∆t

4

2∑
i=1

Tα(θ̃i)T
β(θ̃i)Υ(θ̃i)Na,x(θ̃i)Nb,x(θ̃i)

Similarly,

S5e2(a, b) = τ3ρ

∫
Qen

N̄α
a,x(t)N̄β

b,y(t) dx dt

=
τ3ρ

2

2∑
i=1

Tα(θ̃i)T
β(θ̃i)J

st(θ̃i)Na,x(θ̃i)Nb,y(θ̃i)

=
τ3ρ∆t

4

2∑
i=1

Tα(θ̃i)T
β(θ̃i)Υ(θ̃i)Na,x(θ̃i)Nb,y(θ̃i)

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 57

S5e4(a, b) = τ3ρ

∫
Qen

N̄α
a,y(t)N̄

β
b,x(t) dx dt

=
τ3ρ

2

2∑
i=1

Tα(θ̃i)T
β(θ̃i)J

st(θ̃i)Na,y(θ̃i)Nb,x(θ̃i)

=
τ3ρ∆t

4

2∑
i=1

Tα(θ̃i)T
β(θ̃i)Υ(θ̃i)Na,y(θ̃i)Nb,x(θ̃i)

S5e5(a, b) = τ3ρ

∫
Qen

N̄α
a,y(t)N̄

β
b,y(t) dx dt

=
τ3ρ

2

2∑
i=1

Tα(θ̃i)T
β(θ̃i)J

st(θ̃i)Na,y(θ̃i)Nb,y(θ̃i)

=
τ3ρ∆t

4

2∑
i=1

Tα(θ̃i)T
β(θ̃i)Υ(θ̃i)Na,y(θ̃i)Nb,y(θ̃i)

7) F1 and F2 ∫
Qen

ρwhf dQ (3.53)

F e1 (a) = ρ

∫
Qen

N̄α
a (x, t)fx dx dt

= ρ

∫
Q̂en

N̄α
a (x(r, θ), t(θ))fxJ

st(θ)dr dθ

= ρ

∫
Q̂4n

2∑
i=1

Na(r)Tα(θ̃i)fxJ
st(θ̃i)Wi dr

= ρfx

2∑
i=1

Tα(θ̃i)J
st(θ̃i)Wi

∫
Q̂4n

Na(r)dr

= ρfx

2∑
i=1

Tα(θ̃i)J
st(θ̃i)Wi

2A

6

=
ρfx
6

2∑
i=1

Tα(θ̃i)J
st(θ̃i)

=
ρfx∆t

12

2∑
i=1

Tα(θ̃i)Υ(θ̃i)

58 CHAPTER 3. NUMERICAL METHOD

Similarly for F e2 (a),

F e2 (a) = ρ

∫
Qen

N̄α
a (x, t)fy dx dt

=
ρfy∆t

12

2∑
i=1

Tα(θ̃i)Υ(θ̃i)

8) Fs4 ∫
Qen

τ2∇qf dQ (3.54)

F eS43
(a)

= τ2

∫
Qen

N̄α
a,x(t)fx + N̄α

a,y(t)fy dx dt

= τ2

[∫
Q̂en

N̄α
a,x(θ), t(θ))fx + N̄α

a,y(θ), t(θ))fy

]
Jst(θ)dr dθ

= τ2

2∑
i=1

[∫
Q̂4n

Na,x(θ̃i)T
α(θ̃i)fx +Na,y(θ̃i)T

α(θ̃i)fy

]
Jst(θ̃i)Widr

= τ2

2∑
i=1

Jst(θ̃i)Wi

[
Na,x(θ̃i)T

α(θ̃i)fx +Na,y(θ̃i)T
α(θ̃i)fy

] ∫
Q̂4n

dr

= τ2

2∑
i=1

Jst(θ̃i)Wi

[
Na,x(θ̃i)T

α(θ̃i)fx +Na,y(θ̃i)T
α(θ̃i)fy

] 2A

2

= τ2
2A

2

∆t

2

2∑
i=1

Υ(θ̃i)Wi

[
Na,x(θ̃i)T

α(θ̃i)fx +Na,y(θ̃i)T
α(θ̃i)fy

]
=
τ2∆t

4

2∑
i=1

Υ(θ̃i)T
α(θ̃i)

[
Na,x(θ̃i)fx +Na,y(θ̃i)fy

]

9) Right-hand side of jump term FM ,

∫
Ωe
ρw(u−) dΩ (3.55)

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 59

F eM1
(a) = ρ

∫
Ωe
Na(x)

3∑
b=1

u−b Nb(x) dx

= ρ

∫
Ωe
Na(r)

3∑
b=1

u−b Nb(r)Υ̂ dr

= ρ
2A

24

3∑
b=1

(u−b + ua)Υ̂

=
ρΥ̂

24

3∑
b=1

(u−b + ua)

Similarly,

F eM2
(a) = ρ

∫
Ωe
Na(x)

3∑
b=1

v−b Nb(x) dx

=
ρΥ̂

24

3∑
b=1

(v−b + va)

The nonlinear terms will be written in increment form, i.e., we take the
solution u in the form

u = u∗ + ∆u,

and substitute it into the corresponding terms and calculate the resulting
contribution to the left-hand side of the system.
1) Convection∫

Qen

ρw(u · ∇u) dQ

= ρ

∫
Qen

w((u∗ + ∆u) · ∇(u∗ + ∆u)) dQ

= ρ

[∫
Qen

w(u∗ · ∇u∗) dQ+

∫
Qen

w(u∗ · ∇∆u) dQ+

∫
Qen

w(∆u · ∇u∗) dQ

]

+ ρ

[∫
Qen

w(∆u · ∇∆u) dQ

]

The first integral contributes to right-hand side since u∗ is known. The
second integral contributes to the left-hand side and we will call it, convec-
tion term (C(U∗)). The third integral contributes to the left-hand side and

60 CHAPTER 3. NUMERICAL METHOD

we will call it convection derivative term (CC(U∗)). The last integral is
dropped since it is quadratic in ∆u [31].
a. Convection term (C(U∗))

ρ

∫
Qen

w(u∗ · ∇∆u) dQ (3.56)

Ce1(U∗)(a, b)

= ρ

∫
Qen

N̄α
a (x, t)(u∗ · ∇N̄β

b (t)) dx dt

= ρ

∫
Qen

N̄α
a (x, t)

[
u∗N̄β

b,x(t) + v∗N̄β
b,y(t)

]
dx dt

= ρ

∫
Q̂en

Nα
a (x(r, θ), t(θ))

[
u∗Nβ

b,x(t(θ)) + v∗Nβ
b,y(t(θ))

]
Jst(θ) dr dt

= ρ

∫
Q̂en

Na(r)Tα(θ)
[
u∗Nb,x(θ)T β(θ) + v∗Nb,y(θ)T (θ)

]
Jst(θ) dr dθ

= ρ
2∑
i=1

Jst(θ̃i)WiT
α(θ̃i)T

β(θ̃i)Nb,x(θ̃i)

∫
Q̂4n

Na(r)
∑2
γ=1

∑3
c=1 u

∗γ
c Nc(r)T γ(θ̃i) dr

+ ρ

2∑
i=1

Jst(θ̃i)WiT
α(θ̃i)T

β(θ̃i)Nb,y(θ̃i)

∫
Q̂4n

Na(r)
∑2
γ=1

∑3
c=1 v

∗γ
c Nc(r)T γ(θ̃i) dr

= ρ

2∑
i=1

Jst(θ̃i)WiT
α(θ̃i)T

β(θ̃i)Nb,x(θ̃i)[
3∑
c=1

(u∗1c T
1(θ̃i) + u∗2c T

2(θ̃i))

∫
Q̂4n

Nc(r)Na(r) dr

]

+ ρ

2∑
i=1

Jst(θ̃i)WiT
α(θ̃i)T

β(θ̃i)Nb,y(θ̃i)[
3∑
c=1

(v∗1c T
1(θ̃i) + v∗2c T

2(θ̃i))

∫
Q̂4n

Nc(r)Na(r) dr

]

= ρ

2∑
i=1

Jst(θ̃i)WiT
α(θ̃i)T

β(θ̃i)Nb,x(θ̃i)
2A

24
(A5 +A6)

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 61

Ce1(U∗)(a, b) = ρ

2∑
i=1

∆t

2
Υ(θ̃i)WiT

α(θ̃i)T
β(θ̃i)Nb,x(θ̃i)

2A

24
(A5 +A6)

= ρ
∆t

48

2∑
i=1

Υ(θ̃i)T
α(θ̃i)T

β(θ̃i)Nb,x(θ̃i) (A5 +A6)

where

A5 =

[
3∑
c=1

(u∗1c + u∗1a)T 1(θ̃i) + (u∗2c + u∗2a)T 2(θ̃i)

]

A6 =

[
3∑
c=1

(v∗1c + v∗1a)T 1(θ̃i) + (v∗2c + v∗2a)T 2(θ̃i)

]
(3.57)

Ce5(U∗)(a, b) = Ce1(U∗)(a, b)

b. Convection derivative (CC(U∗)),

ρ

∫
Qen

w(∆u · ∇u∗) dQ (3.58)

ρ

∫
Qen

w(∆u · ∇u∗) dQ =


CC1(U∗) = ρ

∫
Qen
w1(∆u∂u

∗

∂x) dQ

CC2(U∗) = ρ
∫
Qen
w1(∆v ∂u

∗

∂y) dQ

CC4(U∗) = ρ
∫
Qen
w2(∆u∂v

∗

∂x) dQ

CC1(U∗) = ρ
∫
Qen
w2(∆v ∂v

∗

∂y) dQ

CCe1(U∗)(a, b)

= ρ

∫
Qen

N̄α
a (x, t)N̄β

b (x, t)

 2∑
γ=1

3∑
c=1

u∗γc N̄
γ
c,x(t)

 dx dt

= ρ

∫
Q̂en

Nα
a (r, θ)Nβ

b (r, θ)

 2∑
γ=1

3∑
c=1

u∗γc N
γ
c,x(θ)

 Jst(θ) dr dθ

= ρ

∫
Q4n

2∑
i=1

Jst(θ̃i)WiNa(r)Tα(θ̃i)Nb(r)T β(θ̃i)

 2∑
γ=1

3∑
c=1

u∗γc Nc,x(θ̃i)T
γ(θ)

 dr

= ρ

2∑
i=1

Jst(θ̃i)WiT
α(θ̃i)T

β(θ̃i)

 2∑
γ=1

3∑
c=1

u∗γc Nc,x(θ̃i)T
γ(θ̃i)

∫
Qen

Na(r)Nb(r) dr

62 CHAPTER 3. NUMERICAL METHOD

CCe1(U∗)(a, b)

=



ρ
2∑
i=1

∆t

2
Υ(θ̃i)WiT

α(θ̃i)T
β(θ̃i)

 2∑
γ=1

3∑
c=1

u∗γc Nc,x(θ̃i)T
γ(θ̃i)

 2A

12
,

if a = b.

