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Chapter 1

Introduction

1.1 Background

The field of control engineering has developed over this century from its origins in the
investigation of feedback amplifiers, into a broad discipline concerning various issues of
modeling, dynamics, optimization and feedback control. On one side lie complex engi-
neering problems, such as regulation in chemical processes, trajectory tracking for robot
manipulators, stabilization of high performance aircraft and magnetic suspension systems,
or dynamics of queueing systems. On the other side lie tools from virtually every mathe-
matical discipline, from dynamical systems and differential geometry to stochastic processes
and operator theory. In the middle of this, the task of the control theorist is to abstract
a problem of significance in engineering, cast it in an appropriate mathematical setting,
and derive a solution, by which is meant a practically computable method of evaluation of
the problem at hand. This eclectic mix of disciplines has made control theory the home of
people who have found it difficult to choose between the fascinating worlds of engineering
and mathematics.

While engineers are mainly concerned with real-world problems, and mathematicians
with the logical consistency of their abstractions, it is the job of those who attempt to
apply mathematics to the real world to deal with the fundamental gaps between theory and
practice, which reflect themselves in uncertainty about the behavior of a real system when
one is given a mathematical prediction. This is particularly the case for control theory,
which treats the question of feedback, a technique used by both natural and artificial
systems to obtain reliability in spite of faulty predictions. A property of design feedback

compensator will effectively reduce the sensitivity of the systems to certain sources of
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uncertainty, but at the expense ol increased sensitivity to order unmodeled effects, e.g.,
in another frequency band. Consequently, a theory of feedback must provide means to
quantify these tradeofls, which can only be achieved if in addition to a mathematical
model, one utilizes some form of quantification of model uncertainty.

This thesis is concerned with the robust H. /u control of real mechatronic systems
from the point of view of the effect of uncertainty. The fundamental challenge in this area
has been to refine as much as possible the uncertainty description in a model of a complex
systeni, compatible with the possibility of a tractable evaluation of its effect. I describe a
set of models and perform worst-case analysis by using H../u synthesis and analysis, and

evaluate its effects by mechatronic experiments.

1.1.1 Control of Real Physical System

No mathematical system can exactly model a real physical system. For this reason we
must be aware of how modeling errors might adversely affect the stability and performance
of a control system. In the physical sciences, very accurate models in themselves are the
objective. To obtain these physical laws, one often distills the phenomenon to its simplest
form. In this context. uncertainty is interpreted in a narrow sense as referring to the limits
in the predictive power of the best available models.

Models play a different role in engineering science; they are tools employed in analysis,
simulation and design of complex, artificial systems. Consequently, models fidelity must be
traded off with the complexity of the modeling process and the tractability of the resulting
mathematical and computational problems. From this point of view the best model is the
simplest summary of the main aspects of the physical system which are relevant to the
engineering question at hand.

The issue of uncertainty is at the main theme of control engineering, since a feedback
configuration can significantly affect the sensitivity of the system behavior to uncertainty at
the component level. This is the main motivation for the construction of feedback systems,
but also the main potential danger as unmodeled effects can. Consequently, to perform
good designs, the control engineer must be furnished with rich descriptions of uncertainty
and tools to assess their impact in a complex system.

It is very important and difficult to treat various models of plant uncertainty. H../u
control has a good structure to treat uncertainty. In this paper robust stability, stability in

the face of plant uncertainty, in studied using the small-gain theorem and Nyquist stability
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criterion. Further robust performance, guaranteed tracking in the face of plant uncertainty

is also discussed.

1.1.2 Uncertainty and Robustness

A fundamental problem in the design of control systems is to control accurately the out-
puts of a system(plant) whose dynamics contain significant uncertainties. For example,
characteristic of magnetic force is so complex that analysis of this force is very difficult and
no mathematical models can express the exact behavior of it. In the latest few decades
there have been great advances in the theory for the design of robustly uncertainty-tolerant
feedback control systems [9]. The problem in robust feedback control system design is to
synthesize a control law which maintains system stability and performance and error signals
to within pre-specified tolerances despite the effects of uncertainty of the system [11].

Uncertainty may take a lot of forms but among the most significant are

Parametric Uncertainty

Disturbance Signals

Unmodeled Linear Dynamics

Unmodeled Nonlinear Dynamics

Uncertainty in any form is no doubt the major issue in most control system designs.
This motivates researchers to seek a quantitative measure for the size of the uncertainty,

e.g., the H, and H_, norm, the real/complex structured singular value p, and so on.

1.1.3 Previous Work

[t is a few decades since H.,/p control theory has been studied extremely as a design tool
[6] for the robust controlled system. H./p control theory provides a direct and reliable
procedure for synthesizing controller which optimally satisfies the . norm/ structured
singular value u specifications. This method has an advantage to quantify the effects of
unmodeled dynamics and to clarify the stability margin.

There are so many theoretical results and papers in robust control fields. Nowadays
the most challenging issue is its application to real physical systems. Applications of He,

control to industry is now expected.
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Many application papers have been published, but almost of them employ poor control
problems and groundless generalized plants. Just a few papers focus on real uncertain-
ties/perturbations.

Doyle and Balas applied H,,/u control theory to a flexible structure[5], and they in-
troduced the large-scaled and complicated interconnection structures for the plant. Hyde
and Glover also controlled a VSTOL by using H,, control law [29][30][31]. Steinbuch used
p-synthesis for control of a compact disc player [75].

In order to design a H,/u control system, it is very important to choose suitable design
parameters for each control problem and a plant. The problem is how to construct the
generalized plant and how to select design parameters. In the previous research, even as
the above papers, tuning of the design parameters depended on experimental/simulated
trial and error. Tuning of design parameters, especially frequency weighing functions is
very heavy burden for control design engineers. Development of systematic tuning method
of design parameter is now expected.

Further, in the previous works, physical limit of allowable perturbation for robust sta-
bility /performance was not clear. Weightings for uncertainties were just design parameters,
but physical stability and performance margins against perturbations were not considered.

The second problem is that there are just a few application papers of H.,/u control
theory in real nonlinear mechatronic systems, as robot manipulators. Robot dynamics is
highly interfered, nonlinear, and complicated. Experimental evaluation is now expected.
Hashimoto and Asai treated H,, control or y synthesis of a robot manipulator, but dynamic
couplings between joints were not considered, and the uncertainties caused by modeling

errors was treated the external disturbance[27][4].

1.2 Goal and contribution of this paper
The goal/contributions of this paper is as following three items.

o As described in the last subsection, in order to design a H.,/u control system with
better properties, it is very important to choose design parameters suitably, and we

expect them to be selected more systematically and meaningfully.

The first goal of this thesis is a proposal of a more systematic quantification of the

model uncertainty.
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We make a set of plant model and quantify the model uncertainties, and clarify the

limit of allowable class of perturbation for robust stability and performance.

o There are just a few papers of H,,/u application in real robot manipulator con-
trol field, because robot dynamics is highly interfered, nonlinear, and complicated.

Experimental evaluation is now extremely expected.

The second goal of this thesis is a robust control of robot manipulators by using H,,

control theory.

We guarantee the robust stability of the robot manipulator control system against

model perturbations and dynamic couplings.

Further we apply the robust H,./u control theory to a robot manipulator in order

to evaluate its effectiveness for nonlinear systems.

Our approaches taken here are as follows.

— p-synthesis with exact linearization
— constant scaled H, control considering structured uncertainties
— p-synthesis using linear parameter varying representation
e Third, we apply the advanced H./u control theory to real mechanical systems, then

evaluate the performance of the control theme and expressive ability of LFT against

various forms of uncertainties.

We experimentally show that H, /u control theory has a very good framework to

treat uncertainties, in order to guarantee robust stability and robust performance.

Our mechatronic plants employed to evaluate robust control theory are as follows.

— magnetic bearing: linear, MIMO, unstable

— pantograph system with linear DC motor: linear, SISO, stable, but highly

oscillatory

— robot manipulator: nonlinear, MIMO, stable

1.3 Organization of the thesis

Organization of the thesis is represented in the diagram of Fig.1.1

This thesis has a small hierarchy.
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1) Framework of the Robust Control
2) Heo Control Theory

3) u -Analysis and Synthesis

4) Quantity of Uncertainty

Chapter 2 I

(

N

Robot Manipulator

Li Systems
mnear System (Nonlinear Systems)

I
|
1) u -Synthesis of EMSS | 1) u-Synthesis of RM Using
| Exact Linearization
Robust Control of [
2) Gain Scheduled Heo APS j | 2) Robust Heo Control of RM
Control of MB |
Chapter 4 | 3) u-Synthesis of RM Using
Chapter 3 | LPV Representation )
: Chapter 5
I
I
I

Figure 1.1: Organization of the thesis

Chapter 2 explains a general robust control problem and asserts a main approach to
quantify uncertainties. In this chapter, at first, framework of the robust control is de-
scribed, especially about modeling, uncertainty, and uncertainty descriptions. Then H
control problem/theory, and p-analysis and synthesis approach is introduced. Mathemati-
cal definitions and theorems are also given in Chapter 2. The article entitled “Quantity of
uncertainty” is written in section 2.4, which is a main assertion and concept of this thesis.

Then we apply this methodology proposed in section 2.4 to three mechatronic systems,
and results are presented in chapter 3, 4, and 5, respectively.

In chapter 3, robust control of magnetic suspension systems is described. Section 3.1 is
entitled with “u-Synthesis of an Electromagnetic Suspension System”. And section 3.2 is
entitled with “Application of Gain Scheduled H,, Robust Controllers to a Magnetic Bearing
”. In section 3.1, we show a result of u-synthesis approach with a simple SISO magnetic
suspension system. Section 3.2 is an extension version of section 3.1. Here the controlled
plant is a MIMO(four inputs, four outputs) multivariable magnetic bearing system. We
derive an advanced gain scheduled H, control method by utilizing free parameter of the
controller, and applied the method to this magnetic bearing system.

In chapter 4, robust control of active pantograph system by using linear DC motor, is
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described. Here we considered both parametric uncertainties and dynamical uncertainty
which is an unmodeled uncertainty of the plant in the modeling process, and construct the
interconnection structure by LFT. For controller design, we employ u-synthesis approach.
The experimental results show the effectiveness of the proposed modeling and design by a
comparison with a conventional modeling and H,, method.

In Chapter 5, robust H, control of robot manipulators is discussed. This chapter
is constructed with three main sections, and the following approaches are taken in this

chapter.

e u-synthesis with exact linearization
e constant scaled H,, control

e linear parameter varying representation approach

Robot manipulator dynamics is written with nonlinear ordinary differential equation.
This makes robot manipulator control complicated.

In the first approach, we employ the exact linearization, and then for the obtained
linearized plant, we apply the linear y-synthesis method. In the second approach, we divide
the original nonlinear dynamics with linear nominal model and nonlinear perturbation.
Then we used constant H, problem and small gain theory to guarantee the robust stability
for nonlinear perturbation. The third approach utilize the recent advanced topics, gain
scheduling for linear parameter varying system. Dynamics of robot manipulator with
flexible links is written as linear parameter varying system. We derive the LPV equation
of the plant and u-synthesis approach is used for control system design.

In chapter 3 and 4, we treat linear systems and in chapter 5 our plant is a robot ma-
nipulator, which is a typical nonlinear system. From section 3.1 to 3.2, complexity of the
plant is extended from SISO to MIMO. From section 3.1 to chapter 4, description of the

model uncertainty is extended from the unstructured one to the structured.

Finally, we conclude this thesis in Chapter 6.



Chapter 2

Robust Control and Uncertainty

Description

Recently Hy and u-synthesis theories have been developed [12] [13]. The H. theory
provides a direct, reliable procedure for synthesizing controller which optimally satisfies
singular value loop shaping specifications. Robust stability in the H., control framework
is guaranteed by the small gain theorem, this theorem provides reliable results for unstruc-
tured uncertainties, but it is well known that it gives conservative evaluations for structured
uncertainties as robust performance problems.

To improve this property, by using the multivariable Nyquist stability criterion, the
p-analysis and synthesis method provides a less conservative valuation for a structured

uncertainty.

2.1 Framework of the Robust Control

2.1.1 Modeling and Uncertainty

Any mathematical models can not exactly express a behavior of the real physical system.
For this reason we must be aware of how modeling errors might adversely affect the stability
and performance of a control system.

Fig. 2.1 shows an usual framework of the control system design and real-time control.
Generally we derive a model for the real plant and by using the obtained model, a con-
troller is designed. We implement this controller and apply it to the original real plant.

But the controller was just optimized for the 'model’ and not for the real system. The

CHAPTER 2. ROBUST CONTROL AND UNCERTAINTY DESCRIPTION 9

uncertainty between the real physical system and the nominal model depresses the stability
and performance of the closed-loop system.

In the physical sciences, very accurate models are the objective in themselves. To obtain
these physical laws, one often distills the phenomenon to its simplest form. In this context,
uncertainty is interpreted in a narrow sense as referring to the limits in the predictive power
of the best available models. For example, the uncertainty associated with prediction in a
chaotic systems, or the uncertainty principle in quantum mechanics refer to fundamental
limitations in predictability.

