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Simulation of Triple Line Dynamics by Interface-Fluid Coupling
Nur Shofianah

Graduate School of Natural Science and Technology, Kanazawa University

Abstract

The thesis develops a coupled interface-network and fluid model which can serve as a first step to
simulate triple line dynamics. The main ingredients of this coupled model are the interface model with
nonsymmetric junctions and the fluid model in moving domain. We build an interface model based on the
gradient flow of surface energy and develop a method for its numerical solution by generalizing the ref-
erence vectors and diffusion system in vector-valued BMO algorithm. Moreover, we improve the scheme
by using vector-valued projection triangle and use a vector type DMF to handle volume constraint via pe-
nalization. For the fluid part, we implement a numerical method adopting DSD/SST-SUPS, a stabilized
space-time finite element method in moving domain. We also apply the appropriate boundary condition
which is related with a moving triple line. We couple these two models weakly via pressure acting from
the fluids on the interfaces and by the fact that the interfaces determine the domain for fluid motion. In
the end, we present results of numerical experiments.

We develop a coupled interface-network and fluid model which can serve as a first step to simulate
triple line dynamics. We derive equation of triple junction and adopt Navier-Stokes equation for incom-
pressible flow as the basic of interface model and fluid model, respectively. For each model, we develop
a method for its numerical solution.

We take rising bubble at the bottom of the container filled with fluid as an example of the problem.
The physical setting of the problem is depicted in the Fig.1. We solve incompressible Navier-Stokes
equation in P2 and consider the motion of the interface according to mean curvature. Here, the moving
triple lines are free boundary so we need one more boundary condition by deriving the equation of triple
junction to know how the triple junction evolves under gradient flow of surface energy. We consider
three evolving curves γi(s), s ∈ [pi, qi], i = 1, 2, 3, which lie inside a fixed smooth region Ω of R2, meet
the outer boundary ∂Ω at a right angle and get together at a triple junction xT = γi(qi). Each curve
has different surface tension σi. The motion by gradient flow satisfies

1. The normal velocity of interface: vi = σiκi.

2. The Force balance condition at triple junction:

3∑
i=1

σiti = 0.

The coupling problem can be formulated as follows,

v3 = σ3 κ3 + p, at γ3(t),

3∑
i=1

σiti = 0, at (xTL)(t),

ρ

(
∂u

∂t
+ u · ∇u− f

)
−∇ · (−pI + 2µε(u)) = 0, in

⋃
t∈(0,T )

P2(t)× {t},

∇ · u = 0, in
⋃

t∈(0,T )

P2(t)× {t}.

.

Fig.1 Rising bubble at the bottom of
the container filled with fluid

In order to realize nonsymmetric junction motion with stable junction angles and correct interface
velocity, we generalize the reference vectors and diffusion system in vector-valued BMO algorithm. First,
we investigate the condition on the selection of general reference vectors, i.e.,

θ1p1 + θ2p2 + θ3p3 = 0. (1)

Since the reference vectors are determined up to rotation and scaling, we can choose one reference vector
arbitrarily, e.g., p3 = (1, 0) and find the remaining,

p1 =

(
1− 2π

θ1θ3
(π − θ2), ± 2

θ1θ3

√
π(π − θ1)(π − θ2)(π − θ3)

)
,

p2 =

(
1− 2π

θ2θ3
(π − θ1), ∓ 2

θ2θ3

√
π(π − θ1)(π − θ2)(π − θ3)

)
.
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Second, we consider general diffusion system,
u1
t + du2

t = a∆u1 + b∆u2,

du1
t + eu2

t = b∆u1 + c∆u2,(
u1

u2

)
(t = 0) =

(
u1

0

u2
0

)
,

and determine its coefficients a, b, c, d, e, so that we obtain the desired interface velocities. By trans-
forming the system, applying some computations, and setting d = 0, e = 1, we get appropriate general
diffusion system

ut = A∆u, A =

(
a b
b c

)
,

with interface velocity

vk =
µ1(a+ c+ r) + 2µ2

√
ac− b2

µ2(a+ c+ r) + 2µ1

√
ac− b2

√
ac− b2 κk,

leading a nonlinear system consisting of three equations for the coefficients a, b and c, which is solved
numerically. Here, µ1, µ2 depend on a, b, c and reference vectors, and r =

√
(a− c)2 + 4b2.