ρ
2∑
i=1

∆t

2
Υ(θ̃i)WiT

α(θ̃i)T
β(θ̃i)

 2∑
γ=1

3∑
c=1

u∗γc Nc,x(θ̃i)T
γ(θ̃i)

 2A

24
,

otherwise.

=



ρ∆t
24

2∑
i=1

Υ(θ̃i)T
α(θ̃i)T

β(θ̃i)

(
3∑
c=1

(u∗1c T
1(θ̃i) + u∗2c T

2(θ̃i))Nc,x(θ̃i)

)
,

if a = b.

ρ∆t
48

2∑
i=1

Υ(θ̃i)T
α(θ̃i)T

β(θ̃i)

(
3∑
c=1

(u∗1c T
1(θ̃i) + u∗2c T

2(θ̃i)Nc,x(θ̃i)

)
,

otherwise.

And similarly for other (CC(U∗))

CCe2(U∗)(a, b)

= ρ

∫
Qen

N̄α
a (x, t)N̄β

b (x, t)

 2∑
γ=1

3∑
c=1

u∗γc N̄
γ
c,y(t)

 dx dt

=



ρ∆t
24

2∑
i=1

Υ(θ̃i)T
α(θ̃i)T

β(θ̃i)

(
3∑
c=1

(u∗1c T
1(θ̃i) + u∗2c T

2(θ̃i))Nc,y(θ̃i)

)
,

if a = b.

ρ∆t
48

2∑
i=1

Υ(θ̃i)T
α(θ̃i)T

β(θ̃i)

(
3∑
c=1

(u∗1c T
1(θ̃i) + u∗2c T

2(θ̃i)Nc,y(θ̃i)

)
,

otherwise.

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 63

CCe4(U∗)(a, b)

= ρ

∫
Qen

N̄α
a (x, t)N̄β

b (x, t)

 2∑
γ=1

3∑
c=1

v∗γc N̄
γ
c,y(t)

 dx dt

=



ρ∆t
24

2∑
i=1

Υ(θ̃i)T
α(θ̃i)T

β(θ̃i)

(
3∑
c=1

(v∗1c T
1(θ̃i) + v∗2c T

2(θ̃i))Nc,x(θ̃i)

)
,

if a = b.

ρ∆t
48

2∑
i=1

Υ(θ̃i)T
α(θ̃i)T

β(θ̃i)

(
3∑
c=1

(v∗1c T
1(θ̃i) + v∗2c T

2(θ̃i)Nc,x(θ̃i)

)
,

otherwise.

CCe5(U∗)(a, b)

= ρ

∫
Qen

N̄α
a (x, t)N̄β

b (x, t)

 2∑
γ=1

3∑
c=1

v∗γc N̄
γ
c,y(t)

 dx dt

=



ρ∆t
24

2∑
i=1

Υ(θ̃i)T
α(θ̃i)T

β(θ̃i)

(
3∑
c=1

(v∗1c T
1(θ̃i) + v∗2c T

2(θ̃i))Nc,y(θ̃i)

)
,

if a = b

ρ∆t
48

2∑
i=1

Υ(θ̃i)T
α(θ̃i)T

β(θ̃i)

(
3∑
c=1

(v∗1c T
1(θ̃i) + v∗2c T

2(θ̃i)Nc,y(θ̃i)

)
,

otherwise

2) Stab4

τ2

∫
Qen

∇q
(
∂u

∂t
+ u · ∇u

)
dQ

= τ2

[∫
Qen

∇q
(
∂∆u

∂t
+ u∗ · ∇∆u

)
dQ+

∫
Qen

∇q
(
∂∆u

∂t
+ ∆u · ∇u∗

)
dQ

]

+ τ2

[∫
Qen

∇q
(
∂∆u

∂t
+ ∆u · ∇∆u

)
dQ+

∫
Qen

∇q
(
∂u∗

∂t
+ u∗ · ∇u∗

)
dQ

]

The first integral contributes to the left-hand side and we will call it Stab4
term (S4(U∗)). The second integral is dropped because of convergence rea-
sons. The third integral is also dropped since it is quadratic in ∆u. The
last integral contributes to the right-hand side since u∗ is known.

64 CHAPTER 3. NUMERICAL METHOD

Stab4 term (S4(U∗)),

τ2

∫
Qen

∇q
(
∂∆u

∂t
+ u∗ · ∇∆u

)
dQ (3.59)

Stab4 is similar with stab2 term, only we reverse a with b and α with β.

S4e7(U∗)(a, b)

= τ1

∫
Qen

[
N̄β
b,t(x, t) + N̄β

b,x(x, t)u+ N̄β
b,y(x, t)v

]
N̄α
a,x(t) dx dt

=
τ1

6

2∑
i=1

Jst(θ̃i)Na,x(θ̃i)T
α(θ̃i)Nb,x(θ̃i)T

β(θ̃i) [
∑3
c=1(u∗1c T

1(θ̃i)+u
∗2
c T

2(θ̃i))]

+
τ1

6

2∑
i=1

Jst(θ̃i)Na,x(θ̃i)T
α(θ̃i)Nb,y(θ̃i)T

β(θ̃i) [
∑3
c=1(v∗1c T 1(θ̃i)+v

∗2
c T 2(θ̃i))]

+
τ1

6

2∑
i=1

Na,x(θ̃i)T
α(θ̃i)T

β(θ̃i) (−∑ ∆xc
2
ys(θ̃i)+

∑ ∆yc
2
xs(θ̃i))Nb,r

+
τ1

6

2∑
i=1

Na,x(θ̃i)T
α(θ̃i)T

β(θ̃i) (
∑ ∆xc

2
yr(θ̃i)−

∑ ∆yc
2
xr(θ̃i))Nb,s

+
τ1

6

2∑
i=1

Jst(θ̃i)Na,x(θ̃i)T
α(θ̃i)

(−1)β

∆t

S4e8(U∗)(a, b)

= τ1

∫
Qen

[
N̄β
b,t(x, t) + N̄β

b,x(x, t)u+ N̄β
b,y(x, t)v

]
N̄α
a,y(t) dx dt

=
τ1

6

2∑
i=1

Jst(θ̃i)Na,y(θ̃i)T
α(θ̃i)Nb,x(θ̃i)T

β(θ̃i) [
∑3
c=1(u∗1c T

1(θ̃i)+u
∗2
c T

2(θ̃i))]

+
τ1

6

2∑
i=1

Jst(θ̃i)Na,y(θ̃i)T
α(θ̃i)Nb,y(θ̃i)T

β(θ̃i) [
∑3
c=1(v∗1c T 1(θ̃i)+v

∗2
c T 2(θ̃i))]

+
τ1

6

2∑
i=1

Na,y(θ̃i)T
α(θ̃i)T

β(θ̃i) (−∑ ∆xc
2
ys(θ̃i)+

∑ ∆yc
2
xs(θ̃i))Nb,r

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 65

+
τ1

6

2∑
i=1

Na,y(θ̃i)T
α(θ̃i)T

β(θ̃i) (
∑ ∆xc

2
yr(θ̃i)−

∑ ∆yc
2
xr(θ̃i))Nb,s

+
τ1

6

2∑
i=1

Jst(θ̃i)Na,y(θ̃i)T
α(θ̃i)

(−1)β

∆t

3) Stab1 ∫
Qen

τ1
1

ρ

[
ρ

(
∂w

∂t
+ u · ∇w

)
ρ

(
∂u

∂t
+ u · ∇u

)]
dQ (3.60)

∫
Qen

τ1
1

ρ

[
ρ

(
∂w

∂t
+ u · ∇w

)
ρ

(
∂u

∂t
+ u · ∇u

)]
dQ

=

∫
Qen

τ1ρ

[(
∂w

∂t
+ u∗ · ∇w

)(
∂(u∗ + ∆u)

∂t
+ (u∗ + ∆u) · ∇(u∗ + ∆u)

)]
dQ

Dropping ∆u in the first bracket improves the convergence rate [31].

=τ1ρ

[∫
Qen

(
∂w

∂t
+ u∗ · ∇w

)(
∂u∗

∂t
+ u∗ · ∇u∗

)
dQ

]

+ τ1ρ

[∫
Qen

(
∂w

∂t
+ u∗ · ∇w

)(
∂∆u

∂t
+ u∗ · ∇∆u

)
dQ

]

+ τ1ρ

[∫
Qen

(
∂w

∂t
+ u∗ · ∇w

)
(∆u · ∇u∗) dQ

]

+ τ1ρ

[∫
Qen

(
∂w

∂t
+ u∗ · ∇w

)
(∆u · ∇∆u) dQ

]
The first integral contributes to the the right-hand side since u∗ is known.
The second integral contributes to the left-hand side and we will call it stab1
term (S1(U∗)). The third integral contributes to the left-hand side and we
will call it stab1 derivative term (SS1(U∗)). The last integral is dropped
since it is quadratic in ∆u. Since stab1 term (second integral) is compli-
cated, we divide it into stab1a term, stab1b term, stab1c term and stab1d
term,
a. stab1a

τ1ρ

∫
Qen

∂w

∂t

∂∆u

∂t
dQ (3.61)

66 CHAPTER 3. NUMERICAL METHOD

S1ae1(a, b)

= τ1ρ

∫
Qen

N̄α
a,t(x, t)N̄

β
b,t(x, t) dx dt

= τ1ρ

∫
Q̂en

N̄α
a,t(x(r, θ), t(θ))N̄β

b,t(x(r, θ), t(θ))Jst(θ) dr dθ

= τ1ρ

∫
Q̂4n

2∑
i=1

Nα
a,t(r, θ̃i)N

β
b,t(r, θ̃i)J

st(θ̃i)Wi dr

= τ1ρ

2∑
i=1

Jst(θ̃i)Wi

∫
Q̂4n

Nα
a,t(r, θ̃i)N

β
b,t(r, θ̃i)dr

= τ1ρ
2∑
i=1

Jst(θ̃i)Wi

∫
Q̂4n

[(
Vr(r, θ̃i)Na,r + Vs(r, θ̃i)Na,s

)
Tα(θ̃i) +

(−1)α

∆t
Na(r)