Models play a different role in engineering science; they are tools employed in analysis,
simulation and design of complex, artificial systems. Consequently, models fidelity must
be traded off with the complexity of the modeling process and the tractability of the
resulting mathematical and computational problems. From this point of view the best
model is the simplest summary of the main aspects of the physical system which are
relevant to the engineering question at hand. Correspondingly, the term “uncertainty”
is used here in a broader sense: is not only describes what one is fundamentally unable
to predict, but also, and often predominantly, many aspects of the system which one has
chosen to neglect or simplify. For uncertainty in this broad sense, there is by definition
no detailed model, but often the modeling process yields a crude description which allows
one to assess its implications on the overall system. There descriptions of uncertainty
appear commonly and in various forms in engineering models, whatever they result from
“black box” system identification techniques, from “first principles” models obtained by
application and simplification of physical laws, or a combination thereof.

As remarked in Introduction, the issue of uncertainty is at the heart of control engi-
neering, since a feedback configuration can significantly affect the sensitivity of the system
behavior to uncertainty at the component level. This is the main motivation for the con-
struction of feedback systems, but also the main potential danger as unmodeled effects
can, for example, lead to instability. Consequently, to perform good designs, the control
engineer must be furnished with rich descriptions of uncertainty and tools to assess their
impact in a complex system. It should be clear from the nature of these descriptions that
no hard “guarantees” can result from this assessment; ultimately, the control engineer must
be the final mediator between the mathematics and the real system.

In Fig. 2.1, the uncertainty A causes various problems when we design a controller and
control of a real physical system. We know A is a gap between the real physical system

and the model, but we have to discuss the A in detail. Our problems are as follows.
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w A z

7T =N /

Real Physical Modeling Nominal
System - > Model
/ Identification y
1 Design
Real-Time
Control Controller

Figure 2.1: General framework of design and real-time control
e What is physically included in A ?
e How is A expressed?
o How can we measure/quantify A?

These problems are discussed in the following sessions.

2.1.2 Uncertainty Descriptions

Traditional methods for uncertainty characterization in dynamical systems include para-
metric uncertainty, disturbance signals, and system perturbations to account for unmodeled

dynamics. We now describe how these typically arise in modeling. For more motivation

we refer to [14].

Parametric Uncertainty

Parameters are present in most engineering models, representing a real physical quantity
which can be assumed to be a real constant within the range of validity of the model. The

following are some reasons for uncertainty in the value of a parameter.

e [t could be obtained indirectly from experimental data, which leads to statistical

deviations.
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e It could represent a standardized component (e.g., electrical resistor) subject to man-

ufacturing tolerances.

e [t could represent an operation condition which varies in an unforeseen way. A
constant parameter is a reasonable model when this variation is very slow (e.g.,
ambient temperature). In other cases the rate of variation of the operation condition
is comparable to the modeled dynamics (e.g., aerodynamic efficient of an airplane

executing a sharp maneuver). In this case a time-varying parameter may be preferred.

The most straightforward representation of parametric uncertainty is in terms of an

interval of the real line, such as
p=po+ kb, 6€l-1, 1]
In models of linear dynamical systems, it is common to encounter rational dependence of
a transfer function on an uncertain parameter.
Disturbance Signals

Another commonly used method to account for model uncertainty is the injection of dis-
turbances, which are thought of as generated by an external process. Some ways in which

they arise are

e To account for microscopic fluctuations which are not included in a large scale

model(e.g., wind turbulence, thermal noise in a circuit).

e To describe more systematic effects which are neglected in a simplified model (e.g.,

ripple in a voltage source, quantization error in an A/D converter).

e In identified models, frequently used as an error signal needed to account for the

data.

The two standard choices for characterization of disturbances are in terms of a stochastic

process, or in terms of a set of signals.

Unmodeled Linear Dynamics

The most commonly used dynamical system model for purposes of control is linear, finite

dimensional time invariant system, which is equivalent to a set of linear ODEs, preferably of
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low order. Assuming for now that nonlinear effects are negligible, a low order approximation
amounts to neglecting linear dynamics, in particular distributed effects.

This uncertainty is expressed as follows

e Additive Uncertainty:
H = P + W]AWQ.

e Multiplicative Uncertainty:

Il = (I + W,AW,)P,

e Coprime Factor Uncertainty:

Unmodeled Nonlinear Dynamics

If nonlinear are very significant in the range of operation, the model itself must be chosen
to be nonlinear. Uncertainty descriptions for nonlinear models are not very well developed,

and are one of the main open challenges for a satisfactory theory of robust nonlinear control.
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2.2 H, Control Theory

Robust stability against unstructured uncertainty in H,, control framework is guaranteed
by small gain theorem. Detailed definition and proof are written in [87].
In this section, the results by Keith Glover and John C. Doyle[25] is introduced.
There are so many other state-space formulae for all stabilizing controllers that sat-
isfy an H,, norm bound, but this one is the original and the most famous and typical

characterization, which is employed by MATLAB and MATRIXx.

2.2.1 Problem Formulation

The most general block diagram of a control system is shown in Figure 2.2 . Where P is
the generalized plant and K is the controller.

Since the work of Zames[86], there has been much interest in the design of feedback
controllers for linear systems that minimize the H, norm of a specified closed-loop transfer

function. Let a linear system P(s) be described by the state equation

z(t) = Az (t) + Biw (t) + Bau (t), (2.1)
z(t) = Cyz (t) + Dyyw (t) + Dygu(t), (2.2)
y(t) = Coz (t) + Dyyw () + Dpu(t). (2.3)

where
z(t) € R, w(t) € R™, u(t) € R™, 2(t) € R™, y(t) € R™

The generalized plant P contains what is usually called the plant in a control system
plus all any frequency-dependent weighting functions.
The signals, w(t), z(t), y(t), and u(t) are vector-valued functions of time. z(t) is the

state vector. The components of

w: are all the exogenous input: reference, disturbances, sensor noises, and so on.

z: are all the signals we wish to control: tracking errors between reference signals and
plant output, actuator signals whose values must be kept between certain limits, and

SO On.
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w z
—_—
P
—
u y
K

Figure 2.2: Most general Control System

y: contains the outputs of all sensors.
u: contains all controlled inputs to the generalized plant.

The transfer functions will be denoted as follows

P P
P(s) = ( > (2.4)

Py Py

_ (D“ D”>+[C”}(31—A)‘1[Bl B,] (2.5)
D21 D22 Cl2
[ A| B, B

= | ¢ | Dy Dy, (2.6)
_CQ DIZ D22

| A|B
“lclp

The diagram is also referred to as a linear fractional transformation(LEFT; see subsection

2.3.2) on K and P is called the coefficient matrix for the LFT. The resulting closed-loop

(2.7)

transfer function from w to z is denoted by T, = F;(P, K ), where

E(P, [() = P]l -+ Pn[(([ — P22IX’)—1P21. (28)

The Ho, control problem is then to choose a controller K (s), that makes the closed-loop

system internally stable ( see [25]) and minimize ||F;(P, K)

||oo’
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where

1G]

o = sup o (G(jw)) (6 := maximum singular value). (2.9)

We will in fact be considering the closely-related problem of finding all stabilizing K
such that
17 (P K)o < v (2.10)
for some prespecified v € R
It is the purpose of the present note to give a state-space parametrization of all con-
trollers that satisfy (2.10); this solution will only involve two algebraic game-type Riccati

equations, each of degree n[25] [12].

2.2.2 Characterizing all solutions

This section will give a state-space characterization of all stabilizing controllers K (s) such
that [|F(P,K)||e < 7. We will make the following assumptions that are also typically
made in the corresponding LQG problems.

Assumption 2.1

e (Al) (A, B;) is stabilizable

(A2) (C,, A) is detectable.

e (A3) rank Dy, = my (D2 is full column rank.)

(A4) rank Dy = py (Dy; is full row rank.)
A—jol B

) Dy,
¢

Py, does not have any zeros on the imaginary axis.

¥

There are no unobservable poles of (A — BzDLCl, D{,C1) on the imaginary axis.

(A5) rank l ] =n+m; Yw ( full column rank)

A—jwl B

Cs Dy,
¢

P, does not have any zeros on the imaginary axis.

¢

There are no uncontrollable poles of (4 — BID;(1 C,, By D3,) on the imaginary axis.

(A6) rank [ } =n+p, Vw (full row rank)
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e (A7) A scaling of u and y, together with a unitary transformation of w and z,

enables us to assume without loss of generality,

0
D12:[1 :Ia DQl:[O Ipz]a D22:0
ma

Assumptions (Al) and (A2) are required for the existence of a stabilizing K. These
assumptions are equivalent that the real plant is stabilizable and detectable, and the weight-
ing functions are stable.

(A3) and (A4) are sufficient to ensure that the controllers are proper, but there are sen-
sible problems when it is violated. Dy; = Pj3(00), Doy = Py1(00), then these assumptions
mean Fj; and FP;; do not have any zeros at 7 = oco. If these would be deleted, expansion
of equations are more complicated.

(A5) and (A6) are need for spectral factorizations.

(AT) ensure that the solution to the corresponding LQG problem is closed-loop asymp-

totically stable, and is also convenient for the present problem.

The main result is now stated as follows.

Theorem 2.1
For the system described by (2.1)-(2.3) and satisfying the assumptions (A1)-(A7), There
exists an internally stabilizing controller K (s) such that ||F(P, K)||. < v if and only if

(1) v > max(o[D1111, Diirz],5[Di111, Diiail)s

where

Dyyyy € Ror-m2x(mi=p2) 'p 1, € RPr—m2)Xp2 Do, € RmeX(mimp) Do, € RM2XPz,

and
(i1) there exist Xo, > 0 and Yo, > 0 satisfying (2.11) and (2.12) respectively and such that
/\max(XooYoo) < ’723

where

A 0 B
Xo = Ric{{ ]—[ }R‘I[D;.Cl B*]}, (2.11)
—C;¢, —-A*] |-CiD.

. A0 cr 1.
Y., = Ric - B[ Dy B C]}, (2.12)
—BB; —-A] |-BDy
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. ¥, 0
R = D].Dlo - 0 O 5 Dl. = [DH Du] (213)
2
. vl 0 D
R = DuD: — [ ’ } , D = [ “} (2.14)
0 0 D3,

The solution X, and Y., to an algebraic Riccuti equation (ARE) are denoted via its

Hamiltonian matrix as (2.11) and (2.12).

Theorem 2.2
Given that the conditions of Theorem 2.1 are satisfied, then all rational internally stabi-

lizing controllers K (s) satisfying ||Fi( P, K)||~ < v are given by

K = f}([\,a, (D) = ]X,n + ](12(1)(1 — [(22@).—1[{21, (215)

® € RHy, s.t.||®]lw <7,

where
o Al B B
. K K] g - R p
Ixa = . , - Cl Dll D12 9 (216)
Ky Ko . .

CQ D12 0
A = A+ HC+ B,D}Cy, (2.17)
Bl == “HQ + Bng—QlDll, (218)
By = (By+ Hy)Dyo, (2.19)
él = FQZ + Dll_D;lléQ, (220)
éz = —D21(02 + Flg)Z, (221)
Dn = —D1121DI111(721 - DnnDI}u)_lDuw — D192, (2-22)

D12 € R™2*™2 and .ﬁm € RP2*P2 are any matrices (e.g., Cholesky factors) satisfying

DwD;y, = I—Dun(v*I = Diyy Dunt) " Dipay, (2.23)

D;1D21 = I- Dﬁm(”/z[ - DllllD;ul)_lDlUlv (2-24)
Fll

F = | Fy|=-RYD:C + B X, (2.25)
K

= [Hy Hy, Hy)=—[BD: +Y,C*|R, (2.26)

Z = (I -7 Xo) ™, (2.27)
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Fll € R(m1~p2))<n, F12 c szxn, Fg € ngXn’ Hll € Rnx(pl—mg, H12 € Rnsz, Hz € Rnxp2
F and H are called the ’state feedback’ and ’output injection’ matrices, respectively. In
(2.16), ®(s) is called free parameter. And if ®(s) = 0, then controller K (s) should be

K11(s) from (2.16). K1(s) is generally called ’central controller’. The central controller is

formulated as

(2.28)
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2.3 pu-Analysis and Synthesis

The small gain theorem provides reliable results for unstructured uncertainties, but it is
well known that it gives conservative evaluations for structured uncertainties as robust per-
formance problems. To improve this property, by using the multivariable Nyquist stability
criterion[41], the p-analysis and synthesis method provides a less conservative valuation

for a structured uncertainty.

2.3.1 Structured Singular Value p

In this section I devote to defining the structured singular value, a matrix function denoted
by u [13]. Consider matrices M € C™*™. In the definition of u(M), there is an underlying
structure A, (a prescribed set of block diagonal matrices) on which everything in the
sequel depends. For each problem, this structure is in general different; it depends on the
uncertainty and performance objectives of the problem. Defining the structure involves
specifying three things; the type of each block, the total number of blocks, and their
dimensions.