We have observed that no matter how we change the diffusion system, the stability condition (??) will
not be affected.

At this stage, for the case with initial configuration of three straight lines meeting at the junction
with stable contact angles, we have shown that for a suitably selected reference vectors, the junction will
be stationary, and that, for a suitably selected diffusion system, if an interface point is sufficiently far
from the junction, the interface velocity at that point will satisfy the desired formula vi = σiκi. However,
the above analysis does not address the close vicinity of the triple junction. By formal calculations it can
be made clear that the correct interface velocity is obtained only with an exponentially decreasing error
with respect to the distance of the considered interface point to the junction. This fact is also confirmed
by numerical tests. Therefore, we include a correction step based on the notion of a projection triangle
given by Ruuth (1998). The idea is to first investigate how the stable configuration of three straight
lines deforms, and use this information to project the phase regions back into the correct position in
each step of the BMO algorithm. We extended the original projection triangle method in vector-valued
formulation.

Using all the analysis above, we develop generalized vector-valued BMO algorithm to realize nonsym-
metric junction motion: for given surface tensions σi, calculate junction angles θi, define general reference
vectors pi, find the coefficients a, b, c of general diffusion system, construct projection triangle, repeat
until desired time solving general diffusion system and tresholding according to projection triangle. We
solve general diffusion system by using vector-type discrete Morse flow (DMF), i.e., at each step we solve
it by discretizing time ∆t = h×N and successively minimizing the following functionals for n = 1, .., N
over H1(Ω;R2):

Jn(u) =

∫
Ω

(a
2
|∇u1|2 + b∇u1 · ∇u2 +

c

2
|∇u2|2

)
dx+

∫
Ω

(
|u− un−1|2

2h

)
dx.

We approximate the functional by using piecewise linear finite elements. The minimizers are found
by steepest descent method. The minimization formulation of the vector-valued algorithm allows the
inclusion of volume constraints via penalization. Here, we minimize

Fn(u) = Jn(u) +
1

ε

3∑
i=1

|Vi −meas(Pu
i )|2,

where ε > 0 is a small penalty parameter, Vi is the prescribed volume of region Pi and the volumes
corresponding to u are obtained from the sets

Pu
i = {x ∈ Ω;u(x) ∈ Ri},

where Ri are the regions of projection triangle. Note that the volume preservation is important for stable
weak coupling.
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We show some numerical examples. Figure 2.a shows the evolution of triple junction 150◦−90◦−120◦

with initial T-junction. Notice that for the first 10 time steps, the junction angles rapidly adjusts to
approximate 150◦−90◦−120◦. Thereafter, the triple junction maintains phase interior angles of measure
within 2.5% relative error (Figure 2.b)

Fig.2(a) Evolution of triple junction motion 150◦−90◦−120◦ (b) Relative error of junction angles at each time step

Figure 3.a shows the evolution of triple junction with 135◦−90◦−135◦ with initial T-junction. Note
that since the surface tensions on the 1−2 and 2−3 interfaces are equal, that is, σ1 = σ3 = 1√

2
, we expect

these interfaces to symmetrically evolve with respect to the horizontal line y = 0.5. This is in agreement
with our numerical simulation shown in Figure 3.a. Moreover, we note that the shape of such a con-
stantly transported profile in the axially symmetric case is determined by: v(y) = − 2

π log(cos(π2 y)) + c,
where the constant c of horizontal shift may be chosen appropriately. Comparing this with the numerical
interface solution obtained via our method, we see that it is in a good agreement with the exact shape
of the profile (Fig.3.b).

Fig.3(a) Evolution of triple junction motion 135◦−90◦−135◦ (b) The shape of the numerical interface at time t = 30∆t (black) vs the constantly
transported solution (red)

Fig. 4 shows a result of volume preserving double bubble simulation. We have observed that the
stationary numerical solution well preserves the initial phase volumes.