]
[(
Vr(r, θ̃i)Nb,r + Vs(r, θ̃i)Nb,s

)
T β(θ̃i) +

(−1)β

∆t
Nb(r)

]
dr

S1ae5(a, b) = S1ae1(a, b)

b. stab1b

τ1ρ

∫
Qen

∂w

∂t
u∗ · ∇∆udQ (3.62)

S1be1(a, b)

= τ1ρ

∫
Qen

N̄α
a,t(x, t)u

∗ · ∇barNβ
b (x, t) dx dt

= τ1ρ

∫
Q̂en

N̄α
a,t(x(r, θ), t(θ))N̄β

b,t(x(r, θ), t(θ))Jst(θ) dr dθ

= τ1ρ

∫
Q̂en

Nα
a,t(r, θ)

(
u∗ ·Nβ

b,x(r, θ) + v∗ ·Nβ
b,y(r, θ)

)
Jst(θ) dr dθ

= τ1ρ
2∑
i=1

Jst(θ̃i)Wi

∫
Q̂4n

[(
Vr(r, θ̃i)Na,r + Vs(r, θ̃i)Na,s

)
Tα(θ̃i) +

(−1)α

∆t
Na(r)

]
 2∑
γ=1

3∑
c=1

u∗γc Nc(r)T γ(θ̃i)Nb,x(θ̃i)T
β(θ̃i) +

2∑
γ=1

3∑
c=1

v∗γc Nc(r)T γ(θ̃i)Nb,y(θ̃i)T
β(θ̃i)

dr

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 67

S1be5(a, b) = S1be1(a, b)

c. stab1c

τ1ρ

∫
Qen

u∗ · ∇w∂∆u

∂t
dQ (3.63)

S1ce1(a, b)

= τ1ρ

∫
Qen

N̄β
b,t(x, t)u

∗ · ∇N̄α
a (x, t) dx dt

= τ1ρ

∫
Q̂en

N̄β
b,t(x(r, θ), t(θ))N̄α

a,t(x(r, θ), t(θ))Jst(θ) dr dθ

= τ1ρ

∫
Q̂en

Nβ
b,t(r, θ)

(
u∗ ·Nα

a,x(r, θ) + v∗ ·Nα
a,y(r, θ)

)
Jst(θ) dr dθ

= τ1ρ

2∑
i=1

Jst(θ̃i)Wi

∫
Q̂4n

[(
Vr(r, θ̃i)Nb,r + Vs(r, θ̃i)Nb,s

)
T β(θ̃i) +

(−1)β

∆t
Nb(r)

]
 2∑
γ=1

3∑
c=1

u∗γc Nc(r)T γ(θ̃i)Na,x(θ̃i)T
α(θ̃i) +

2∑
γ=1

3∑
c=1

v∗γc Nc(r)T γ(θ̃i)Na,y(θ̃i)T
α(θ̃i)

dr

S1ce5(a, b) = S1ce1(a, b)

d. stab1d

τ1ρ

∫
Qen

(u∗ · ∇w) (u∗ · ∇∆u) dQ (3.64)

68 CHAPTER 3. NUMERICAL METHOD

S1de1(a, b)

= τ1ρ

∫
Qen

(
u∗ · ∇N̄α

a (x, t)
) (

u∗ · ∇N̄β
b (x, t)

)
dx dt

= τ1ρ

∫
Qen

(
u∗N̄α

a,x(x, t) + v∗N̄α
a,y(x, t)

) (
u∗N̄β

b,x(x, t) + v∗N̄β
b,y(x, t)

)
dx dt

= τ1ρ

∫
Q̂en

(u∗Na,x(θ)Tα(θ) + v∗Na,y(θ)T
α(θ))(

u∗Nb,x(θ)T β(θ) + v∗Nb,y(θ)T
β(θ)

)
Jst(θ) dr dθ

= τ1ρ
2∑
i=1

Tα(θ̃i)T
β(θ̃i)J

st(θ̃i)Wi∫
Q̂4n

(u∗Na,x(θ) + v∗Na,y(θ)) (u∗Nb,x(θ) + v∗Nb,y(θ)) dr

S1de5(a, b) = S1de1(a, b)

Stab1 derivative term (SS1(U∗)) can be written as,

τ1ρ

∫
Qen

(
∂w

∂t
+ u∗ · ∇w

)
(∆u∗ · ∇u∗) dQ

(3.65)

or,

SS1e1(a, b) = τ1ρ

∫
Qen

(
∂w

∂t
+ u∗w1,x + v∗w1,y

)
∆u u∗,x dQ

SS1e2(a, b) = τ1ρ

∫
Qen

(
∂w

∂t
+ u∗w1,x + v∗w1,y

)
∆v u∗,y dQ

SS1e4(a, b) = τ1ρ

∫
Qen

(
∂w

∂t
+ u∗w1,x + v∗w1,y

)
∆u v∗,x dQ

SS1e5(a, b) = τ1ρ

∫
Qen

(
∂w

∂t
+ u∗w1,x + v∗w1,y

)
∆v v,y dQ

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 69

with

SS1e1(a, b)

= τ1ρ

∫
Qen

(
N̄α
a,t(x, t) + u∗N̄α

a,x(x, t) + v∗N̄α
a,y(x, t)

)
N̄β
b (x, t)

3∑
c=1

(u∗1c T
1 + u∗2c T

2)N̄c,x(θ) dQ

= τ1ρ

∫
Q̂en

(Na,t(r, θ)T
α(θ) + u∗Na,x(θ)Tα(θ) + v∗Na,y(θ)T

α(θ))Nb(r)T β(θ)

3∑
c=1

(u∗1c T
1 + u∗2c T

2)Nc,x(θ)Jst(θ) drdθ

SS1e2(a, b)

= τ1ρ

∫
Qen

(
N̄α
a,t(x, t) + u∗N̄α

a,x(x, t) + v∗N̄α
a,y(x, t)

)
N̄β
b (x, t)

3∑
c=1

(u∗1c T
1 + u∗2c T

2)N̄c,y(θ) dQ

= τ1ρ

∫
Q̂en

(Na,t(r, θ)T
α(θ) + u∗Na,x(θ)Tα(θ) + v∗Na,y(θ)T

α(θ))Nb(r)T β(θ)

3∑
c=1

(u∗1c T
1 + u∗2c T

2)Nc,y(θ)J
st(θ) drdθ

SS1e4(a, b)

= τ1ρ

∫
Qen

(
N̄α
a,t(x, t) + u∗N̄α

a,x(x, t) + v∗N̄α
a,y(x, t)

)
N̄β
b (x, t)

3∑
c=1

(v∗1c T
1 + v∗2c T

2)N̄c,x(θ) dQ

= τ1ρ

∫
Q̂en

(Na,t(r, θ)T
α(θ) + u∗Na,x(θ)Tα(θ) + v∗Na,y(θ)T

α(θ))Nb(r)T β(θ)

3∑
c=1

(v∗1c T
1 + v∗2c T

2)Nc,x(θ)Jst(θ) drdθ

70 CHAPTER 3. NUMERICAL METHOD

SS1e5(a, b)

= τ1ρ

∫
Qen

(
N̄α
a,t(x, t) + u∗N̄α

a,x(x, t) + v∗N̄α
a,y(x, t)

)
N̄β
b (x, t)

3∑
c=1

(v∗1c T
1 + v∗2c T

2)N̄c,y(θ) dQ

= τ1ρ

∫
Q̂en

(Na,t(r, θ)T
α(θ) + u∗Na,x(θ)Tα(θ) + v∗Na,y(θ)T

α(θ))Nb(r)T β(θ)

3∑
c=1

(v∗1c T
1 + v∗2c T

2)Nc,y(θ)J
st(θ) drdθ

There is another term in the right-hand side F (3.38) which is changing
for each Newton iteration, since it depend on u∗,

∫
Qen

τ1ρ

(
∂wh

∂t
+ u∗ · ∇w

)
f dQ (3.66)

F eSS11
(a)

= τ1ρ

∫
Qen

[
N̄α
a,t(x, t) + u∗∇N̄α

a (x, t)
]
fx dx dt

=
τ1ρfx

6

2∑
i=1

[
Tα(θ̃i) (−∑ ∆xc

2
ys(θ̃i)+

∑ ∆yc
2
xs(θ̃i))Na,r

]
+
τ1ρfx

6

2∑
i=1

[
Tα(θ̃i) (

∑ ∆xc
2
yr(θ̃i)−

∑ ∆yc
2
xr(θ̃i))Na,s + Υ(θ̃i)

(−1)α

2

]

+
τ1ρfx∆t

12

2∑
i=1

Υ(θ̃i)T
α(θ̃i)Na,x(θ̃i)

∑3
c=1(u∗1c T

1(θ̃i)+u
∗2
c T

2(θ̃i))

+
τ1ρfx∆t

12

2∑
i=1

Υ(θ̃i)T
α(θ̃i)Na,y(θ̃i)

∑3
c=1(v∗1c T 1(θ̃i)+v

∗2
c T 2(θ̃i))

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 71

Similarly for F eSS12
(a),

F eSS12
(a)

= τ1ρ

∫
Qen

[
N̄α
a,t(x, t) + u∗∇N̄α

a (x, t)
]
fy dx dt

=
τ1ρfy

6

2∑
i=1

[
Tα(θ̃i) (−∑ ∆xc

2
ys(θ̃i)+

∑ ∆yc
2
xs(θ̃i))Na,r

]
+
τ1ρfy

6

2∑
i=1

[
Tα(θ̃i) (

∑ ∆xc
2
yr(θ̃i)−

∑ ∆yc
2
xr(θ̃i))Na,s + Υ(θ̃i)

(−1)α

2

]

+
τ1ρfy∆t

12

2∑
i=1

Υ(θ̃i)T
α(θ̃i)Na,x(θ̃i)

∑3
c=1(u∗1c T

1(θ̃i)+u
∗2
c T

2(θ̃i))

+
τ1ρfy∆t

12

2∑
i=1

Υ(θ̃i)T
α(θ̃i)Na,y(θ̃i)

∑3
c=1(v∗1c T 1(θ̃i)+v

∗2
c T 2(θ̃i))

3.2.7 Appendix: The Core of Stabilization

Solving differential equations using numerical methods often encounters
some severe problems such as oscillation, singular matrix, etc. In such cases,
stabilization is needed to get satisfactory result. Some of the circumstances
in which such problems occur are convection-dominated problems or viola-
tion of the Babuska-Brezzi condition, which, in mixed formulation such as
Navier-Stokes equation, may be caused by using equal order of basis func-
tions for velocity and pressure. The underlying idea about the stabilization
can be found in [32]. In this appendix, we discuss briefly about the core
idea of stabilization for time-dependent advection-diffusion 1D problem in
usual finite element method (not space-time finite element method). For
more details, we refer to [47].