There are two types of blocks-repeated scalar and full blocks. Two nonnegative in-
tegers, S and F', represent the number of repeated scalar blocks and the number of full
blocks, respectively. To bookkeep their dimensions, we introduce positive integers ry,...,rs;
my,...,mp. The 7th repeated scalar block is r; x r;, while the j'th full block is m; x m;.

With those integers given, we define A C C™*" as

A = {diag[8,1,,,...,85],0, A1, ..., Ap] 1 & € C, A; € C™5%ms} (2.29)

For consistency among all dimensions, we must have

S F
dYori+d mj=n (2.30)
i=1 J=1

We will often need norm bounded subsets of A, and we introduce the following notation

BA={AcA:a(A)<1} (2.31)

Note that in (2.29) all of the repeated scalar blocks appear first. This is just to keep the
notation as simple as possible, in fact they can come in any order. Also, the full blocks do

not have to be square, but restricting them as such saves a great deal in terms of notation.
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Definition 2.1 [13]
For M € C™*" ua(M) is defined

1
M) = 2.32
#a(M) min{o (A): A€ A, det (I — MA) = 0} (2:32)
unless no A € A makes /| — MA singular, in which case pa (M) .= 0.
An alternative expression for ua (M) follows from the definition(2.32).
pa(M) = max p(MA) (2.33)

AeBA
I'rom (2.33) continuity of the function p: C"™"™ — R is apparent. In general, though,
the function g: C™™ — R is not a norm, since it doesn't satisfy the triangle inequality.
However, for any o € C, u(aM) = |a|u (M), so in some sense, it is related to how "big”
the matrix is in a norm sense.

We can relate y (M) to familiar linear algebra quantities when A is one of two extreme

sets.

e fA={:6cC}(S=1,F=0r = n), then pu (M) = p(M), the spectral
radius of M.

e fA=C""(S5=0,F=1,m, = n), then u (M) = 6 (M).

For a general A as in (2.29) we must have

{6[,:6eC}cAcCm (2.34)

Hence directly from the definition of y, and the two special cases above, we conclude

that

p(M) < pa (M) < o (M) (2.35)

These bounds alone are not sufficient for our own purposes, because the gap between p
and ¢ can be arbitrarily large. They are refined by considering transformations on M that

do not affect pa (M), but do affect p and o. To do this, define the following two subsets
Of CTIXTL
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Q={QeA:QQ=1I)} (2.36)
D: dia‘g[Dla"‘aDSadllml""adF—IImF_17]mF] Z} (237)
D; e C*" D; = D? > O,dj € R,dj >0
Note that for any A € A, Q € Q, and D € D,
Q"EQ, QAEA, AQeE A
5(QA) = 5 (AQ) = 5 () (2.38)
DA =AD (2.39)
Consequently
Theorem 2.3:
Forall Q € Qand D €D
pa (MQ) = pa (QM) = pa (M) = pa (DMD™) (2.40)
Therefore, the bounds in (2.35) can be tightened to
= < inf 6 (DMD™! 2.41
maxp(QM) < max p(AM) uA(M)_I;rellfDU( ) (2.41)

where the equality comes from (2.33). Note that the last element in the D matrices in

(2.37) is normalized to 1 since for any nonzero scalar v, DM D™ = (yD)M(yD)~*.

Bounds

Here I will concentrate on the p bounds. From (2.41)

: ~ -1
max p(QM) < pa (M) < jinf & (DMD ) (2.42)

The lower bound is always an equality. Unfortunately, the quantity p (QM) can have
multiple local maxima which are not global. Thus local search cannot be guaranteed to

obtain p, but can only yield a lower bound. So we use a slightly different formulation
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of the lower bound as a power algorithm which is reminiscent of power algorithms for
eigen values and singular values. While there are open questions about convergence, the

algorithm usually works quite well and has proven to be an effective method to compute

.

2.3.2 Linear Fractional Transformations

Using only the definition of p, some simple theorems about a class of general matrix
transformations called Linear Fractional Transformations can be proven. To introduce

these, consider a complex matrix M partitioned as

My M
1—[ . ”} (2.43)

LM M
and suppose there is a defined block structure Ay which is compatible in size with My,

(for any Ay € Az, My A, is square). For A, € Ay, consider the following loop equations,

e d
RN
w= Az (2.44)

These equations (2.44) are called well posed if for any vector d, there exist unique
vectors w, z, and e satisfying the loop equations. It is easy to see that the set of equations is
well posed if and only if the inverse of 1— My A, exists. If not, then depending on d and M,
there is either no solution to the loop equations, or there are an infinite number of solutions.

When the inverse does indeed exist, the vectors e and d must satisfy e = Fi(M,Ay)d, where

FUM, DNg) = My + MipAg (1 — MypAy) ™' My (2.45)

Fi(M,A,) is called a Linear Fractional Transformation on M by A,, and in a
feedback diagram appears in Figure 2.3 .

The subscript { on F; pertains to the "lower” loop of M is closed by A,. An analogous
formula describes (M, A;), which is the resulting matrix obtained by closing "the upper”
loop of M with a matrix A; € A;y.

In (2.45) , the matrix M), is assumed to be something nominal, and A, € BAg is
viewed as a norm bounded perturbation from an allowable perturbation class, A;. The
matrices Myz, My and M3, and the formula F; reflect prior knowledge on how the unknown

perturbation affects the nominal map, M.
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A,

Figure 2.3: Lower Linear Fractional Transformation

The constant matrix problem to solve is:
e determine whether the LFT is well posed for all A; € Ay, with (A;) < 8, and,

o if so, them determine how "large” Fi(M,A;) can get for this norm-bounded set of

perturbations.

The next section has simple theorems which answer this problem.

2.3.3 Well posedness and Performance for LFT’s

Let M be a complex matrix partitioned as (2.43) and suppose there are two defined block
structures, A; and A,, which are compatible in size with M}, and My, respectively. Define

a third structure A as
a={ M Y A eanaensl. (2.46)

0 A,

Now there are three structures with which we may compute g with respect to. The
notation we use to keep track of this is as follows: p;(+) is with respect to Ay, po(-) is with
respect to Agy,: pa(+) is with respect toA. In view of this, py(Mi1), p2(Mag) and pa(M)

all make sense, though for instance, (M) does not.

Let A, € Aa. The linear fractional transformation, F;(M, A,) is well posed if 1—Ma A,

is invertible, and in that case is defined as
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Fi(M, D) = My + Mg (1 - MypAg) ™! My (2.47)

The first theorem is nothing more than a restatement of the definition of .

Theorem 2.4:
The linear fractional transformation F; (M, A;) is well posed for all A, € BA3 if and

only if uy(My;) < 1.

As the "perturbation” A, deviates from zero, the matrix F; (M, A,) deviates from M;,.
The range of values that u, (F; (M, A;)) takes on is intimately related to ga (M), as follows:

Theorem 2.5:

The following are equivalent:

pa (M) <1

{ pe (May) < 1, and
(2.48)

max i (Fi(M,Ar)) < 1
2

AéBA

This theorem forms the basis for all uses of x in linear system robustness analysis,
whether from a state-space, frequency domain, or Lyapunov approach. The frequency

domain p tests play a key role in robustness analysis.

2.3.4 Robust Stability

The most well-known use of 4 as a robustness analysis tool is in the frequency domain.
Suppose P(s) is a stable, multi-input, multi-output transfer function of a linear system.
For clarity, assume P(s) has n. inputs and n,, outputs. Let A be a block structure, as
in (2.29) , and assume that the dimensions are such that A C C"=*™_ We want to
consider feedback perturbations to P which are themselves dynamical systems, with the
block-diagonal structure of the set A. To do so, first let Mg denote the entire set of
real-rational, proper, stable, transfer matrices. Associated with any block structure A, let

M(A) denote the set of all block diagonal, stable rational transfer functions, with block
structure like A.
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MA):={A() e Ms:A(s,) € A forall s, € C,} (2.49)

Theorem 2.6:
Let § > 0. The loop shown below is well-posed and internally stable for all A(-) €

M(A) with [|A]] < % if and only if

1Plla = sup ua (P () < 8 (2.50)
we
The peak value on the p plot of the frequency response that the perturbation sees

determines the size of perturbations that the loop is robustly stable against.

2.3.5 Robust Performance

Often times, stability is not the only property of a closed-loop system that must be robust
to perturbations. Typically there are exogenous disturbances acting on the system (wind
gusts, sensor noise) which result in tracking and regulation errors. Under perturbation,
the effect that these disturbances have on error signals can greatly increase. In most cases,
long before the onset of instability, the closed-loop performance will degrade to the point
of unacceptability. Hence the need for a "robust performance” test. Such a test will
indicate the worst-case level of performance degradation associated with a given level of
perturbations.

Assume P is stable, real-rational, proper transfer function, with n, + n; inputs, and
Ny + n. outputs. Partition P in the obvious manner, so that 1511 has n, inputs and
ny outputs, and so on. Let A C C™*" be a block structure, as in (2.29). Define an

augmented block structure [13]

A0
Ap = A€ A, Ap € Craxne (2.51)
0 Ap

The setup is to theoretically address the robust performance questions about the loop

shown as Figure 2.4
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A(s)

P(S) e

Figure 2.4: Upper Linear Fractional Transformation

The perturbed transfer function from d to e is denoted by fu(f’, A).

Theorem 2.7:

Let 8> 0. For all A(s) € M(A) with ||A[] < %, the loop shown above is well-posed,

internally stable, and ||.7-'u(15, A)||. < B if and only if

lloo

Plla, = SUP fap (P(w) <5

(2.52)
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2.4 Quantity of Uncertainty

In the previous research, tuning of the design parameters depended on experimental/ sim-
ulated trial and error. Tuning of design parameters, especially frequency weighing func-
tions is very heavy burden for control design engineers. Development of systematic tuning
method of design parameter is now expected. Further, physical limit of allowable perturba-
tion for robust stability /performance was not clear. Weightings for uncertainties were just
design parameters, but physical stability and performance margins against perturbations
were not considered.

Hence, we expect design parameters to be selected more systematically and meaning-
fully. In this section, [ make a set of plant model and quantify the model uncertainties by
iterative design method, and clarify the limit of allowable class of perturbation for robust

stability and performance.

2.4.1 Iterative Design

Our approach taken here is to treat quantization of uncertainty as one of control system
design process. The problem of uncertainty quantization cannot be separated from control
system design. These two parts are correlate closely with each other.

We would like to make the closed-loop system possess robustness. If the system has an
over-robustness property, however, the performance of the system would be deteriorated.
Hence a balance of robustness and performance is a matter of great importance to a control
system design. Quantization of uncertainty depends on the synthesis.

The following items are interrelated.

e quantization of uncertainty

e performance specification

e construction of interconnection structure
o design(synthesis)

Our proposal is iteration of uncertainty quantization, which is as follows. As a re-
sult of this iteration, the class/quantity of uncertainty which is guaranteed robust stabil-

ity /performance should be obtained.
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Iterative Design Procedure

Stepl: make a set G: Construct a plant model set G which involves the nominal linear
model G. This set should be represented by a matrix function: linear fractional
transformations(LFT) as G := .7-'1(@', A), where G involves a nominal model G and

weighting functions for uncertainties, and A is given by

A = {diag[6,],,...,65L,g, A1, ..., AF] : 6 € C, Aj € C™X™}, (2.53)

Step2: set a performance spec: Set a performance specification by using weighting
function W, , e.g., integral property for disturbance elimination, and tracking to

the reference signal.

Step3: construct the interconnection structure: First, construct the generalized plant

G from G and Wiers, then put A together with A, s as

A 0
Ap = A E A, Aperf € CndXne (2.54)
0 Apers

Step4: synthesis: Solve H,/u Control Problem to achieve H,, norm, or the structured

singular value y test, and obtain the controller K.

Step5: judgement: The upper bound v of the ||F}(G, K)||oo, or uAP(]-'I(é,K)) is ob-
tained in Step4. If v < 1, then go to Step6, but if ¥ > 1, return to Stepl and reselect
a set of plant model G.

Step6: experimental evaluation: By experiments, the stability and performance of the

obtained closed-loop system are evaluated for a set G.

In the above iteration, making a set G performs a key role. The method to make a set

G is described in the next subsection.

2.4.2 How to make a set G

Our approaches to make a set G are following three items. For the simplicity, in this

section I explain just SISO systems, but it can be extended to MIMO systems.
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——b( make a set G )
Y

(set a performance speciﬁcation)

y

(construct the interconnection structure)

Figure 2.5: Flow Chart of Iterative Design

(1) set of parameters:
This set is used in order to take the parametric uncertainty into account. According
as the state #(t) of the system, parametric numerical value changes. Usually, the
nominal values of the parameters are decided as the value when the state z(t) €
R"™ is on the equilibrium point, and the obtained values are employed around the
equilibrium point. But, at the neighborhood of the equilibrium point, numerical

values of parameters should be perturbed.