Fig.4(a) Initial condition (b) the stationary numerical solution in case (150◦−90◦−120◦)
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On the other hand, we build numerical method of fluid model by adopting a stabilized space-time fi-
nite element method in moving domain, Deforming-Spatial Domain/Stabilized Space-Time SUPG-PSPG
(DSD/SST-SUPS), based on Streamline-Upwind/Petrov-Galerkin (SUPG) stabilization and Pressure-
Stabilizing/Petrov-Galerkin (PSPG) stablization. These stabilization terms assure the numerical stabil-
ity of the computations in advection-dominated flows and when using equal order interpolation functions
for velocity and pressure which simplifies implementation. In space-time finite element method, the dis-
cretization is applied not only in space but also in time. The formulation of DSD/SST is written over a
sequence of spacetime slab Qn, where Qn is the slice of the space-time domain between the time levels tn
and tn+1. DSD/SST-SUPS formulation consists of Galerkin formulation of the problem with additional
terms, jump term and stabilization terms. The jump term enforces weakly the temporal continuity of
the velocity field since the basis functions are discontinous from one space-time slab to another.

After space-time discretization, we obtain a nonlinear system of equations

K(U)U = F

For each time step. we linearize it using Newton-Raphson method. We compute a correction ∆U of a
current solution Ul at each iteration l, which yields a linear system

J(Ul) ∆Ul = F−K(Ul)Ul,

where J is the Jacobian matrix. We solve the linearized system by using GMRES, one kind of Krylov
subspace methods for nonsymmetric matrices. Since the method suffers from slow convergence, precon-
ditioning is needed in conjunction with GMRES.

Fig. 5 shows the velocity vector of cavity flow test problem of a fluid with kinematic viscosity
ν = 0.01 m2/s (ρ = 1000 kg/m3, µ = 10 kg/ms), Re = 2, using DSD/SST-SUPS formulation at time
t = 1000∆t where ∆t = 0.002. The numerical test was conducted on a fixed [0, 1]× [0, 1] domain.

Fig.5 velocity vector of cavity flow at time t = 1000∆t

Finally, we couple interface-network and fluid models. Numerically, this is a weak coupling where
the interface model and fluid model are solved independently for each time step., as in the following
algorithm:
Repeat for n = 0, 1, ...

• Run one step of the interface model with current pressure p as outer force to get the interface
position at tn+1. We minimize the functional

F̃n(u) = Fn(u) +

∫
Ω

f · u√
4πnh

,

where

f(x) =


p

(pi · pj − 1)

|pi − pj |2
(pi − pj), if dist(x, γk) < δ1,

dist(x, Pk) > δ2

0, otherwise

Here, γk, k 6= i, j is the interface between phase Pi and Pj . δ1, δ2 are small positive constants, p is
pressure, pi,pj are the BMO reference vectors.

• Using the information of interface position at tn and tn+1, determine the domain occupied by fluid
and run one step of the fluid model to obtain velocity and pressure of fluids at tn+1.
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In this coupling problem, we have separate mesh for interface and fluid model. The mesh for interface
does not change during simulation but the fluid mesh changes as the interfaces change for each time
step. To move the nodal points of fluid mesh, we use a kind of an automatic mesh moving scheme where
the displacement of internal nodes is determined by solving elasticity equation. The coupling algorithm
is depicted in Fig. 6.

Fig.6 Numerical algorithm for coupled model

As a coupling example, we simulate bubble motion with buoyant force from the fluid in two settings,
θ = 60◦ and θ = 120.1◦. Under the same buoyant force, we see that for a large contact angle (θ = 120.1◦),
the bubble detaches from the bottom phase, while for θ = 60◦ the bubble remains attached (Fig.7).

Fig.7 Bubble motion with θ = 60◦ (↑ , ∆t = 0.005) and θ = 120.1◦ (↓ , ∆t = 0.001)

The coupling result in this example is still in progress. We tried to figure out how to treat correctly the
moving contact line which is, in conjunction with coupled problem, not an easy task. Here, we show
one-way coupling examples in hydrophilic drop and hydrophobic drop cases as depicted in Fig.8

Fig.8(a) Hydrophilic drop case (b) Hydrophobic drop case
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