In order to understand the core idea of stabilization, we use simple equa-
tion, i.e., time-dependent advection-diffusion equation 1D,

∂φ

∂t
+ u

∂φ

∂x
− ν ∂

2φ

∂x2
= f.

Assume that we have some suitably-defined finite-dimensional function spaces
for trial function Sh and test function V h. Weak formulation for time-
dependent advection-diffusion equation 1D can be written as: find φh ∈ Sh

72 CHAPTER 3. NUMERICAL METHOD

such that ∀wh ∈ V h:∫
Ω
wh

∂φh

∂t
dΩ +

∫
Ω
whuh

∂φh

∂x
dΩ︸ ︷︷ ︸+

∂wh

∂x
ν
∂φh

∂x
dΩ︸ ︷︷ ︸ =

∫
Γ
whhh +

∫
Ω
whfh.

Adv Diff

We compare the convection/advection term with diffusion term (in pare-
metrical domain) to know whether the problem convection-dominated,

Adv

Diff
=

∫ 1

−1
Nau

h 2

h

∂Nb

∂ξ
Υdξ

ν

∫ 1

−1

2

h

∂Na

∂ξ
ν

2

h

∂Nb

∂ξ
Υdξ

=

uh
∫ 1

−1
Na

∂Nb

∂ξ
dξ

ν 2
h

∫ 1

−1

∂Na

∂ξ

∂Nb

∂ξ
dξ

.

In this case, Υ = h
2 is the Jacobian of the transformation from physical

domain to parametrical domain. The integrand of these two integrals have
no dimension. So, to know which term is dominant, we compare only the
dimension part of the formulation,

uh

2
hν

=
uh

2ν
, (3.67)

which represents the element Peclet number Peh or element Reynold num-
bers Reh in Navier-Stokes equation. The problem is convection-dominated if
Peh � 1 and non convection-dominated if Peh ≈ 1. Note that the criterion
based on the element Peclet number (element Reynold numbers) and not
based on the global Peclet number (global Reynold numbers). It is closely
related to the element length h in the formulation. We can make the mesh
finer and finer (very small h) such that the stabilization is not necessary.
However, very small h is numerically impractical.

Consider the stabilized formulation of time-dependent advection-diffusion
equation 1D,∫

Ω
wh

∂φh

∂t
dΩ +

∫
Ω
whuh

∂φh

∂x
dΩ︸ ︷︷ ︸+

∂wh

∂x
ν
∂φh

∂x
dΩ︸ ︷︷ ︸+

Adv Diff
nel∑
e=1

∫
Ωe
τuh

∂wh

∂x

(
∂φ

∂t
+ u

∂φ

∂x
− ν ∂

2φ

∂x2
− f

)
dΩ︸ ︷︷ ︸ =

∫
Γh

whhhdΓ + f

∫
Ω
whfdΩ.

Stab

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 73

Note that the formulation is still consistent since the stabilization term
is residual based formulation. By comparing ”Adv”, ”Diff”, and ”Stab”
terms, we can get some useful information,

• If we compare ”Diff” and ”Stab”, we get the dimension of τ . We obtain
that τ(uh)2 has the same dimension with ν. It means we can consider
τ(uh)2 as numerical viscosity ν̃ and stabilization can be viewed as
adding the numerical viscosity. We have to add the numerical viscosity
as needed, otherwise, we can lost the accuracy of the solution.

• If we compare ”Adv” and ”Diff”, we get element Peclet number Peh
as in (3.67).

Peh =
uhh

2ν
,

• If we compare ”Adv” and ”Stab”, we get numerical element Peclet
number,

P̃ eh =
uhh

2ν̃
=

uhh

2τ(uh)2
=

h

2uh
1

τ
.

From this information, we can avoid the numerical difficulties caused by
convection-dominated problem (assume Peh � 1) by setting the stabiliza-
tion parameter τ with

P̃ eh ≈ 1,

h

2uh
1

τ
≈ 1,

τ =
h

2uh
. (3.68)

Note that (3.68) is one of the several selections that we take such that we
add stabilization by adding the numerical viscosity as needed. In the higher
dimensional case, we can represent (3.68) as

τ =
h

2||uh||
,

where ||uh|| is the magnitude of uh.

74 CHAPTER 3. NUMERICAL METHOD

3.2.8 Appendix: Stabilization in DSD/SST-SUPS formula-
tion

In this appendix, we discuss briefly about the stabilization that we use in
DSD/SST-SUPS formulation in (3.35) (refer to [47] for more details).

The formula and the role for each stabilization term are as follows,

• Streamline-Upwind/Petrov-Galerkin (SUPG)

(nel)n∑
e=1

∫
Qen

τ1

[
∂wh

∂t
+ uh · ∇wh

]
·
[
ρ

(
∂uh

∂t
+ uh · ∇uh − fh

)
−∇ · σ(ph,uh)

]
︸ ︷︷ ︸ dQ

residual

To avoid numerical instability that is caused by dominating convection.

• Pressure Stabilizing/Petrov-Galerkin (PSPG)

(nel)n∑
e=1

∫
Qen

1

ρ
τ2∇qh

[
ρ

(
∂uh

∂t
+ uh · ∇uh − fh

)
−∇ · σ(ph,uh)

]
︸ ︷︷ ︸ dQ

residual

To avoid pressure oscillations that are generated due to using equal
order of basis functions for velocity and pressure with the purpose of
simplifying the implementation. Moreover, without PSPG, we have
zero block matrix K9 in (3.36), which leads to an ill-conditioned ma-
trix.

• Least Square on Incompressible Constraint (LSIC)

(nel)n∑
e=1

∫
Qen

τ3(∇ ·wh)ρ (∇ · uh)︸ ︷︷ ︸ dQ

residual

To reduce the divergence error that can occur in low or high Reynold
numbers. To handle problems with very high Reynold numbers, be-
side LSIC, we also need additional stabilization terms as in DSD/SST-
VMST (DSD version with the variational multiscale turbulence model).

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 75

Note that when adding the stabilizations to the formulation, we have to
make sure that the resulting formulation is still consistent, i.e., the exact
solution still satisfies the resulting formulation. This is one reason we use a
formula with the residual as the factor, i.e., momentum equation is used as
a factor in SUPG and PSPG while continuity equation is used as a factor
in LSIC.

We briefly explain the calculation of the stabilization parameters τ . In
the stabilized formulation, the appropriate stabilization parameter τ plays
an important role in the accuracy of the formulation [14]. In the DSD/SST
formulation (3.35), we use three stabilization parameters τ1, τ2, τ3 which
are τSUPG, τPSPG, τLSIC , respectively. The definition of each stabilization
parameter can be found in [14]. Here, we show the way to compute it in the
S-DSD/SST context.

• Stabilization parameter τ1 or τSUPG

τ1 =

(
1

τ2
SUGN12

+
1

τ2
SUGN3

)− 1
2

, (3.69)

where

τSUGN12

=

(
2∑

α=1

3∑
a=1

∣∣∣∣∂N̄α
a (x, t)

∂t
+ uh · ∇N̄α

a (x, t)

∣∣∣∣
)−1

=

(
2∑

α=1

3∑
a=1

∣∣∣∣∂N̄α
a (x, t)

∂t
+ uN̄α

a,x(x, t) + vN̄α
a,y(x, t)

∣∣∣∣
)−1

=

(
2∑

α=1

3∑
a=1

∣∣∣∣∂N̄α
a (x(r, θ), t(θ))

∂t
+ uNa,x(θ)Tα(θ) + vNa,y(θ)T

α(θ)

∣∣∣∣
)−1

with

u =

3∑
c=1

(
u∗1c T

1(θ) + u∗2c T
2(θ)

)
Nc(r),

v =

3∑
c=1

(
v∗1c T

1(θ) + v∗2c T
2(θ)

)
Nc(r),

and N̄α
a,t(x, t), N̄

α
a,x(x, t), N̄α

a,y(x, t) as in (3.43).

τSUGN3 =
h2
RGN

4ν

76 CHAPTER 3. NUMERICAL METHOD

with

hRGN = 2

(
2∑

α=1

3∑
a=1

∣∣z · ∇N̄α
a (x, t)

∣∣)−1

= 2

(
2∑

α=1

3∑
a=1

∣∣z1N̄
α
a,x(x, t) + z2N̄

α
a,y(x, t)

∣∣)−1

= 2

(
2∑

α=1

3∑
a=1

|z1Na,x(θ)Tα(θ) + z2Na,y(θ)T
α(θ)|

)−1

and the solution gradient unit vector is defined as

z =
∇ ‖ u ‖
‖ ∇ ‖ u ‖‖

Note that this quantity is not constant. Practically, we can evaluate
it either using the center of each element or at the quadrature points.
In our simulation, we use the first approach.

• Stabilization parameter τ2 or τPSPG

τ2 = τ1 (3.70)

• Stabilization parameter τ3 or τLSIC

τ3 = τ1 ‖ u ‖2 (3.71)

This quantity is also not constant, we evaluate it using the center of
each element.

3.2.9 Appendix: GMRES

GMRES is a projection method computing approximate solution xn to the
system Ax = b as minimizers of the residual norm

‖rn‖ = ‖b−Axn‖,

in the Krylov subspace

Kn = span [r0, Ar0, A
2r0, ..., A

n−1r0],

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 77

upon finding an orthonormal basis {q1, q2, ..., qn} of Kn and denoting by Q̃n
the matrix with columns q1, q2, ..., qn. The above minimization is equivalent
to the minimization of ‖H̃ny−‖r0‖e0‖ where e0 = (1, 0, ..., 0) and H̃n is the
Hessenberg matrix satisfying the similarity transformation

AQ̃n = Q̃n+1H̃n,

and xn is obtained from xn = x0 + Q̃ny.

Note that the corresponding problem in our case is to approximate solu-
tion ∆Ul to the system (3.37) as minimizers of the residual norm

‖rl‖ = ‖El − Jl∆Ul‖,

in the Krylov subspace

Kl = span [r0,Jr0,J
2r0, ...,J

l−1r0],

where El is the right-hand side of (3.37).