First, select the k state variables z;(: = 1,..,k) C & which are expected most to be
regulate, then set the range (the upper and lower bound) which is guaranteed robust

stability/performance.
zi . <z; <z ., t=1,...k (2.55)

By these change of state variables, the m model parameters p;(j = 1,...m) which

are included in A, B matrices are perturbed as

pjmin —<—p_7(m1) Spjmax’ (‘T‘imin S .'171' S ximax’ Z= 17"'1k’ J= 17"'7m) (2’56)
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Then the nominal value of p; and the weighting of parametric uncertainty should be

decided as follows.

pjnom = pjlxj=zjnom (2'57)
ij = ma‘x(pjmax - pjnom7pjnom - pjmin) (2'58)

Hence the set of parameter is written as,
i = {Pjpom + bWy, : 18] < 1.}, J=1,...,m. (2.59)

Nominal parameter

plnom ._.L _______
plmin ———————

|

|

|
|
[
L
L
L1

Real Pertu(Ibation of a Parameter

i /

0
Ximin ~ *lnom  *1max

Figure 2.6: Parametric Uncertainty

(2) set of linear models:

This set is used in order to take the neglected linear dynamics into account. Here we

assume that the plant can be represented as a following linear model.

z = Az + Bu,

y = Cg, (2.60)
where A € R**"*, B € R™*}, and C € R!*",

Prepare the (k + 1) combinations (4;, B;), (i = 0,..., k), which are system matrices,
and these are derived according to the precision/assumption of modeling. And we

define that (Ao, Bo) represents a combination of nominal model. Hence the nominal
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transfer function Gy,(s) and the k magnitudes of perturbed dynamics are as follows.

Grom(8) = C(sI — Ag)™ !By (2.61)
WGl = CGwI = A)B; — C(jwl — Ao) ™' Bolleo, (1=1,...,k)
(2.62)

Hence the set of linear dynamics is written as,

Gi(s) i= {Ginom(s) + AW(s) : [[Alloo < L.} (2.63)

(3) linear dynamics with nonlinear perturbations: This set is employed in order to
take the neglected nonlinear dynamics into account. Here we assume that the plant

can be represented as a following nonlinear model.

¢ = f(z)z + Bu,
= {4+ (f(z) - A)}z + By,
:= {A+ D(z)}z + Bu, (2.64)

where f(z),D(z) € R**™. If we put the bound of perturbation as follows.
Iwijl = max ld(x)ijlv L1=1,...,m, (265)
where w;; is ij-element of the matrix W € R™*", and W is calculated by equation

(2.65).
Then the set is written as
k
z:={(A+ Z&il/ifi)x +Bu: |&] <1}, (2.66)
=1
where W', € R™M*m,

The parametric uncertainty in the nominal system is reflected by the k scalar un-
certain parameters &,...,8;, and we can specify them, say by 6; € [—1,1]. The
structural knowledge about the uncertainty is contained in the matrices W;. They

reflect how the ¢’th uncertainty, §;, affects the state space model.

[ apply this proposed iterative design procedure to robust control systems design in the

following chapters, and evaluate this method.



Chapter 3

Robust Control of Magnetic

Suspension Systems

Since magnetic suspension systems are unstable by nature, feedback control is always
necessary. In order to synthesis a feedback controller, a precise mathematical model for
the plant is required, however uncertainty is inevitable between the plant and the model.
The controller is required to have robustness for stability against model uncertainties.
This chapter deals with two magnetic suspension systems. One is a simple SISO elec-
tromagnetic suspension system, and the other is a complicated MIMO magnetic bearing,

the latter is an expansion and application of the former in a sense.

3.1 p-Synthesis of an Electromagnetic Suspension Sys-

tem

This section deals with p-synthesis of an electromagnetic suspension system. First, an
issue of modeling a real physical electromagnetic suspension system is discussed. We
derive a nominal model as well as a set of models in which the real system is assumed to
reside. Different model structures and possible model parameter values are fully employed
to determine unstructured additive plant perturbations, which directly yield uncertainty
frequency weighting function. Second, based on the set of plant models, we setup robust
performance control objectives. Third, we make use of the D — K iteration approach for
the controller design. Finally, implementing the controller with a digital signal processor,

M e o T T3 M
experiments are carried out. With these experimental results, we show robust performance

of the designed control system.
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3.1.1 Introduction

Electromagnetic suspension systems can suspend objects without any contact. The in-
creasing use of this technology in its various forms makes the research extremely active.
The electromagnetic suspension technology has already applied to magnetically levitated
vehicles, magnetic bearings, and so on. Recent advances on this field are shown in [1], [32].

Feedback control is indispensable for magnetic suspension systems, since they are es-
sentially unstable systems. In order to synthesis a feedback control system, a precise
mathematical model for the plant is required. However it is known that a design model
can not always express the behavior of the real physical plant. An ideal mathematical
model has various uncertainties such as parameter identification errors, unmodeled dy-
namics, neglected nonlinearities. The controller is required to have robustness for stability
and performance against uncertainties on the model.

Recently, p-synthesis which is constructed with both H, synthesis and p-analysis, has
been developed for the design of robust control systems [61], [74]. Beyond the singular
value specifications, the p-synthesis technique can put both robust stability and robust
performance problems in a unified framework. Applications of the p-synthesis method
have been reported in [19]-[24], [75][78][79][34]. In the case of applications of H,,/u control
to real physical systems, it is quite important to select appropriate design parameters.
These parameters construct some parts of the generalized plant, e.g., uncertainty and
performance weightings.

In this section, we evaluate p-synthesis methodology experimentally with a real electro-
magnetic suspension system. We model the additive uncertainties and decide the frequency
weighting function for uncertainty accurately and reasonably. Experimental results show

that the closed-loop system with a p controller achieves robust performance.

3.1.2 Experimental Setup
Electromagnetic Suspension System

The structure of the electromagnetic suspension system is shown schematically in Fig-
ure 3.1. The objective of our control experiments is to suspend an iron ball stably and
firmly without any contact by controlling the attractive forces of an electromagnet. Note
that this system is essentially unstable.

In Figure 3.1, a cylindrical electromagnet as an actuator is located at the upper part
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of the experimental system. Mass of the iron ball is 1.75 kg, and it has a diameter of 77

mm. A gap sensor of our own producing is placed at the bottom of the system to measure

the gap length between the iron ball and the electromagnet. The sensor is scaled for a
gap of 2.4 mm per volt. It is a standard induction probe of eddy-current type. Physical

parameters of this experimental machine are shown in Table 3.1.

Electromagnet

Iron Ball

Gap Sensor

Figure 3.1: Schematic diagram of the Electromagnetic Suspension System

Digital Controller

The experimental machine is controlled by a digital controller using a DSP (Digital Signal
Processor). The experimental setup basically consists of the DSP which is sandwiched
between A/D and D/A converters. Real-time control is implemented with a processor
NEC pPD77230, which can execute one instruction in 150 ns with 32-bit floating point
arithmetic. This device has enough fast processing speed to stabilize a relatively simple
magnetic suspension system in Iigure 3.1. The control algorithm is written in the assembly
language for the DSP and a software development is assisted by a host personal computer
NEC PC-9801 under the MS-DOS environment. The data acquisition board MSP-77230
consists of a 12-bit A/D converter and a 12-bit D/A converter with the maximum conver-
sion speed of 10.5 us and 1.5 ps, respectively.

The sensor outputs are filtered through an analog low-pass circuit, and then converted
to digital signals by A/D converters. The DSP calculates the control input signals. These

digital signals are converted to analog signals by D/A converters with a range of £5 V.
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The converted signals and the steady current signals are added and amplified by 10 times
to actuate the electromagnet. Steady state voltage of the electromagnet is 24.6 V and the

maximum voltage of a regulated DC power supply is 70.0 V.

3.1.3 Model of Electromagnetic Suspension System

Our purpose in this section is to introduce an ideal mathematical model and an uncertainty

weighting function for the system. See [23] for details.

Model Structures

We employ four different model structures for the system depicted in Figure 3.1. All of the

models are finite-dimensional, linear, and time-invariant of the following state space form:

z=Ax+ Bu, y=Cex (3.1)

First, we introduce ideal mathematical models for the real electromagnetic suspension
system. Due to the idealizing assumptions that we make, two types of ideal mathematical
models can be derived hereafter, which are composed of nonlinear differential equations.
We define them as Type[A] and Type[B], respectively.

Since the behavior of the electromagnetic force is nonlinear, we then employ the lin-
earization procedure around an operating point. In order to account for the neglected
nonlinearity, we derive two types of linear model, respectively. Thus, we derive four linear

models according to the following manners:

Model[A1]: L =CONSTANT; and the nonlinearity of the electromagnetic forces

are approximated up to the first-order term in the Taylor series expansion.

e Model[A2]: L =CONSTANT; and the nonlinearity of the electromagnetic forces

are approximated up to the second-order term in the Taylor series expansion.

e Model[B1]: L = L(z); and the nonlinearity of the electromagnetic forces are

approximated up to the first-order term in the Taylor series expansion.

e Model[B2]: L = L(z); and the nonlinearity of the electromagnetic forces are

approximated up to the second-order term in the Taylor series expansion.
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Ideal Mathematical Model: Type[A]

We derive ideal mathematical models for the real electromagnetic suspension system, where

the following assumptions on the electromagnet are considered.

o (A.1) Magnetic permeability of the electromagnet is infinity.

o (A.2) Magnetic flux density and magnetic field have not hysteresis, and they are

not saturated.

e (A.3) Eddy current in the magnetic pole can be neglected.

Using (A.1) and (A.2), we can treat the coil inductance L as a function of variable z.

Then, the system can be written by the following nonlinear differential equations

S — f:k( ), e:Rb+%{L@ﬂL (3.2)

dt2 T+ To
where the coefficients k and z¢ in (3.2) are constants determined by identification experi-

ments. Further, we introduce another assumption for Type[A].

e (A.A) The coil inductance is constant near an operating point. Furthermore,

the electromotive forces due to the differential of gap can be neglected.

Then from (3.2), we get
di
=Ri+ L.—. .
e=Ri+ T (3.3)

The ideal mathematical model: Type[A] is represented by (3.2) and (3.3) .

Model[A1]
In view of (3.2) and (3.3), we can obtain the linear model (3.4); Model[A1]
0 1 0 0 11"
— 2k 12 2k1
A= m(X +zo) 0 _m(X+xo)2 ’ B=10 ) C=10 . (34)
R
o 0 -7 ’ 0
Model[A 2]
We can further obtain another linear model (3.5); Model[A2].
0 1 0 0 117
- 2k 12
A= m(X«}-:L-o)5 Ay 0 _m_(x2_k+170)_2_Ay ) B=10 s C=10 y (35)
0 0 -1 ; 0
T .1 3 1
X+$0’ t I’ Ay 1 2A£L‘+2AZ.

In this way, we deal with the deviation z and i as fixed numbers, at the second-order term

in the Taylor series expansion and include them in the matrix A as Az, Az and Ay.
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Ideal Mathematical Model: Type[B]

For the ideal mathematical model Type[B], we also consider the assumptions; (A.1), (A.2),
(A.3) and here in addition to them, we introduce the next assumption (A.B) instead of

(A.A). Using this assumption, we can obtain more accurate model than one of Type[A].

o (A.B) The coil inductance L is a function of a gap z, and written as follows.

Q

L(w):x—I—X

+ Lo (3.6)

where the coefficients @), X, and Ly are also the constants determined by identification
experiments. For any given current : in a coil with inductance L, the magnetic co-energy
is shown as 7Li*. Hence electromagnetic forces between the electromagnet and the iron
ball in (3.2) is equal to the change rate of co-energy with respect to the distance z, i.e.,

Y (R T

Comparing (3.2) with (3.7)
Xoo =20, Q =2k (3.8)

Then from (3.2), (3.6) and (3.8), we get

2%i dz 2k di
—Ri— —— 4= L] —. .
e = Ri @+xwﬂﬂ+<z+zy+°>ﬁ (3.9)

Now we obtained the ideal mathematical model: Type[B] which is constructed with (3.2)
and (3.9).

Model[B1]
From (3.2) and (3.9), the linear model (3.10); Model[B1] is derived.
0 1 0 0 17
— 2k 12 2k1 — —
A= Sy 0 “mmawy |0 BT 0 » O=10
0 2k _ __R(X+m) _ Xdwg 0
(X+l‘o){2k+Lo(X+:co)} 2k+Lo(X+:ro) 2k+Lo(X+$0)
(3.10)
Model[B2]
Moreover, the linear model (3.11); Model[B2] can be derived.
0 1 0
_ 2kI? 2kI
A= | By 0 | -aloay |, (3.11)
0 2kI(1-28 z+A ) R(X +z0)

(X +z0){2k(1-Ax)+Lo(X+z0)) ~ 2k(i-Az)+Lo(X+x0)
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0 17!
B = 0 , =10
X+:L‘0 0

To(X +zo)+2k(1-Ax)
Thus, now we obtained four linear model structures: Model[A1], Model[A 2], Model[B1],

and Model[B2].