The outline of the GMRES algorithm can be written as follows [35]

Algorithm : GMRES
Given initial value x0, we have initial residual is r0 = b−Ax0.
1 q1 = r0

‖r0‖
2 for j = 1, 2, ...,m
3 compute vj = Aqj
4 for i = 1, ..., j
5 hi,j = (vj , qi)
6 vj = vj − hi,jqi
7 end
8 compute hj+1,j = ‖vj‖2 and vj+1 =

vj
hj+1,j

9 end

10 define Q̃m := [q1, ..., qm], H̃m = {hij}1≤i≤m+1;1≤j≤m
11 compute ym that minimizes ‖H̃my − ‖r0‖e0‖ and xm = x0 + Q̃mym

Step 2-9 of the algorithm is well-known with Arnoldi Iteration (modified
Gram-Schmidt). Arnoldi iteration as orthogonal projection onto Krylov
subspaces is an algorithm for building an orthogonal basis of the Krylov
subspace Kn. This algorithm is based on the similarity transformation

AQ̃ = Q̃H̃,

78 CHAPTER 3. NUMERICAL METHOD

where Q̃ is an orthogonal matrix and H̃ is Hessenberg matrix that results-
from Arnoldi iteration. Let A, Q̃, H̃ be m×m matrices.
We can consider only a part of the system by taking n < m, ,

A(m×m)Q̃(m×n) = Q̃(m×(n+1))H̃((n+1)×n),

In order to solve the problem more efficiently, instead of using A we can use
H̃n which is smaller but similar matrix due to satisfy similarity transfor-
mation, i.e., A and H̃n have the same eigenvalues. Moreover, the efficiency
of QR factorization in step 4 increases considerably if we first put A into
Hessenberg form H̃ (almost triangular matrix).

In step 11, we find y that minimize ‖H̃ny− ‖r0‖e0‖ using QR factoriza-
tion. Note that H̃n is (n+ 1)×n matrix, hence it gives an over-constrained
linier system of (n+ 1) equations for n unknowns. In this case, we can com-
pute the minimum by solving the least square problem. One of the methods
that can be used is QR factorization : find an orthogonal (n+ 1)× (n+ 1)
matrix Q and (n+ 1)× n matrix R such that

H̃n = QR. (3.72)

Using (3.72), we get

‖H̃ny − ‖r0‖e0‖ = ‖QRy − ‖r0‖e0‖
= ‖Ry −Q−1‖r0‖e0‖
= ‖Ry − β‖,

and the minimization in step 12 of GMRES algorithm becomes: Find y that
minimizes ‖Ry − β‖, where β = Q−1‖r0‖e0

We use the Householder reflectors H to obtain the QR factorization of H̃n.
The idea is to successively introduce zeros starting from the first column of
H̃n and continue in this way until H̃n becomes upper triangular R. For each
vector x (column of H̃n), we construct householder matrix

H = I − 2zzT

zT z
,

which is a symmetric orthogonal matrix where Hx = w and z = w− x [37].
Note that the triangular matrix R has one more row than its columns, so
its bottom row consists of zero.

Using Householder reflector, (n+ 1)× n matrix H̃n can be factorized as

H̃n = QR

3.2. NUMERICAL SOLUTION OF FLUID MODEL: 79

where

R = HnHn−1...H1H̃n

Q = (HnHn−1...H1)−1 = H−1
1 ...H−1

n−1H
−1
n = H1...Hn−1Hn

note that H−1
i = Hi because H is a symmetric orthogonal matrix

Additional notes concerning the practical implementation of GMRES:

• The computational cost of GMRES algorithm depends on the cost of
the method used for the least square problem and Arnoldi iteration.

• Practically, norm of the residual rn is used as a stopping criterion.
However, in order to save the computational cost, we can use another
stopping criterion equivalent to the residual norm which is the (n+1)st
component of the right-hand side obtained by premultiplying |r0|e0|
by the n successive multiplication of Householder reflector [36],

‖rn‖ ≈ |βn+1| = |Q−1
n+1‖r0‖e0|.

This stopping criterion enables us to obtain the residual norm of the
approximation solution without computing xn explicitly, thus we avoid
unnecessary operations.

• In practice, GMRES is usually applied in collaboration with a precon-
ditioner. The choice of preconditioner has a great importance for the
efficiency of GMRES. Since we already use stabilization in the formu-
lation, the condition of the matrix system is not too bad so diagonal
preconditioner is expected to be sufficient.

We use right preconditioned GMRES algorithm which is based on
solving

AP−1x̄ = b, x̄ = Px.

By writing Arnoldi iteration in detail, right-preconditioned GMRES
can be written as follows [35]:
Let x0 is a given initial value. Then the initial residual is r0 = b−Ax0.

Algorithm : Right preconditioned GMRES
Given initial value x0, we have initial residual is r0 = b−Ax0.
1 q1 = r0

‖r0‖
2 for j = 1, 2, ...,m

80 CHAPTER 3. NUMERICAL METHOD

3 compute vj := AP−1qj
4 for i = 1, ..., j
5 hi,j = (vj , qi)
6 vj := vj − hi,jqi
7 end
8 compute hj+1,j = ‖vj‖2 and qj+1 =

wj
hj+1,j

9 end

10 define Q̃m := [q1, ..., qm], H̃m = {hij}1≤i≤m+1;1≤j≤m
11. compute ym that minimizes ‖H̃my − ‖r0‖e0‖

and xm = x0 + P−1Q̃mym

In this case, the Arnoldi loop builds an orthogonal basis of the right
preconditioned Krylov subspace

span[r0, AP
−1r0, (AP

−1)2r0, ..., (AP
−1)n−1r0]

Notice that the residual norm is relative to the initial system, i.e., b−
Axm, since the algorithm obtains the residual b−Axm = b−AP−1x̄m
implicitly. Then, we still can use stopping criterion as explained before.

3.2.10 Appendix: Gaussian Quadrature

We briefly review the basics of multidimensional Gaussian quadrature [39]
that we used in subsection 3.2.6.

Let us consider integration of f(x) over element domain Ωe. In this case,
we evaluate the integration by transforming variables from physical domain
Ωe to parametric domain Ω̂e as follows,∫

Ωe
f(x) dΩ =

∫
Ω̂e
f(x(r))Υ(r) dΩ̂e =

∫
Ω̂e
g(r) dΩ̂e

where Υ is the Jacobian of the transformation. Then, approximate the
integral using ∫

Ω̂e
g(r) dΩ̂e ≈

ngauss∑
i=1

g(r̃i)Wi

where r̃i’s are the quadrature points in parametric domain Ω̂e, Wi’s are the
quadrature weights, ngauss is the number of point integration. The choice in
using these parameters is based on the quadrature rule. In our case, we use
Gaussian quadrature to compute the integral over temporal domain which is

3.3. SEQUENTIAL COUPLING 81

1D. We take two-point Gaussian quadrature rule in 1D as in Table 3.3. We
observed that in computing all of the integral over temporal domain, it is
enough to use two-point quadrature which is exact up to cubic polynomial.

Table 3.3: Two-points quadrature rule

ngauss i r̃i Wi

2 1 − 1√
3

1

2
1√
3

1

3.2.11 Remark on Optimization and Acceleration of The Al-
gorithm

As mentioned before, solving fluid model involving moving domain is also a
source of computational challenges that we have. Using space-time finite el-
ement, the dimension of the problem increases by one and after space-time
discretization, we get large nonlinear system of equations which has four
times bigger size than usual space discretization, leading to higher com-
putational cost and used memory. We apply some strategies to improve
overall computational performance such as exploiting the special features of
S-DSD/SST (Special-DSD/SST); using the appropriate iterative method to
solve this large nonlinear system; avoiding unnecessary operations as we did
in setting stopping criterion for GMRES; and designing a good structure
data for the large coupled program so that it is more efficient. However,
due to the big complexity of the problem, improvements in implementation
of the developed model are needed. Some of these include parallelization of
the implementation, compression of the memory, e.g., using compressed row
storage (CSR) or using more powerful preconditioner in iterative solution of
fluid model. Also, in solving problem with very high Reynolds numbers, a
more suitable model can be used, e.g., DSD/SST-VMST, DSD/SST version
with the variational multiscale (VMS) turbulence model [39].

3.3 Sequential Coupling

In this section, we address the sequential coupling between interface and fluid
model: the coupling algorithm, boundary condition, and elasticity equation

82 CHAPTER 3. NUMERICAL METHOD

to move the nodal points of fluid mesh as time progresses.

3.3.1 The Algorithm

As mentioned in Section 2.4, the coupling between interface and fluid model
is done via pressure acting from the fluid on the interfaces and by the fact
that the interfaces determine the domain for fluid motion. Numerically, this
is a weak coupling where the interface model and fluid model are solved
independently for each time step, as in the algorithm below.
Repeat for n = 0, 1, ...

• Run one step of the interface model with current pressure as outer
force to get the interface position at tn+1. We minimize the functional

F̃n(u) = Fn(u) +

∫
Ω

f · u√
4πnh

,

where

f(x) =


p

(pi · pj − 1)

|pi − pj |2
(pi − pj), if dist(x, γk) < δ1,

dist(x, Pk) > δ2

0, otherwise

Here, γk, (k 6= i, j) is the interface between phase Pi and Pj . δ1, δ2 are
small positive constants (usually taken as several times the mesh size),
p is fluid pressure, and pi,pj are the BMO reference vectors.

• Using the information of interface position at tn and tn+1, determine
the domain occupied by fluid and run one step of the fluid model to
obtain velocity and pressure of fluids at tn+1.

The coupling algorithm in flow chart form is shown in Figure 3.6.

Notice that in this problem, we consider the interface as a thin mem-
brane which is composed of the fluid particles, so it has the same physical
quantities, e.g., viscosity. Only chemical properties such as adhesion, are
different with the fluid particles. Therefore, viscous stress is not used for
the coupling, we only use pressure as an outer force that act on the interface.
This assumption has to be verified through comparison of numerical results
with experimental data.

3.3. SEQUENTIAL COUPLING 83

Figure 3.6: Numerical algorithm for coupled model

3.3.2 Boundary Condition

The two models are coupled at the interface through compatibility condi-
tions of kinematics and tractions. We discretize the boundary condition that
has been shown in Section 2.4, as follows

• Boundary condition in region D, E and triple line C are Dirichlet
boundary conditions. We incorporate this boundary condition by ad-
justing the left-hand side and right-hand side of the resulting system
matrix in (3.36). We adjust left-hand side K by setting the diagonal
positions with 1 and 0 otherwise, for rows that correspond to velocity
and adjust the right-hand side F by setting it with the corresponding
boundary velocity.

• Boundary condition in region A and B consist of mixed Neumann and
Dirichlet boundary condition which is related to the third integral in
(3.35). As what we have discussed in Section 2.4, we apply a kind

84 CHAPTER 3. NUMERICAL METHOD

of slip-boundary condition to avoid the discrepancy between no-slip
and free-slip boundary condition at triple line. In discretization level,
we need to be careful such that we get a good approximation of the
continuum of such slip boundary condition in the discrete problem.
Since the bubble interface is a curve, the ambigous nature of the nor-
mal vector in the discretized problem also happens here, which can
interfere with the application of such boundary conditions [45]. Even
if we use consistent normal direction instead of usual normal direction,
it does not guarantee a good approximation. Therefore, we adopt a
discretization of such boundary conditions in the presence of curved
boundaries, as in [45], as follows

∫
(Pn)h

Ña2h
h dPn

=

[∫
(lin)

Ña2σ(uh, ph) · ni dlin +

∫
(ljn)

Ña2σ(uh, ph) · ni dljn

]
· [I− na2na2],

(3.73)

where, as in Figure 3.7, lin, l
j
n are the boundary space-time (Pn) edges on

space domain; node a1, a2, a3 are boundary nodes; node a2 adjacent with
lin and ljn; ni and nj are normal vectors which are assumed to be uniform

along edges lin and ljn, respectively. Here, Ña2 is the boundary trace of the
basis function associated with node a2, na2 is a consistent normal vector at
node a2 [45] defined by

na2 =

∫
(lin) Ña2 ni dl

i
n +

∫
(ljn)

Ña2 nj dl
j
n

|
∫

(lin) Ña2 ni dlin +
∫

(ljn)
Ña2 nj dl

j
n|

3.3. SEQUENTIAL COUPLING 85

Figure 3.7: normal vectors ni, nj and consisten normal na2 at boundary
node a2

In more detail, we can write the third integral in (3.35) as follows,∫
(Pn)h

Ñα
a2

(x, t)hh dPn

=

∫
(P̂n)h

Ñα
a2

(x(ξ), t(θ))hhJ̃ST dP̂n

=

∫
(P̂n)h

Ñα
a2

(ξ, θ)hhJ̃ST dP̂n

=

∫
(P̂n)h

Ña2(ξ)Tα(θ)hhJ̃ST dP̂n

=
i=2∑
i=1

Tα(θ̃i)J̃
STWi

∫
(P̄n)h

Ñα
a2

(x, t)hh dP̄n︸ ︷︷ ︸
(3.73)

where P̂n is Pn in parametrical domain, P̄n is one-dimension part of Pn in
spatial domain, x̄ is coordinate (one-dimension) of P̄n, ξ is x̄ in parametrical
domain.

Note that the consistent normal directions are the most suitable one
for proper mass and momentum conservation [46]. The application of slip
boundary condition in this sense still can be distinguished into two: a slip
boundary, which is planar and which is curved. In the planar case, it has
uniform distribution of the normal vector; while in the curved case, the
normal vector varies depending on the location. Hence, in our problem, we
consider the curved boundary case such that we get a good approximation
of the continuum of such boundary condition in the discrete problem.

86 CHAPTER 3. NUMERICAL METHOD

3.3.3 Elasticity Equation

In this coupling problem, we have separate mesh for interface and fluid
model. The mesh for the interface does not change during simulation but
the fluid mesh changes as the interfaces evolves. To move the nodal points
of fluid mesh while preserving the good properties of the mesh, we use an
automatic mesh moving scheme where the displacement of internal nodes is
determined by solving the elasticity equation [39].

Elasticity equation in the continuum setting is formulated as follows:
find the displacement of fluid mesh y ∈ Sf , such that ∀w ∈ Vf ,∫

Ωt

ε(w) ·Dε(y) dΩ = 0, (3.74)

where Ωt is fluid subdomain at time t; Sf and Vf are the sets of trial and
test functions for the fluid domain, respectively. Moreover, ε is the strain
vector, D is the elasticity tensor given by

D =

 λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ


with λ and µ are the Lamé parameters. We prescribe boundary condition
at the interface γ3 by

y · n = yI · n

where yI is the displacement of interface points.
The elasticity equation is solved in fluid mesh at each time-step (or

once in several time-steps) which gives rise to a time-dependent fluid mesh
deformation. The size of elements becomes a criterion for the extension
of deformation of the fluid mesh, where we stiffen smaller elements more
than the larger ones by choosing appropriate elasticity coefficients. We do
so by altering the way we account the Jacobian of the transformation from
element domain to physical domain in the space element. Practically, we
take smaller elements near the interfaces as in Figure 3.8. In this case, the
elasticity tensor is mesh-dependent, with the mesh Lamé parameters µh and
λh defined by

µh =
Ehf

2(1 + zf)
(3.75)

λh =
zfE

h
f

(1 + zf)(1− 2zf)
(3.76)

3.3. SEQUENTIAL COUPLING 87

where

Ehf = Ef

(
Υ

Υ0

)−χ
is the fluid mesh Young’s modulus, Υ is the Jacobian (3.42), χ > 0 is a real
parameter, Υ0 is global scaling value which we can take arbitrarily, Ef and
zf are the constant fluid mesh Young’s modulus and Poisson’s ratio, which
are prescribed beforehand. In [39], the value for Poisson’s ratio is chosen as
zf ∈ [0, 0.5). In the numerical example, we also use zf = 0.3 as they used
in the simulations.

Figure 3.8: Example of fluid mesh around the bubble

The output of elasticity equation is the displacement for each node of
fluid mesh. We use this displacement to calculate the new position of each
node. Moreover, we also use the displacement at interfaces to get the in-
terface velocity which will be the input for boundary conditions in fluid
model.

88 CHAPTER 3. NUMERICAL METHOD

Chapter 4

Numerical Examples

4.1 Interface Model

We now present some numerical tests and examples of our method. All
numerical experiments in this section are conducted on a [0, 1]×[0, 1] domain
with time step ∆t = 0.005 and DMF partition N = 30. Moreover, the phase
interior angles at the triple junction are measured using the tangents to the
quadratic interpolation of the piecewise linear interface in the neighborhood
of the junction.

We begin by investigating the stability of the triple junction in terms
of the angle measure and location of the junction. Next, we look at the
behavior of the triple junction motion for two cases (with and without axial
symmetry). Finally, we present an example which incorporates the volume
constraint and check the stability of the junction and preservation of the
phase volumes of its stationary solution.

In the experiments below, we use two types of setting as in Table 4.1.

4.1.1 Junction Stability Test

Consider an initial condition where phase P2 consists of two disjoint square
regions on opposite corners of the domain; while the remaining regions above
and below the line y = x are taken as phase P1 and P3, respectively (refer to
Figure 4.1a). In this setting, the interface network remains stationary for a
135◦−90◦−135◦ junction angle configuration. We then, run our method under
the case 2 setting and check the stability of the triple junction when the
maximum dot product (without projection triangle) or projection triangle
is used for phase detection. Here, the domain is triangulated into 12, 800
elements (∆x = 0.0125).

89

90 CHAPTER 4. NUMERICAL EXAMPLES

Table 4.1: Numerical parameters for case 1 and case 2

parameters case 1 case 2

surface tensions
σ1

1
2

√
2

2

σ2 1 1

σ3

√
3

2

√
2

2

angles
θ1 150◦ 135◦

θ2 90◦ 90◦

θ3 120◦ 135◦

coefficients
a 0.881 0.954

b 0.262 0.127

c 0.656 0.639

reference vectors
p1 (-0.8,-0.6) (-0.777,-0.628)

p2 (0,1) (-0.333,-0.943)

p3 (1,0) (1,0)

The relative error of the stationary junction angle measures are summa-
rized in Table 4.2. We see that when the maximum dot product is used to
locate the interface, the stationary interior angle in phase P2 is of measure
90◦±5.11, while the other two junction angles are approximately 135◦±4.10;
thereby, yielding a relative error of at most 5.68%. On the other hand, utiliz-
ing the projection triangle in the phase detection scheme reduces the relative
error to at most 0.88% with stationary junction angles of measure 90◦±0.78
and 135◦ ± 1.19.

Table 4.2: Relative Error in Junction Angle Measures

phase
maximum dot product projection triangle

junction J1 junction J2 junction J1 junction J2

P1 −0.0083 −0.0081 0.0088 0.0077

P2 −0.0290 −0.0296 −0.0062 −0.0019

P3 0.0561 0.0568 −0.0039 −0.0087

In addition, both phase detection scheme shifted the junction to a dis-
tance of at most 0.0065 for the dot product scheme and at most 0.0057 for
the projection triangle. This can be accounted for by the approximation
error in the construction of the projection triangle. Hence, our method sta-
bly preserves the angle conditions, in this case 135◦−90◦−135◦. This also
confirms that using the projection triangle in the phase detection scheme

4.1. INTERFACE MODEL 91

P1

P3

P2

P2

b

J2b

J1

Figure 4.1: (a) Initial condition. (b) The stationary interface network
around junction J1 after time 100∆t using dot product (red) and projec-
tion triangle (black) for phase detection.

correctly detects the interface near the junction, as opposed to using the
maximum dot product.

4.1.2 Triple Junction Motion

In this subsection, we start with an initial condition where a T-shaped in-
terface is rotated 90◦ counterclockwise where the T-junction is at point
(0.25, 0.5). We take phase P2 as the region to the left of line x = 0.25, and
the remaining top and bottom regions as phases P1 and P3, respectively. We
triangulate the domain into 20, 000 elements with ∆x = 0.01, and evolve the
interface via our method using the projection triangle to determine the dif-
ferent phase regions at each time step. We then investigate the evolution of
the triple junction in both cases.

Junction without Axial Symmetry (Case 1)

Under the first case setup, we plot the evolution of the initial T-junction
and its underlying interface network at different times in Figure 4.2.

Notice that for the first 10 time steps, the junction angles rapidly ad-
justs to approximate the 150◦−90◦−120◦ angle conditions. Thereafter, the
triple junction maintains phase interior angles of measure within 2.5% rel-
ative error (refer to Figure 4.3). Note that this approximation error in the
stationary junction angles can be made smaller by increasing the precision
in the construction of the projection triangle.

92 CHAPTER 4. NUMERICAL EXAMPLES

Figure 4.2: Evolution of the triple junction for case 1.