Model Parameters

In order to account for unpredictable perturbations in the model parameters, we set the
nominal value as well as the possible max./min. value of each parameter in every linear
model. To obtain the possible max./min. value of each parameter, consider the steady-
state gap X=>5.0 mm (nominal). Now let us perturb it with X=4.5 mm and X=5.5 mm
(perturbed £0.5 mm). And, for these cases, we measured the three sets of the parameter

values. The results of measurements are shown in Table 3.1.

Nominal Model

We derive the nominal model using the simplest Model[Al] structure and the nominal

model parameter (X= 5.0 mm case). Its state space form is then of the following form

0 1 0 0 117
Anom = | 4481 0 —18431, Bum=1 0 |, Crm= 0] . (3.12)
0 0 —45.69 1.969 0

And the corresponding nominal transfer function is as follows.

—36.27

GTLOTTL = M
(s +66.94) (s — 66.94) (s + 45.69)

(3.13)

Modeling Unstructured Uncertainty

In order to account for unstructured uncertainties, we should consider not only a nominal
model but also a set of plant models in which the real system is assumed to reside. Consid-
ering only unstructured uncertainties, we get all unstructured uncertainties together into
1-full block uncertainty.

In order to estimate the quantities of additive model perturbations, we employ differ-
ences of gain between the nominal transfer function and the perturbed transfer function
with only one parameter changed and the others fixed, where we did not consider that plu-

ral parameters change together. In such a way, 24 perturbed models have been employed.
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They are shown in Table 3.2. With these notations, we can define the corresponding

perturbed transfer functions G, in an obvious way.
Aij =G = Grom (1 <1<12, j =a,b). (3.14)

Frequency responses of these additive perturbations |A;;(jw)| are plotted in Figure 3.2,
with 24 dotted lines. Now let us consider the set of plant models. Here we assume the
following form

G:= {Gnom + Aa.ddvvadd : ||Aadd”00 _<_ 1} . (315)

in which the real plant is assumed to reside. All of the uncertainties are captured in
the normalized, unknown transfer function A,4q. It is natural to choose the uncertainty
weighting W4, as follows ( shown in Figure 3.2 ). Here it should be noted that the
magnitude of the uncertainty weighting W44 covers all the model perturbations shown in

Figure 3.2.
1.4 x 107° (1 4 /8) (1 + 5/170) (1 + 5/420)

Wada = (1 +5/30) (1 + 5/35) (1 + s/38)

(3.16)
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Table 3.1: Parameters of Electromagnetic Suspension System
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Table 3.2: Definition of Perturbed Models

Perturbed Model

Model Structure

Parameter Change

rParameter Max. value | Nominal value | Min. value
| m kel 1.75

X [m] 550 x 1073 | 5.00 x 107% | 4.50 x 1073
1 [A] 1.18 1.06 0.93

z [m] 5.00 x 10~ 0.00 —5.00 x 10~
i [A] 1.18 x 107! 0.00 —1.26 x 1071
L [H] 5.57 x 1071 5.08 x 107! 4.65 x 1071
R [Q] 2.37 x 10! 2.32 x 10* 2.27 x 10
k [Nm?/A?) | 3.35 x 107* 2.90 x 10~ 2.53 x 101
zo [m] —3.32x107% | —6.41 x 107* | —9.42 x 10™*
Q [Hm] 6.70 x 10~* 5.79 x 1074 5.06 x 1074
Too [m] —3.32x107%| —6.41 x 107* | —9.42 x 10~*
Ly [H] 3.96 x 107! 3.75 x 107! 3.54 x 1071
o UNCERTAINTY WEIGHTHING

10

MAGNITUDE
IS

............................

0 1

10 10 10

FREQUENCY (rad/s)

Figure 3.2: Uncertainty Weighting

10

model(1la) Model[A1] k — kmar
model(1b) Model[A1] k — kpin
model(2a) Model[A1] To = Tomaz
model(2b) Model[A1] o = Tomin
model(3a) Model[A1] R — Rz
model(3b) Model[A1] R — Ry
model(4a) Model[A1] L — Liar
model(4b) Model[A1] L — Lo
model(5a) Model[A2] ' — 2’ e
model(5b) Model[A2] ' — 2’ min
model(6a) Model[A?2] = Ve
model(6b) Model[A2] i = iV min
model(7a) Model[B1] k — kmaz
model(7b) Model[B1] k — kpin
model(8a) Model[B1] Zo = Zomar
model(8b) Model[B1] o — Tomin
model(9a) Model[B1] R — Ry
model(9b) Model[B1] R — Ry,
model(10a) Model[B1] Lo — Lopas
model(10b) Model[B1] Lo — Lomin
model(11a) Model[B2] = 2 ar
model(11b) Model[B2] 2 — 2 in
model(12a) Model[B2] ¥ = V' mar
model(12b) Model[B2] i = in

41
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3.1.4 Design

Control Objectives

Electromagnetic suspension system is essentially unstable. We must design a robust con-
troller to stabilize the closed loop system, furthermore, we would like to design a controller
to maintain the performance against unpredictable disturbances and the uncertainties.

Let us consider the feedback structure shown in Figure 3.3. The box represents the set

of the models: G of the real system.

@

r=0
+
Gnom

Figure 3.3: Feedback Structure

Robust stability requirement for the additive uncertainty can be evaluated using the
closed-loop transfer function K'S, where S := (I + GK)~'. Hence robust stability test for
G € G is equivalent to

| Wos, K (I 4 Graom K) ™ Waaa | < 1. (3.17)
It is noted in Figure 3.3 that we factor the uncertainty weighting as W,y = Wogq, X Wogq.,

where

1.4 X (14 5/8) (1 + s/170) (1 + 5/420)
(1+5/30) (1+ 5/35) (1 + 5/38)

In order to reject the disturbances at low frequency band, the performance weighting

VVaddl =10 x 10_5, Wadd, —

(3.18)

function W, ; is now chosen as follows.

2000
T T s/01 (3.19)
We also factor the performance weighting as Wierp = Wiersy, X Woers., where
i _ 2.0 x 107
Woery =10 x 107, W, = 0 (3.20)

1+5/0.1°
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In practical situation, however, we would like to achieve this performance specification
for all the possible plant G € G. A necessary and sufficient condition for this robust

performance is

preffr ({+ GK)_l Wher s,

<1, VG € G. (3.21)

Now the control objective is to find a stabilizing controller A which achieves the following

two conditions
e The closed-loop system remains internally stable for every plant model G € G,

o The weighted sensitivity function satisfies the performance test (3.21) for every plant

G e G.

The design objectives have been specified as the requirements for particular closed loop
transfer functions with the frequency weighting functions W,y and Wpers. The above
control objectives exactly fit in the p-synthesis framework by introducing a fictitious un-
certainty block Ape,;. Rearranging the feedback structure in Figure 3.3, we can build the

interconnection structure shown in Figure 3.4.

A 0 |}
0 Al

Figure 3.4: Interconnection Structure
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p-Synthesis

We first define a block structure Ap as

Awy 0
Ap = {[ “ J : Apad € C, Apery € C} . (3.22)
0 Ay

Next, consider a generalized plant P partitioned as

Py P
P= { ! HJ . (3.23)
P21 P22

Obviously in Figure 3.4, we can get a lower linear fractional transformation (P, K) on

P by K
FI(P,K) = Py + Pk (I — PuK)™ Py. (3.24)

Finally, robust performance condition is equivalent to the following structured singular

value p test

sglf{ par (Fi(PK) (jw)) < L. (3.25)

The complex structured singular value pa , is defined as

1
min{g(A): A € A, det ({ — MA) =0}’

pap(M) = (3.26)

unless no A € A makes I — M A singular, in which case pa (M) := 0. In this case a matrix
M in(3.26) belongs to C2*?2

D-K iteration

Unfortunately, it is not known how to obtain a controller K achieving the structured
singular value test (3.25) directly. But we can obtain the lower and upper bounds of 4.
Our approach taken here is the so-called D — K iteration procedure.

The D — K iteration involves a sequence of minimizations over either K or [ while
holding the other fixed, until a satisfactory controller is constructed. First, for D = [
fixed, the controller K is synthesized using the well-known state space H,, optimization
method. Let P; = P denote the given open-loop interconnection structure in Figure 3.4,
and Fi( P, K) be the closed-loop transfer function from the disturbances w to the errors z.

Then, solving the following H,, control problem

IF(PLED o <my, 7 =13 (3.27)

The problem (3.27) yields the central controller K 1 below
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—5.22 x 108(s + 12.46)(s + 30.0)(s + 35.0)(s + 38.0)
(s 4 0.10)(s + 31.6 — j5.12)(s + 31.6 + j5.12)(s + 39.77)
« (s +45.69)(s + 66.94)

(s +315.2 — 7329.6)(s + 315.2 + 7329.6)(s + 734.7)

K, =

(3.28)

Here we try to assess robust performance of this closed-loop system using p-analysis
associated with the block structure (3.22). The maximum singular value and p upper bound
of the closed-loop transfer function F;( Py, K;) are plotted in Figure 3.5. It is noteworthy to
point out that the peak value of the upper bound x plot is not less than 1. This reveals that
the closed-loop system with this H,, controller K, does not achieve robust performance
condition.

Next, the above calculations of g produce a scaling matrix at each frequency In this
design, we try to fit the curve using a 1st order transfer function.

Now, let P, denote the new open-loop interconnection structure absorbing the scaling

matrix D. This time, from the following H, control problem
I Fi (Poy Kol <725 72 = 1.0, (3.29)

we can calculate the controller K, as follows.

—8.01 x 10% (s + 10.54) (s + 15.75) (s + 30.0) (s + 35.0) (s + 38.0)

(s 4 0.10) (s + 19.59 — j5.32) (s + 19.59 + 75.32) (s + 38.48 — j2.70) (s + 38.48 + j2.70)
« (s +45.69) (s + 66.94) (s + 169.6) _

(s 4 176.6) (s + 420.1 — j272.8) (s + 420.1 + j272.8) (s + 8180).

K, =

(3.30)

The maximum singular value and g upper bound of this closed-loop system are plotted in
Figure3.6. Since the value of u is less than 1 in Figure 3.6, robust performance condition

1s now achieved.
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SV AND MU PLOT OF THE FIRST D-K ITERATION
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Figure 3.5: & and p plot of the first D — K iteration
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Figure 3.6: & and u plot of the second ) — K iteration
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3.1.5 Experimental Results

The designed controllers K| and K, are continuous-time systems. In order to implement
these two controllers with the digital controller, we discretized them via the well known
Tustin transform. The controllers Ky and K, are discretized at the sampling period of
45us and 60us, respectively.

We succeeded in the stable suspension of the iron ball using both of the controllers K
and K. In the Section 4, robust stability and robust performance objectives were con-
sidered as the control problems. The obtained H,, controller K achieves robust stability
condition, and p controller K, achieves not only robust stability but also robust perfor-
mance specification. Hence, we evaluate robust performance as well as robust stability of
the closed-loop systems with responses against various external disturbances.

There the disturbances are added to the experimental system as an applied voltage in
the electromagnet. It is noted that there are four types of disturbances. Taking account
that the steady-state force of the electromagnet is equal to 17.15 N, we added the following

disturbance forces to the floating iron ball:
downward 17.15 N,  downward 34.30 N,

These disturbances are large enough to evaluate the robustness of both these two con-

trollers. Experimental results are shown in Figure 3.7 through Figure 3.10.

£ K]
E |}
=]
& —__.__/\/\/W\_/\,w
g o
<]
Q
< |
vl
P
2
a -5 N L ) . . . 1 1
0 0.2 0.4 0.6 0.8 1.0
TIME (s)

Figure 3.7: Response to step disturbance with Ky (-17.15N)
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Figure 3.8: Response to step disturbance with Ka (-17.15N)
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Figure 3.9: Response to step disturbance with K (-34.30N)
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Figure 3.10: Response to step disturbance with K, (-34.30N)
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First of all, these experimental results in Figure 3.7 through Figure 3.10 show that
the iron ball is suspended. Responses in Figure 3.9 are vibrating extremely, however, their
vibration get on the decrease. This shows the closed-loop systems with both the controllers
K, and K, remain stable against these disturbances. Comparing Figure 3.7 with Figure 3.9,
the responses with K, deteriorate extremely against relatively large disturbances. While in
Figure 3.8 and Figure 3.10, the responses with the controller K, maintain good transient

responses against these disturbances. Now we can see the following observation.

o The closed-loop system with the x controller K, achieves robust perfor-

mance, while the closed-loop system with the H. controller K, does not.

3.1.6 Conclusions

In this section, we experimentally evaluated a controller designed by u-synthesis methodol-
ogy with an electromagnetic suspension system. We have obtained a nominal mathematical
model as well as a set of plant models in which the real system is assumed to reside. With
this set of the models we designed the control system to achieve robust performance ob-
jective utilizing p-synthesis method.

First, four types of different model structures were derived based on the several ideal-
izing assumptions for the real system. Second, for every model, the nominal value as well
as the possible maximum and minimum values of each model parameter was determined
by measurements and/or experiments. Third, a nominal model was naturally chosen. This
model has the simplest model structure of all four models and makes use of nominal param-
eter values. Then, model perturbations were defined to account for additive unstructured
uncertainties from such as neglected nonlinearities and model parameter errors. Fourth,
we defined a family of plant models where the unstructured additive perturbation was
employed. The method to model the plant as belonging to a family or set plays a key role
for systematic robust control design. Fifthly, we setup robust performance objective as a
structured singular value test. Next, for the design, the D — K iteration approach was
employed. Finally, the experimental results showed that the closed-loop system with the
p-controller achieves not only nominal performance and robust stability, but in addition

robust performance.
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3.2 Gain Scheduled H, Robust Control of a Mag-

netic Bearing

This section deals with the problem of an unbalance vibration of the magnetic bearing
system. We design a control system achieving the elimination of the unbalance vibration,
using a loop shaping design procedure (LSDP). After the introduction of our experimental
setup, a mathematical model of the magnetic bearing is shown. Then, the gain scheduled
H., robust controllers with free parameters are designed, based on the LSDP, so as to reject
the disturbances caused by unbalance on the rotor asymptotically even if the rotational
speed of the rotor varies. Finally, several simulation and experimental results show the

effectiveness of this proposed methodology.

3.2.1 Introduction

This section proposes a gain scheduled robust control scheme for a rotating active magnetic
bearing (AMB) system. By using magnetic bearings, a rotor is supported without any
contact. The technique of contact-less support for rotors becomes more important in the
wide industrial application fields[50].

Imbalance in the rotor mass causes vibration in rotating machines. Balancing in the
rotor is very difficult, there is often a residual imbalance. But, this imbalance problem
can be conquered by active control. It is well known there are two methods to solve the
above imbalance problem of magnetic bearings. The first method is to compensate for
the unbalance forces by generating electro-magnetic forces that cancel these forces. The
other method is to make the rotor rotate around its axis of inertia (automatic balancing).
In this case no unbalance forces are produced. There are several effective methods in
the literature to achieve automatic balancing in the magnetic bearings [65][33][55]. If the
magnetic bearings should be applied to precision machines, however, the rotor would be
expected to rotate around its geometrical axis, hence our approach taken here is the first
method.

This section is concerned with the problems of the interference caused by gyroscopic
effect and the problem of the vibration caused by unbalance on the rotor. [n [19], the
control system has been designed by using the Loop Shaping Design Procedure (LSDP)
[44], and we have experimentally demonstrated their attenuating effect of the unbalance

vibration. The attenuation was only achieved at the fixed-regular rotational speed of the
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rotor in [19], however, the elimination of the variable unbalance vibration caused by the
variable rotational speed is expected in the next step. The vibrations caused by unbalance
of the rigid rotor can be modeled as frequency-varying sinusoidal disturbances. Hence, in
this section, we propose the gain scheduled H., controllers with the free parameter as a
function of rotational speed to eliminate frequency-varying sinusoidal disturbances. This
gain-scheduling approach is very simple and utilizes the free parameter of the H, controller
[76],[77]. The other gain-scheduling approaches for H., control are reported in references
3][59](60][853].

Outline of this section is as follows. First, we introduce the magnetic bearing system,
and derive the mathematical model of the system [18][47]. Next, we adopt the H,, problem
with boundary constraints to the normalized Left Coprime Factor robust stabilization H,
problem [76][77], the conditions for existing of controller are derived with LSDP. Thirdly,
we design the controllers that achieve asymptotic disturbance rejection and robust stability.
Finally, we present simulation and experimental results with the obtained H., controllers,

and indicate the effectiveness of this proposed approach.

3.2.2 Modeling
Magnetic Bearing System

The magnetic bearing system employed in this research is a 4-axis controlled horizontal
shaft magnetic bearing with symmetric structure, the axial motion is not controlled ac-
tively. The diagram of experimental machine is shown in Fig. 3.11. The diameter of the
rotor is 96 mm and its span is equal 660 mm. A three-phase induction motor (1kW four
poles) is located at the center of the rotor. Around a rotor, four pairs of electromagnets
are arranged radially on both sides. And four pairs of eddy-current type gap sensors are
located on outside of the electromagnets. Further this system employs a tachometer in
order to measure the rotational speed of the rotor. The experimental machine is controlled
by a digital control system that consists of a 32-bit floating point Digital Signal Processor
(DSP) DSP32C(AT&T), 12-bit A/D converters and 12-bit D/A converters. Using these
systems, the final discrete-time controllers including a free parameter are computed on the

DSP. The diagram of digital control system is shown in Fig. 3.12.
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Figure 3.11: Diagram of Experimental Machine
Mathematical Model of the Magnetic Bearing Figure 3.12: Digital Control System

In this section, we derive the state equation of a magnetic bearing system with the following
'vh’ stands for the interference term between the vertical motion and the horizontal motion,

assumptions:
and p denotes the rotational speed of the rotor. Each vector in (3.31) and (3.32) can
1. The rotor is rigid and has no unbalance. be defined as
2. All electromagnets are identical. 2, = [gn g1 Gn g in in),
3. Attractive force of an electromagnet is in proportion to (electric current / gap = [g3 93 g5 Gro i in],
length)?. uy = [en en), un=[es ens],
' esin (pt + &)
4. The resistance and the inductance of the electromagnet coil are constant and inde- 7 cos (pt + )
pendent of the gap length. wo = (3.33)
ecos (pt + k)
5. Small deviations from the equilibrium point are treated. 7sin (pt + A)
where
Based on the above assumptions, a mathematical model of a magnetic bearing has been g; : deviations from the steady gap lengths
derived in reference [47] [49], and the obtained result s as follows. between the electromagnets and the rotor
[iv} [ Ay pAn] [z, B, 071Tlu E ¢; : deviations from the steady currents of the
= v 2 v
Ty —pA,, Ay } [th + [ 0 BhJ [th TP {EhJ w (3.31) electromagnets
[yv} [CU 07z, e; : deviations from the steady voltages of the
m 0 Culla, J (3.32) electromagnets

where the subscripts *v’ and €, T, K, A : unbalance parameters [47][49]

b
R’ in the vectors and the matrices stand for the vertical motion

and the horizontal motion of the magnetic bearing, respectively. In addition, the subscript (7 =1,r1,13,73.)
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The subscripts "’ and 'r’ denote the left-hand side and the right-hand side of the magnetic

bearing respectively, and the subscripts '1” and '3’ denote one of the vertical directions and

one the horizontal directions of the rotor respectively. Each matrix in (3.31) and (3.32)

can be defined as follows.

0 1 0 ]
AU = Al + A2A4v 0 A2A5v )
0 0 —(R/L)I]
0 1 0 7
Ap = | A+ A A O AgAsy |,
0 0 —(R/L)I
0 0 O 0
Auh =10 AB 0 ) Bv = Bh = 0 3
0 0 O (1/L)1
0 0
CU = Ch = [1 0 0]3 EU = Elv ’ Eh - Elh ’
0 0
1 lllm 1 Illm
r Im — = T —im - — T3
A= ':(I )(m Jy ) (= ) (m Jy ):’
B I+ 1. 1 Iy, 1 [y ’
L —1.) — )=
LA S 1
J J,
A, = m y y
: 14, 1 2
N — _+. —_ —_—
m J y
Je =L
Az = ———
Syhi+) [, ]’
2 .
Ay = _deg[Fll + Fy, Fr1 + Fa],
2
Ay, = -Wdzag[FB + Fig, Fr3 + Fry,
. F F, K F,
As, = 2dia [ﬁ-[- k2 n ’2]
N " Tn T,
Ash = 2diag [& + &’ ) + FT‘*]
Iis Ly’ I L]’
— — Jz
Elv = |: ! ll (1 Jy) 00
-1 _lr 1 - 3—:) 0 0 ’

S
b ol
1]
| a——— |
[an)
o
oy
~—
=~
TN
TN =
[
S
N’
N——
| S
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Table 3.3: Parameters of Experimental Machine
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Parameter Symbol Value Unit
Mass of the Rotor m 1.39 x 10! kg
Moment of Inertia about X - 1.348 x 1072 | kg - m?
Moment of Inertia about Y v 2326 x 107! | kg - m?
Distance between Center of 4 1.30 x 107! m
Mass and Left Electromagnet
Distance between Center of l, 1.30 x 10~1 m
Mass and Right Electromagnet
Distance between Center of Im 0 m
Mass and Motor
Steady Attractive Force Frim 9.09 x 10 N
Fianig 2.20 x 10 N
Fronra 2.20 x 10 N
Steady Current 11101 6.3 x 107! A
Tignis | 3.1x 1071 A
Iignra | 3.1x 1071 A
Steady Gap w 5.5 x 1071 m
Resistance R 1.07 x 10 Q
Inductance L 2.85 x 107! H

a denotes the coefficient of the force which occurs when the rotor eccentrically deviates,
and hence we set @ = 0. The numerical values of these matrices can be easily obtained

with Table 3.3, and the result is written in reference [18].

3.2.3 H, Gain Scheduling

In order to attenuate the unbalance vibration of the rotor, we design the robust H
controllers which achieve the sinusoidal disturbance rejection asymptotically. As is well
known, the controllers must have the imaginary poles at the frequencies corresponding to
the rotational speed to possess high stiffness. For such a control system design, the LSDP
based on the normalized Left Coprime Factor (LCF) robust stabilization method [44] is
employed. Using the free parameter method which have been proposed in the reference

[19], it is possible to obtain the gain scheduled controllers by the free parameter as the
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function of rotational speed. We therefore show the condition for existing of controllers, by

adopting the control problem with boundary constraints [76][77] to the normalized LCF

robust stabilization problem, and we design a robust controller which satisfies the derived

specifications using the LSDP.
Let (N, M) represent a normalized left coprime factorization of a plant G. Let these

coprime factors be assumed to have uncertainties Ay, Ay and let Gp represent the plant

with these uncertainties.

Ga = MZ'Ny
= (M+Ay)"'(N+Ay) (3.34)

where Np and Mj represent a left coprime factorization of G, and
A={[An, Am]€RHu; |[AN, Au]|l, <e}. (3.35)

G can be written in the form of an Upper Linear Fractional Transformation (ULFT) as

follows,
Ga = FU(P7 A)
= Py + PyA(l - P, A) Py, (3.36)
where
r|p 0 I
11 | F12
P = MtiGg|. (3.37)
Py, | Py
MG

The robust stabilization problem for the perturbed plant G, can be treated as the next

H, control problem:

[I;] (I=-GK)'M™Y <eli=y (3.38)

e o]

It is known that the solution of this problem and the largest number of ¢ (

= €max+="Ymin ) can
be obtained by solving two Riccati equations without iterative procedure. All controllers
K satisfying (3.38) are given by

K = FL(Ka)ds) =K, + K12¢(I - K22¢)—1K91, (339)

Ku | Ky
K21 K22

where

Ko = ; (3.40)
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], < 1. (3.41)

For the calculation of K, and €max, see [44]. In order to eliminate the unbalance vibration
of the rotor, which can be modeled as sinusoidal disturbances [47], the robust controller
should be designed to achieve sinusoidal disturbance rejection asymptotically. In this
case, as is well known, the controller must have the imaginary poles at the frequencies
corresponding to the rotational speed of the rotor [76][77]. Hence, for the achievement of

sinusoidal disturbance rejection whose frequency is wq [rad/s], K (s) is required to satisfy
K(tjwo) = 00 & {I — G(Ljwo)K (£jwe)} ! = 0. (3.42)

We then derive the conditions, by adopting the H,, problem with boundary constraints
[77] shown in Appendix to this problem, whereby there exist the controllers satisfying both
(3.38) and (3.42) . The boundary constraint {L, II, ¥} corresponding to (3.42) is given
by

L=[0 I], II=M(+jw,), ¥=0. (3.43)

The basic constraint {Lp,¥p} in (3.66) (Appendix) is described by

Up = Pj5(£jwo) P (Fjwo) = M~ (£jwo). (3.45)

It is obvious that {L,II,¥} is satisfying condition (b) in Theorem A, and the extended
boundary constraint {L,¥} in (3.67) (Appendix) is given by

i= [_G(::;jw") j] , b= [g] . (3.46)

After some straightforward calculation, we have
76 (N(£jwo)) > 1, (3.47)

where

) | 5* (G(£jwo) )"
dmmmn=h+yw&wm)’

g () : the maximum singular value.

from the condition (c) of Theorem A.