Figure 4.3: Relative error of the junction angles at each time step.

Axially Symmetric Junction (Case 2)

We now look at the behavior of the junction motion when subjected to the
second case. Note that since the surface tensions on the 1−2 and 2− 3
interfaces are equal, that is, σ1 = σ3 = 1√

2
, we expect these interfaces to

symmetrically evolve with respect to the horizontal line y = 0.5. This is in
agreement with our numerical simulation shown in Figure 4.4.

In the first 10 time steps, the triple junction rapidly approaches the
135◦−90◦−135◦ angle conditions. After which, the interface gradually starts
to move horizontally to the right. The transport velocity s of our numer-
ical interface solution approaches π

2
√

2
, which is the exact velocity of the

constantly transported solution of the sharp interface problem, as shown in

4.1. INTERFACE MODEL 93

Figure 4.4: Evolution of the triple junction for case 2.

Figure 4.5.

Figure 4.5: Transport velocities of the numerical interface solution at y =
0.45, 0.47, 0.49 (colored) vs the constantly transported solution (black).

Moreover, we note that the shape of such a constantly transported profile
in the axially symmetric case is determined by:

v(y) = −σ1
s log(cos(s

σ1
y)) + c

= − 2
π log(cos(π2 y)) + c,

where the constant c of horizontal shift may be chosen appropriately [24].

94 CHAPTER 4. NUMERICAL EXAMPLES

Comparing this with the numerical interface solution obtained via our method,
we see that it is in a good agreement with the exact shape of the profile (Fig-
ure 4.6).

Figure 4.6: The shape of the numerical interface at time t = 30∆t (black)
vs the constantly transported solution (red).

4.1.3 Volume-preserving 150◦−90◦−120◦ Double Bubble

Consider a three-phase volume-preserving case where two phases are iden-
tical squares with one common side of length 0.28. We take the outside
region as phase P1, and the left and right square regions as phase P2 and
P3, respectively (refer Figure 4.7.a).

We evolve this configuration via our method under the first case setting.
Moreover, we wish to preserve the volume of each phase region employing
a penalization technique with parameter ε = 10−6. Here, the domain is
triangulated into 12, 800 elements with ∆x = 0.0125. To locate the interface,
we use a projection scheme determined by the maximum dot product. The
numerical stationary interface solution is shown in Figure 4.7.b.

To check the stability of the triple junction, we measure the junction
angles at each time step and calculate the corresponding errors. We observe
that the interior phase angles at the top and bottom triple junctions behave
in the same manner, hence, we only plot the relative error in the measure
of the top junction angle in Figure 4.8.

4.1. INTERFACE MODEL 95

Figure 4.7: (a) Initial Condition. (b) The stationary numerical solution in
case 1.

Figure 4.8: Relative error of the top junction angles at each time step.

It is evident from the error plot that the triple junction first rapidly
approximates the angle conditions, which is consistent with the previous
results. Thereafter, the numerical solution gradually reaches a stationary
state whose junction angles are of measure 150◦ ± 1.50, 120◦ ± 2.43, and
90◦ ± 1.36 yielding a relative error of at most 2%. This is consistent with
the result in our stability test. Hence, one can achieve a more precise result
using the projection triangle to locate the interface.

Moreover, it is clear from Table 4.3 that the phase volumes are preserved.
Hence, the stationary numerical solution obtain using our method fairly
approximates the volume-preserving solution of case 1.

96 CHAPTER 4. NUMERICAL EXAMPLES

Table 4.3: Phase Volumes under penalty parameter ε = 10−6.
phase prescribed vol stationary state vol absolute error

P1 0.8432 0.84321 1.0× 10−5

P2 0.0784 0.07840 3.0× 10−6

P3 0.0784 0.07839 8.0× 10−6

4.1.4 Moving Bubble

We simulate the bubble motion with buoyancy (β) as outer force in two
settings, θ = 60◦ and θ = 120.1◦. The numerical examples are conducted
on a [0, 1] × [0, 1] domain which is triangulated into 12,800 elements, ε =
10−5, β = −150, δ1 = δ2 = ∆x (mesh size). Under the same buoyant force,
we see that for a large contact angle (θ = 120.1◦), the bubble detaches from
the bottom phase, while for θ = 60◦ the bubble remains attached (Figure
4.9).

(a)

(b)

Figure 4.9: Bubble motion with (a) θ = 60◦, ∆t = 0.005 (b) θ =
120.1◦, ∆t = 0.001

4.2. FLUID MODEL 97

4.2 Fluid Model

4.2.1 Cavity Flow

In this subsection, we simulate the cavity flow as test problem of fluid model
using DSD/SST-SUPS formulation. The numerical test was conducted on
a fixed [0, 1] × [0, 1] domain with time step ∆t = 0.002 s, upper boundary
velocity v = 0.02 m/s with x positive direction, and no-slip boundary con-
ditions on the bottom, right and left walls. We simulate some fluid with
different Reynold numbers as shown in Table 4.4.

Table 4.4: Parameter of fluid test problems
fluid ν (m2/s) ρ (kg/m3) µ (kg/ms) Re

1 1 1000 1000 0.02

2 0.01 1000 10 2

3 0.0001 1000 0.1 200

The vector field for several time-steps are shown in Figures 4.10, 4.11,
and 4.12 for fluid 1, 2 and 3, respectively. The numerical simulations can
catch the flow of cavity flow case. Moreover, it still works even in high
Reynold numbers. Notice that we obtained all these result without having
to refine the time step. This shows that the stability restrictions of the
space-time approach are not so severe as in the usual spatial finite element
method.

Note that in cavity flow problem, nonphysical singularities happened at
the upper corner where stationary and moving walls meet [50, 51]. One
of strategies to handle these singularities is to apply Navier-slip boundary
condition [51]. The idea is almost the same with our setting in boundary
condition of coupled problem (Section 2.4). Another strategy is by using
fine enough elements close to the walls especially at the upper corner.

4.2.2 One-way Coupling

In this subsection, we simulate the examples of one-way coupling in hy-
drophilic and hydrophobic cases using Navier-Stokes equation in moving
domain (DSD/SST-SUPS formulation). Hydrophilic materials have a good
affinity to water, that cause droplets to spread. Hydrophobic materials repel
water naturally, that cause droplets to form. These two kinds of materials

98 CHAPTER 4. NUMERICAL EXAMPLES

t = 0 t = 5 ∆t

t = 40 ∆t t = 60 ∆t
;

Figure 4.10: Velocity field of cavity flow for fluid 1

are characterized by the contact angle between the edge of droplet and the
material’s surface underneath it. If the contact angle less than 90◦, the ma-
terials considered as hydrophilic and more than 90◦ for hydrophobic. In this
example, we mimic the hydrophilic case by using a half of circle with radius
r(0) = 0.2 as initial condition and evolve it based on the increasing of radius
r(t) while maintain the area A0 (Figure 4.13). Here,

4.2. FLUID MODEL 99

t = 0 t = 120 ∆t

t = 300 ∆t t = 1000 ∆t

Figure 4.11: Velocity field of cavity flow for fluid 2

r(t) =

√
A0

α(t)− 1
tan(α(t))

A0 =
1

2
π(r(0))2

α(t) =
π

2
− c t dt

with c = 0.25 and dt = 0.002. Note that area preservation is important
in this one-way coupling case, otherwise, the Navier-Stokes equation will
collapse.

We simulate the hydrophobic case starting from the same initial condi-
tion as hydrophilic case and evolve it by decreasing the radius r(t) while
maintain the area A0 (Figure 4.15). Here,

100 CHAPTER 4. NUMERICAL EXAMPLES

t = 0 t = 500 ∆t

t = 1500 ∆t t = 3335 ∆t
;

Figure 4.12: Velocity field of cavity flow for fluid 3

r(t) =

√
A0

β(t)− 1
tan(β(t))

A0 =
1

2
π(r(0))2

β(t) =
π

2
+ c t dt

We solve Navier-Stokes equation in moving domain Ωf . We apply bound-
ary condition as in Section 2.4 with some simplifications. We extend region
A until the triple point and extend region C until the endpoint that intersect
external boundary. This means, we set velocity of the fluid equal to normal
velocity of the whole gas-fluid interface and set the velocity of solid-fluid

4.2. FLUID MODEL 101

Figure 4.13: Hydrophilic setting

interface is only tangential, determined by the motion of equidistantly dis-
tributed boundary nodes. Here we write the algorithm to compute normal
velocity of the whole gas-fluid interface:

1. Given data files: gas-fluid interface nodes at time t (nodes.dat), line
segment of gas-fluid at time t+ 1 (segment.dat), circle center node at
time t (center.dat).

2. Iteration for all nodes in nodes.dat.

3. Construct the line connecting each node with the center of the circle.

4. Find the intersection of this line with a certain segment in segment.dat

5. Compute the displacement of intersection point and the node (step 2).

6. Compute the velocity by dividing the displacement with time-step.

The flow of hydrophilic and hydrophobic case are depicted in Figures
4.14 and 4.16, respectively.

102 CHAPTER 4. NUMERICAL EXAMPLES

Figure 4.14: One-way coupling in hydrophilic case at t = 0 and t = 10 ∆t

4.2. FLUID MODEL 103

Figure 4.15: Hydrophobic setting

104 CHAPTER 4. NUMERICAL EXAMPLES

Figure 4.16: One-way coupling in hydrophobic case at t = 0 and t = 10 ∆t

Chapter 5

Conclusion

The dissertation developed a coupled interface-network and fluid model. We
derived equation of the triple junction and adopted Navier-Stokes equation
for incompressible flow as the basic interface model and fluid model, respec-
tively. For each model, we developed a method for its numerical solution.
This coupled model is expected to serve as a first step to more complicated
and precise models, such as those including inertia, hysteresis or transport,
which can be used to simulate triple line dynamics accurately.

We proposed a generalized vector-valued BMO algorithm to treat triple
junction motion with nonsymmetric junction. Based on several numeri-
cal experiments and formal analysis, this new algorithm is able to realize
desired triple junction motion for arbitrary surface tensions, i.e., it stably
imposes contact angles at the junctions, gives correct velocity of interfaces
and preserves volume. These features, especially the third one, support the
interface-network model to be coupled with the fluid model as a first step
toward accurate simulation of triple line dynamics.