If we choose free parameter @(s) such that

D(+jwo) = K (£5wo) (3.48)
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under the conditions (3.41) and (3.47) , it can be seen that we obtain the controller with Hence

. Based on it, we design the control system using Ax. 11 Ax_12 | Bx. 1

the imaginary poles at +jwo from (3.39)
the Loop Shaping Design Procedure (LSDP) [44]. The procedure is briefly outlined below: Ko = | Ak Axom | Brs

| Cro1 Cko2 ‘ Dk,

Loop Shaping Design Procedure (LSDP) ( Ak, + Br,220Ck 2 B2 X0 Bk + Br,2ZoDg,n
L Shapi = YoCk,2 Ag + YoDk,2:Co YoDk 01 (3.52)
< Step 1> Loop Shaping
. Cra1 + Di,1220Ck, Dg 12X Dy Dg.12Zo Dy
Selecting shaping function Wi and W,, the singular values of the nominal plant G are [~ Kal Kal240™ Ka2 Ka1220 } Ka11 t Uk 1240Dk,21
shaped to have a desired open loop shape. Let Gs represent this shaped plant where
Gs = WaGh (3.49) Xo=(I = DgDk,22)"' Cs, Yo =Bs(I = Dr,22Dg)™",  Zo=(I - DgDi,2)" Ds.

W, and W, should be selected such that Gg has no hidden unstable modes. N
Therefore the final H., controller K is as

< Step 2 > Robust Stabilization

The maximum stability margin emay is calculated. If €. << 1, return to Step 1, then W; K =W K. W,

and W, should be selected again. Otherwise, « is appropriately selected as v > Yin = €m . )

’ & 715 SPPIOP d 7 = Yomin . where we define the weighting functions W, and W, as

and K, is calculated. The free parameter & is selected such as (3.48) under the conditions,

then the Ho, controller: K (s) is synthesized for Gg from (3.39) . W, = Aw | Cw ’ W, : diagonal constant matrix, (3.53)
< Step 3 > Final Controller Bw1 | Dw1
The final controller K can be obtained by the combination of Wy, W, and K., then

K=WkK.W, (3.50) [ Awi BwiCko1 BwiCk.z | BwiDi.Ws |
In this procedure, €, is treated as a design indicator rather than the maximum stability K = 0 Ak 11 AKo12 Br 1 W
margin of Gs. Thus, we can design the robust controllers achieving sinusoidal disturbance 0 Ak AK 22 Bk oW
rejection asymptotically using the LSDP. Moreover, utilizing the free parameter for such | Cw1 DwiCk,1 DwiCko2 | DwiDk Wo |
design, it is possible to obtain the gain scheduled controllers by scheduling the free param- Awi Bwi1(Ck,1+ Dk,1220Ck,2) Bwi1Dk,12Xo | Bwi(Dk, 11 + Dk, 2120 Dk 21) Wa
eter as the function of rotational speed of the rotor, which achieve the elimination of the = 0 Ax. + Br.220Ck. BraaXo (Bxr + Br.2ZoDrc.a) W
unbalance vibration even if the rotational speed of the rotor varjes. 0 YoCk.2 As + Y0 Dk, 22Co YoDx. 2 W2

Cwi1 Dwi(Ck, + Dk, 12Z20Ck,.2) DwiDxk,12Xo0 I Dw (Dk 11 + Dk, 12Z0Dk 21) Wo

| | (3.54)
The Hy, controller: K, (s) with the free parameter @ is shown as follows.

The block diagram of this final controller is shown in Fig. 3.13.

Koo = F1,(K,,9) (3.51)
where
Ak, | Bxa  Bry 3.2.4 Controller Design
K, = As | C .
Ckat | Dkat Dipiz |2 &= B qu In this section, the feedback controllers are designed with the LSDP. We assume rotational
Ckar | Dken D Ka22 p1oe speed p = 0 in the nominal plant G. In this case, we can see that there is no coupling
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v

Ny U W,

Y
S

K

Figure 3.13: The gain scheduled H, controller with the free parameter @

between the vertical motion and horizontal motion in (3.31) . Therefore, the plant model
can be separated into the vertical plant G\ (s) := Cy(s{ — A,)~' B, and the horizontal plant
Gi(s) == Cp(sI — Ap)"' By, respectively.
G, 0
G = (3.55)
0 Gy
Then, two controllers are designed for the each plant, respectively. The final controller A’

for the entire plant G is constructed with the combination of these two controllers.

% [KU 0 J
1= 3.56
0 ]X’h ( )

where K, denotes the controller for the vertical plant, and K denotes the controller for the

horizontal plant. The shaping functions and the design parameters are selected as follows.

(v) Design for vertical motion

_ 13001 +s/(2m-5))(1 + s/(27 - 35))(1 +s/(2x-50)) [1 0
U 1S =
(s) (1 +s/(‘27r'0.01))(1+3/(27r~700))(1+s/(27r-1200)) [0 1J (3:57)
I o
W2v s)=
(s) = 10000 [0 1] (3.58)
6'U_rna_x = 0.19944’ 6;1 = 71) = 5‘25 (3.59)
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(h) Design for horizontal motion

1100(1 4 s/(27 - 5))(1 + /(27 - 25))(1 + /(27 - 40)) [1 O
Winls) = A 000)(1 5/ (2x - 700)) (1 s/ (27 - 1200)) [ 1} (3.60)
Wan(s) = 10000 | - °
an(s) = [0 1] (3.61)
€h_max = 0.27432, ¢;' =, = 3.75. (3.62)

In this design, verifying the condition (3.47) , it can be seen that it is possible to design
the controllers below wy = 324.63 [rad/s] (p = 3100 [rpm)]) from Fig. 3.14.

p—t
O»—-

Horizontal

Vertical

—
o
(oo
T

'
—
T

SINGULAR VALUES
S
. [SS]

._.
OI

P
o ]
5 w

G N ) 3 4
10 10 10 10 10
FREQUENCY [Hz]

Figure 3.14: Magnitude of yo(Ns)

Hence we design the controllers within the above bound. In order to satisfy the condi-

tions (3.41) , the free parameters are selected as
@d(s) = Cqsd(sf — Aq&d)_lBQd (363)

where

—ay 0 I
Agq = , Beq= v Coq=[Csrq Coaa]
0 —by I

2 2
Cons = Mj {oRE 4 (je00)) + 83K 3 (o))}

wo(ad — by
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2 2 o )
Cont = LEHE0)_ (i) o)) + eaS(R R (n)
(d=v, 1)

Furthermore, in order to satisfy the condition (3.41) , the parameters a4 , by of Agy and

3
Cpq are respectively adjusted as Table 3.2.4. 10 : — . ] .

Table 3.4: Parameters ay , by of Free parameters

j Rotational speed (rpm) || a, | b, | an | by
1000 ~ 1600 8 8
1600 ~ 2200 2800 [y | 2800 ['4¢
9200 ~ 2600 25 27
2600 ~ 2900 2500 2500 | 36
schinblis ! = Yot 0 ad 0 i

FREQUENCY [Hz]

When we obtain the shaped plants, a model reduction technique has been employed. Figure 3.15: Open loop transfer functions G [—] and the shaped plant G's|——]
The procedure of the model reduction is “‘The Nominal Plant Model Reduction Procedure’
as shown in [44, Procedure 5.5]. The order of the each shaped plant has been reduced from
12 states to 8. As a consequence, the final controller has 36 states. For an example, we
show the frequency responses of the designed controller, which is denoted by K300, with

wo = 136.14 [rad/s](p = 1300 [rpm]). The singular values of the shaped plants and the open

loop transfer functions are shown in Fig. 3.15. And Fig. 3.16 shows the singular values of

the sensitivity functions. From these figures, we can see that sensitivity approaches zero 101
at the frequency wy . %)
In this design, we ignored the interference terms, which express the gyroscopic effect, %JIOO L TTTT—

as p = 0. We therefore verify the robust stability of this system against changes in the ;

rotational speed of the rotor. Let the perturbed plant (p # 0) be denoted by G, and the % verney

additive perturbation A, of from G is as follows. ;10-1 Horizontal -_

A, =G, -G (3.64) %

Then the robust stability is guaranteed within the the following inequality (3.65) . 10-2 N 3 4
_ 1 10 10 10 10 10 10
o(A,) < (3.65) FREQUENCY [Hz]

o(K(I - GK)-1)
In Fig. 3.17, the singular values Uo(K(I - GK)™') and o(A,) at wy = 1675.5 [rad/s]

(p = 16000 [rpm]) are plotted. From this analysis, we can see the closed-loop system is
stable at wy < 1675.5 [rad/s)

Figure 3.16: o((/ — GK)™1)
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Figure 3.17: 1/o(K(I — GK)™') [—] and o(A,)[— - —]

3.2.5 Simulation Results

The simulation results based on the derived nominal mathematical model, which are carried
out by using SIMULINK (8], are shown in Fig. 3.18 and Fig. 3.19. These figures show the
displacement on the left side of the rotor when the rotational speed is varied at the rate
of 2 rpm a second. For the comparison, the linear time invariant H_, controller K300 was
employed, where, the controller K30 has the fixed pole at fo = 1300/60 = 21.7Hz, and
no gain-scheduling is adopted.

The results with the time-invariant H,, controller: Kjs9, are shown in Fig. 3.18(a) and
Fig. 3.18(b), which indicate the response of the rotor when the rotational speed is varied
from 1200 rpm to 1400 rpm. And the corresponding results with the Gain Scheduled Hy
controller A" are shown in Fig. 3.19(a) and Fig. 3.19(b), respectively.

Fig. 3.18(a) and 3.19(a) show the vertical rotor displacement with the variable rotating

speed, and Fig. 3.18(b) and 3.19(b) show the horizontal rotor displacement. From these

simulation results, it can be seen that even if the rotational speed of the rotor varies, the

unbalance vibration of the rotor is eliminated by the proposed Gain Scheduled H., robust

controllers.
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Figure 3.18: Displacement versus rotational speed with the controller Koo
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Figure 3.19: Displacement versus rotational speed with the gain scheduled H

- controller
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3.2.6 Experimental Results

We have carried out experiments using the experimental machine shown in Fig. 3.11. In
order to evaluate the practical effect of this proposed approach, the experimental tests were
run within the limits of the rotational speed from 1000 to 1600 rpm (see Table 3.2.4).

The designed continuous-time controllers , K,3p0 and Gain Scheduled H., controller are
discretized via the well known Tustin transform at the sampling rates of 252us and 415us,
respectively.

The controller K'y3q is linear invariant dynamical controller, hence the computing bur-
den for real-time calculation of control input is only matrix multiplication and addition.

On the other hand, for the implementation of the gain scheduled H,, controller K (&),
however, we have to renew K(®) every sampling period by using (3.54) . After it has
obtained, the control input u is calculated. It takes longer time for the implementation of
K(®).

All through the experiments, a small weight(20[g]) is attached at the left side of the
rotor in Fig. 3.11 so as to increase the residual unbalance.

We have measured the orbits of the center of the rotor for a period of 0.5s under several
conditions. Fig. 3.20(a), 3.20(b) and 3.20(c) show the results with K300, and Fig. 3.20(d),
3.20(e) and 3.20(f) show the results with Gain Scheduled H,, controller, at 1100, 1300 and
1500 rpm, respectively. Compared the Gain Scheduled H,, controller K with K300, the
results with Gain Scheduled H,, controller A indicate better performance than the one
with K300 in the elimination of the unbalance vibration except at 1300 rpm.

However, it is well known that direct switching and interpolation between the controllers
does not capture the dynamic effects and may lead to instability, even if the controllers
can stabilize the closed-loop system for each frozen value in the parameter space. This is
especially true if the scheduled parameter changes rapidly.

By the numerical simulation, we have confirmed that the closed-loop system is stable
when the rotational speed changes at the rate of 2 rpm/s or less(see Fig. 3.18 and Fig.
3.19). If the rotational speed changes more than 2 rpm/s, the system became to be instable.

But magnetic bearing should be able to change the rotating speed, but it does not
need high changing speed from a practical point of view. In this plant, due to the power
limitation and the safety of the induction motor, the rotational speed can not be changed
rapidly.

From a theoretical point of view, Gain Scheduled H. controller should completely
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attenuate the unbalance vibration even if the rotational speed of the rotor varies. However,

this requirement for the performance have not been achieved completely. This performance

deterioration may be due to measurement precision of the rotating speed. Gain Scheduled

H. controller relies on the accuracy of the rotational speed so much, and the bandwidth of

the rotational speed that can eliminate the unbalance vibration is very narrow. Therefore if

the signal of rotational speed includes some errors, effectiveness of the unbalance vibration

suppression would be deteriorated.

Further investigation and experiments for the measurement precision of the rotating

speed and the scheduled parameter’s changing rate, will be made in the future.

3.2.7 Conclusion

In this section, we proposed the gain scheduled H,, robust control scheme with the free
parameter for a magnetic bearing in order to eliminate the unbalance vibration. We
treated the changing unbalance vibration caused by varying rotational speed as the known
frequency-varying disturbance, and adjusted the controller gain according to the rotational
speed of the rotor using the free parameter @ of the H,, controller. The obtained controller
K has high gain at the operating frequency.