There are many important and interesting problems for the future re-
search, such as to

• understand the contact angle hysteresis, develop the interface model
including the effect of hysteresis and analyze the influence of fluid
motion;

• understand the inertia of the interfaces, develop the interface model
including the effect of inertia (hyperbolic-type MCF) and investigate
the impact on contact angle dynamics;

• study the physically appropriate boundary conditions related to the
coupling of fluid and interface in case of interface between two fluids;

105

106 CHAPTER 5. CONCLUSION

and

• use these models to investigate the laws behind triple line and contact
angle dynamics.

Bibliography

[1] A. H. King, “Triple lines in materials science and engineering,” in Science
Direct, vol. 62, pp. 889-893, 2010.

[2] S. Zahedi, G. Kreiss, K. Gustavsson, “An interface capturing method
for tw0-phase flow with moving contact lines,” in Proceeding of the 1st
European Conference on Microfluidics - Microfluidics 2008, 2008.

[3] H. Huang, D. Liang, B. Wetton, “Computation of a moving drop/bubble
on a solid surface using a front-tracking method,” in Comm. Math. Sci.,
pp. 535-552, 2004.

[4] P. D. M. Spelt, “A level set approach for simulations of flows with multi-
ple moving contact lines with hysteresis,” in J. Comp. Physics, vol. 207,
pp. 389-404, 2005.

[5] M. Renardy, Y. Renardy, J. Li, “Numerical simulation of moving contact
line problem using a volume-fluid method,” in J. Comp. Physics, vol.
171, pp. 243-263, 2001.

[6] D. Jacqmin, “Contact-line dynamics of a diffuse fluid interface,” in J.
Fluid Mech., vol. 402, pp. 57-88, 2000.

[7] M. C. Lai, Y. H. Tseng, H. Huang, “Numerical simulation of moving
contact lines with surfactant by immersed boundary method,” in Comm.
Comp. Phys., vol. 8, no. 4, pp. 735-757, 2010.

[8] E. Ginder, K. Svadlenka, “A thresholding algorithm generating motion
by hyperbolic mean curvature flow,” preprint, 2014.

[9] M. Elsey, S. Esodoglu, P. Smereka, “Diffusion generated motion for grain
growth in two and three dimensions,” in J. Comp. Physics, vol. 228, pp.
8015-8033, 2010.

107

108 BIBLIOGRAPHY

[10] F. Catte, P. L. Lions, J. M. Morel, “Image selective smoothing and edge
detection by nonlinear diffusion,” in SIAM J. Num. Anal., vol. 29, pp.
182-183, 1992.

[11] K. Svadlenka, E. Ginder, S. Omata, “A variational method for mul-
tiphase volume-preserving interface motions,“ in Journal of Computa-
tional and Applied Mathematics, vol. 257, pp. 157-179, 2014.

[12] S. J. Ruuth, “A diffusion-generated approach to multiphase motion,”
in J. Comp. Physics, vol. 145, pp. 166-192, 1998.

[13] T. E. Tezduyar, “Stabilized finite element methods for computation
of flows with moving boundaries and interfaces” ,Lecture notes on Fi-
nite element simulation of flow problems (basic advanced course), Japan
Society of Computational Engineering and Science, 2003.

[14] T. E. Tezduyar and S. Sathe, “Stabilization parameters in SUPG and
PSPG formulations,” in Journal of Computational and Applied Mechan-
ics, Vol 4., N0.1, (2003), pp. 71-88.

[15] S. Omata, M. Kazama, K. Svadlenka, “Numerical computation of cou-
pled problems comprising elastic membrane,“ in Proceedings of Compu-
tational Engineering Conference, JSCES, vol. 15, 2010.

[16] N. Shofianah, R. Z. Mohammad, K. Svadlenka, “Simulation of triple
junction motion with arbitrary surface tensions,” preprint,2013.

[17] B. Merriman, J. Bence, S. Osher, “Motion of multiple junctions: a level
set approach,” in J. Comp. Physics, vol. 112, pp. 334-363, 1994.

[18] L. Evans, “Convergence of an algorithm for mean curvature motion,”
in Indiana Univ. Math. J., vol. 42, pp. 533-557, 1993.

[19] G. Barles, C. Georgelin, “A simple proof of convergence of an approxi-
mation scheme for computing motions by mean curvature,” in SIAM J.
Numer. Anal., vol. 32, pp. 484-500, 1995.

[20] Y. Goto, K. Ishii, T. Ogawa, “Method of the distance function to
the Bence-Merriman-Osher algorithm for motion by mean curvature,”
in Comm. Pure Appl. Anal., vol. 4, pp. 311-339, 2005.

[21] R. Z. Mohammad, K. Svadlenka, “Multiphase Volume-preserving Inter-
face Motions via Localized Signed Distance Vector Scheme”, preprint,
2013.

BIBLIOGRAPHY 109

[22] R. Z. Mohammad, “Multiphase mean curvature flow: signed distance
vector approach,” in Recent development in computational science: se-
lected papers from the ISCS, vol. 4, pp. 115-123, 2013.

[23] L. Bronsard, F. Reitich, “On three-phase boundary motion and the
singular limit of a vector-valued Ginzburg - Landau equation,” in Arch
Ration. Mech. Anal., vol. 124, pp. 355-379, 1993.

[24] H. Garcke, B. Nestler, B. Stoth, “A multiphase field concept: numeri-
cal simulations of moving phase boundaries and multiple junctions,” in
SIAM J. Appl. Math , vol. 60, pp. 295-315, 1999.

[25] H. Garcke, B. Nestler, B. Stoth, “On anisotropic order parameter mod-
els for multi-phase systems and their sharp interface limits,” in Physica
D, vol. 115, pp. 87-108, 1998.

[26] X. Chen, J-S. Guo, “Self-similar solutions of a 2-D multiple-phase cur-
vature flow,” in J. Comp. Physics, D 229, pp. 22-34, 2007.

[27] K. Ishii, “Mathematical analysis to an approximation scheme for mean
curvature flow, in: S. Omata, K. Svadlenka (Eds.), International Sym-
posium on Computational Science 2011,” in Mathematical Sciences and
Applications, vol. 34, GAKUTO International Series, pp. 67-85, 2011.

[28] E. Rothe, “Zweidimensionale parabolische Randwertaufgaben als Gren-
zfall eindimensionaler Randwertaufgaben,” in Math. Ann., vol. 102, pp.
650-670, 1930.

[29] T. E. Tezduyar, S. Sathe, R. Keedy, K. Stein, “Space-time finite element
techniques for computation of fluid-structure interactions,” in Comp.
Methods Appl. Mech. Engrg., vol. 195, pp. 2002-20027, 2006.

[30] T. J. R. Hughes, “The finite element method: Linear static and dynamic
finite element analysis,” Prentice-Hall, Inc, 1987.

[31] S. Elgeti, M. Behr, “Block (2D Space-time incompressible Navier-
Stokes) Derivation,” 2013.

[32] T.P. Fries and H.G.Matthies “A review of petrov-galerkin stabilization
approaches and an extension to meshfree methods”, Technische Univer-
sitat Braunschweig , 2003.

[33] S. Gross and A. Reusken, “Numerical methods for two-phase incom-
pressible flows”, Springer, 2011.

110 BIBLIOGRAPHY

[34] M. Benzi, G.H. Golub, J. Liesen “Numerical solution of saddle point
problems”, Cambridge University Press, United Kingdom, 2005.

[35] Y. Saad, “Iterative methods for sparse linier systems”, second edition,
Society for Industrial and Applied Mathematics, 2003.

[36] Y. Saad and M. Schultz “GMRES: a generalized minimal residual al-
gorithm for solving nonsymmetric linear systems”, Society for Industrial
and Applied, Vol.7, N0.3, 1986.

[37] T. Sauer, “Numerical analysis”, Pearson Education, Inc, 2006.

[38] R.L. Burden and J.D. Faires “Numerical Analysis”, ninth edition,
Brooks/Cole Cengage Learning, 2011.

[39] Y. Bazilevs, K. Takizawa, T. E. Tezduyar, “Computational Fluid-
Structure Interaction: methods and applications”, Wilwy series in com-
putational mechanics, 2013.

[40] K. Takizawa, T. E. Tezduyar, “Multiscale space-time fluid-structure
interaction techniques”, in Comp. Mech., vol. 48, pp. 247-267, 2011.

[41] H. Zhao, T. Chan, B. Merriman, S. Osher, “A variational level set
approach to multiphase motion”, in J. Comp. Physics, vol. 127, pp. 179-
195, 1996.

[42] S. Osher, J. A. Sethian, “Fronts propagating with curvature dependent
speed: Algorithms based on Hamilton-Jacobi formulations”, in J. Comp.
Physics, vol. 79, pp. 12-49, 1988.

[43] V. S. Nikolayev, S. L. Gavrilyuk, H. Gouin, “MModeling of the mov-
ing deformed triple contact line: influence of the fluid inertia,” in J. of
Colloid and Interface Science, vol. 302, pp. 605-612, 2006.

[44] C. Huh, L. Scriven, “Hydrodynamic model of steady movement of a
solid/liquid/fluid contact line,” in J. Coll. Int. Sci., vol. 35, pp. 85-101,
1971.

[45] M. Behr, “On the application of slip boundary condition on curved
boundaries,”, in International Journal of Numerical Methods in Fluids,
vol. 45, pp. 43-51, 2004.

[46] M. S. Engelman, R. L. Sani, “The implementation of normal and/or
tangential boundary conditions in finite element codes for incompressible

BIBLIOGRAPHY 111

fluid flow,”, in International Journal for Numerical Methods in Fluids,
vol. 2, pp. 225-238, 1982.

[47] T. E. Tezduyar, K. Takizawa, Y. Bazilevs,“Short-course on Fluid-
Structure Interaction”, March 22-23, 2014, Waseda University.

[48] Y. Chen, R. Mertz, R. Kulenovic, “Numerical simulation of bubble
formation on orifice plates with a moving contact line,” in International
Journal of Multiphase Flow, vol. 35, pp. 66-77, 2009.

[49] S. Esedoglu, F. Otto “Threshold dynamics for networks with arbitrary
surface tensions,”preprint, 2013.

[50] T. E. Tezduyar, S. Mittal, S. E. Ray, R. Shih, “Incompressible flow com-
putations with stabilized bilinear and linear equal-order-interpolation
velocity-pressure elements,” in Computer Methods in Applied Mechanics
and Engineering, vol. 95, pp. 221-242, 1992.

[51] Q. He, X. P. Wang, “Numerical study of the effect of navier slip on the
driven cavity flow,” in ZAMM Z. Angew. Math. Mech., vol. 89 no. 10,
pp. 857-868, 2009.