First, the dynamics of the AMB system was considered and a nominal mathematical
model for the system was derived. Next, the conditions for the existence of controllers
were derived, and, we designed the gain scheduled H,, robust controllers using LSDP. It
rejected the sinusoidal disturbance of the varying rotor speed.

Finally the simulations and experimental results showed the effectiveness of this pro-

posed method.
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Figure 3.20: Orbits of the center of the rotor
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(f) The gain scheduled H,, controller: rotational speed: 1500 [rpm]
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APPENDIX of Chapter 3

e Definition A. “ H, problem with boundary constraints”

Find the K(s) satisfying
(s1) K (s) stabilizes Fy(P,0) ,
(82) ”PZWHOO S 6_1 =7

(s3) LP,(jw)lT = W,

where P,,, = F(P, K)

o Definition B. “ Basic constraints ”

Lp:= Pi(jw), V¥p:= PL(jw)P,,(jw)
where  Pp(s)Pia(s) =0
¢ Definition C. “ Extended constraints ”

i [LB], - [%”]
L v

where L and ¥ are row full rank.

Theorem A.

71

(3.66)

(3.67)

H, problem with boundary constraints {L,II, ¥} is solvable, iff the following three condi-

tions hold:

(a) The H,, problem is solvable.
Lg Wgll L
b)rank | = —rank | 7.
(b)
v L

(c) LL* > (1111 ¥~



Chapter 4

Robust Control of Active
Pantograph Systems

This chapter is concerned with robust force control for an experimental system of the panto-
graph with a Linear DC Motor. Recently higher train speeds have caused various problems
such as power supply and aerodynamic noise. One of the approaches to solve these prob-
lems is to optimize the overhead wire-pantograph system. The low-noise pantograph is now
being researched and developed, and needs active force control to stabilize the current. In
this chapter, we use a Linear DC Motor (LDM) as an actuator of the pantograph in order
to control the contact force between the overhead wiring and the pantograph. An exper-
imental machine has been designed and developed, and has an oscillatory characteristic.
We designed the robust force controller for the system in order to improve step response
and the frequency-domain performance by considering model parameter perturbation and
unmodeled dynamics.

At first, the experimental machine and the digital controller of the active pantograph
system are introduced. Next, its linearized model is formulated in a state-space form. Then,
p controller is designed by considering parametric uncertainty and unmodeled dynamics.
Finally, the several experiments are carried out so as to evaluate the control performance
of the designs, where the proposed control scheme is compared with the conventional H,

control.

In section 3.1, uncertainties caused by a change of the operation point is written as

just a unstructured uncertainty, in this chapter, however, I express the various types of

uncertainties as structured in order to reduce conservativeness of the robustness evaluation.

72

CHAPTER 4. ROBUST CONTROL OF ACTIVE PANTOGRAPH SYSTEMS 73

4.1 Introduction

Recently the research for high-speed train has been done, especially for pantograph to
supply electric power[26]. According to high speed, a resonance frequency of overhead
wiring has become increasing, hence the present passive pantograph can not follow its
vibration. Further disturbance from wind and rain, and vibration from the train body
disturb a pressure between an overhead wiring and a pantograph, which cause problems,
e.g., injury of power supply, and abrasion of pantograph. Hence the research for active
controlled-type pantograph has been started in order to regulate a pressure between a
pantograph and overhead wiring[81][38]. T-type pantograph has been developed to reduce
the noise which was made by wind pressure. This pantograph has a limited surface area,
hence it is considered to be effective for reducing the wind noise[42].

In this research, our objective is to control of a simply constructed T-type pantograph
with a linear direction motor(LDM) as an actuator, especially in order to regulate a contact
force between a pantograph and overhead wiring in spite of various disturbance.

Linear direction motor has a characteristic as follows: simple architecture, quick motion
is available, fine servo characteristic, and so on[37]. On the other hand, motor does not
have servomechanism by itself, we have to do feedback control by using sensor.

Up to now, researches of pantograph control has been done by using an experimental
system of pantograph [48][51][57]. In these research, LQ and H,, Control[25] for design was
used. Pantograph is suffered by the force of the natural wind and rain, and wind caused
by passing each other and tunnel. Further sharp drop in rail level brings disturbance, it
should be robustly controlled. And it has an oscillating characteristic, so it needs to possess
robust performance on the frequency range. Until today, research for active pantograph
[48][51][57][85] has been done, but the resulting robust performance is not enough at the
resonance frequency. Further, at the resonance frequency, motion range of mover become
wide, that varies the value of model parameters, especially electro-force constant K,.

Hence, we measure uncertainties, model variations, and unmodeled dynamics by exper-
iments. We setup the robust performance problem by using p-synthesis for those uncer-
tainties, and improve a frequency characteristic for disturbance. There are several reports
which utilize y-synthesis [34)[78][79][24], and show the effectiveness of u-synthesis. In this
research, we focus on parametric uncertainties caused by mover, and unmodeled dynamics,
and measure it by experiments and clarify a meaning of physical uncertainties. At last,

several experimental results show the effectiveness of this design methodology.
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4.2 Experimental Equipment

4.2.1 Pantograph Experimental Equipment

A rough sketch of T-type pantograph experimental machine is shown in Fig.4.1. This
pantograph is in the shape of capital t from the front, as its name, 1t moves vertically

to train and overhead wiring. It has small front area against a present diamond-shaped

pantograph[26].

Beam

™ Sensor

Moving Coil

Linear Bearing Permanent Magnet
(SmCo)

Figure 4.1: Experimental System

The system is formulated mathematically by the differential equations of overhead
wiring, pantograph, train, and all their connections[85](43]. As an actuator, LDM is em-
ployed, where this LDM is included Moving Coil Type LDM, especially it is called Voice
Coil Motor(VCM) in it. This type of LDM is characteristics of good servomechanism.
Mover goes up and down along the rail when an electric current is sent to LDM. By con-
trolling this current, we can regulate the pressure to be constant (20[N]) between beam
and mover under no disturbance. Our objective is to control the pressure to be 20[N]
against various disturbance. LDM is attached op stater, and stater is supported by four
springs at the corners, and beam is supported by spring at the tip, hence beam and the

stater moves oscillatory. Force sensor is attached at the tip of the mover. The beam is

correspondent with overhead wiring and the mover with pantograph, and stater with train
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Figure 4.2: Motion of the LDM

body, respectively.

The state of movement of this system is shown in Fig. 4.2.

In the real railroad system, the mover should be a pass of a high current, it is difficult
to attach the force sensor at the tip of the mover, it is unlikely to be realized. Making it
fit for practical use, a force sensor should be attached at the other place which does not
contact the overhead wiring, or we should not employ force sensor and utilize the state

estimator (like Kalman filter).

4.2.2 Digital Control System

Configuration of Digital Control System is shown in Fig.4.3. We utilize the multi-input,
multi-output digital control system AC-100/C (Integrated Systems Inc.) for the real-time
control. AC-100/C is manipulated through Ethernet by the host computer; VAX station
3100 M76(DEC) CPU of AC-100/C is 80386(Intel) whose maximum clock is 20[MHz],
and instruction cycle is 100[ns]. We employ Computer Aided Design(CAD); MATRIXx,
System-build as an implementation tool of the controller. Further, this system has an 1/0

interface; 8channel 12bit-A/D, and D/A converters, respectively.
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digital controller AC100

D/A Experimental
System
et
Intel 386
T
A/D Sensor

VAX Workstation

MATRIX x

Figure 4.3: Configuration of Digital Control System

4.3 Modeling

In this section, we derive a mathematical model of the controlled plant. Fig. 4.4 is a
simplified model for the modeling of the Fig. 4.1.

In this system, coil current is relatively small, hence a flux density made by permanent
magnet is rather bigger than one by coil current. It is reasonable if we assume the flux
density is constant at center of the permanent magnet[85] [37].

When the mover is at the end of the permanent magnet, flux density should be small,
as a result of it, electromagnetic force is getting down, control performance should be
deteriorated. In this section, at first we derive the nominal state-space model of the plant,

and further quantify the parametric uncertainties caused by the motion of mover, and

neglected dynamics.

4.3.1 Differential Equation of Beam, Mover and Stater

In Fig.4.4, variable z,, z, is positive it it tend to upward, and they are derivative from the

steady state. If the beam is on a parallel with the baseline, z; = z, = 0. The differential

equation of the beam is written as follows,
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d*0
Jo—=—-MgLy + f.L, - 41\’1[1129 - 4D1L12d_9’
i, dt

where J is inertia, and it is expressed by J = 4M;L,*/3. The deviate angle of the beam;

(4.1)

0 is very small, we assume L6 = z;, then we obtain the following equation (4.1).

4 d*r dz,

-M——=-M — 4Kz, — 4D, — .
3V 19+ fe 121 17 (4.2)

Differential equations for mover and stater are written by using thrust of LDM: Sfms

respectively.

d*z
2_dt21 = —Myg— fo 4 fm (4.3)
d’z dzx
MaTZE = Mg f— Kales + X) - Dy (4.4)

From equation (4.2) and (4.3), the output pressure f. is represented by equations of the

form

M\ Myg  4AM,f, 4M,, dxy

where M = 4M, /3 + M,. The thrust of LDM f,, is written as

fo = Ko +19), (4.6)

where [ is the steady coil current, ¢ is a deviation from /. K, is a thrust constant
of LDM, where K, = 2NBT, N is turns of coil, B is flux density, T is depth of LDM.

Equation of electric circuit is given as follows,

' dor d
E+e=Ld—;+R(I+i)+Ka( o _ 4o (4.7)

a E
where, F is steady state voltage of coil, e is a deviation from E, L is inductance of coil,

R is resistance. The third term of the right side of equation (4.7) is velocity electromotive

force.
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4.3.2 state-space model

From equations (4.2), (4.3), (4.6), if we cancel f., then we obtain following equation.

d* . d
7‘% =—(My+ Mg+ K,(I +1i) — 4Kz, — 4D1£l (4.8)

M

In the steady state, the following three equations hold.

E = RI 4.9
x &2 Ho. (4.9)
(My+ My)g = K.I (4.10)
L M3g + [X’al + ]X’QXQ =0 (411)
1
_________ ¢ ‘ From equation (4.9), (4.10), (4.11), rearranging (4.4), (4.8), we have
e 0 d*z dz
. Mt L8 i K e e
& M, d*z, . ; dz,
XI+X1 M_dt2 = IXGZ —4[\1.2?1 —4D17t— (413)
M,
We define vy := da,/dt, vy = dxy/dt, from (4.5), (4.7), (4.12), (4.13), we derive the
........................................................... BaseLine following linear time-invariant state space form,
M, Mass of Beam
My Mass of Moving Coil z = Az + Bu, (4'14)
M3 Mass of Stater y = Cz (4.15)
K, Spring Constant of Springl ’
Dy Damping Factor of Springl where
Ky Spring Constant of Spring2
Dy Damping Factor of Spring2 r = [z Ty U] To Uy ]T, u = e, y = fe
z Displacement of Moving Coil )
T3 Displacement of Stater —% 0 "II‘“ 0 ALG‘
fe Contact Force 0 0 0 0 1
fm Force of LDM K 4K 4D 1
A = 711-— 7—1 M_l 0 0 , B = 0 0 0 O
6 Displacement Angle of Beam My, Mg 12 | L |
L Half Length of Beam 0 0 0 0, i)
X, | Steady Position of Moving Coil %‘;‘ 0 0 "]%?; —MgJ
Xo Steady Position of Stater
C — [ 4]1/.[1 4]\/121.§X1 4]‘/[2;201 O 0] .

Fi . 4. Si 1 A : . ) )
e 44 Simplified Model of the Experimental System Nominal model parameters of experimental system are probided in Table 4.1. By using

these nominal parameter’s values, we can easily derive the nominal A, B, C. From these
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matrices. the transfer function G(s), which is from the control input u to the output y is

as follows.

G(S) — C(.SI—A)—IB (416)

63.27 - (s + 0.3846 & j95.27)(s + 4.348 + j22.67)
(s + 42.50)(s + 8.289 £ j25.21)(s + 27.30 = 767.00)

From equation (4.16), the plant is stable and has a very oscillatory characteristics. This
plant model has oscillation modes at 22.7[rad/s], 95.3[rad/s] which are caused by spring 1

and spring 2, respectively. Frequency Response of this transfer function (4.16) is shown in

Fig. 4.5.

Table 4.1: Nominal Parameters of the Plant

Symbol | Parameter Value | Unit
M, Mass of Beam 0.195 | kg
M, Mass of Moving Coil 0.58 | kg
M Mass of Stater 4.6 | kg
K, Spring Constant 1 590 | N/m
K, Spring Constant 2 2450 | N/m
D, Damping Coefficient 1 0.05 | Ns/m
D, Damping Coefficient 2 40 | Ns/m
K, Magnetic Coeflicient 19.42 | N/A

L Inductance 0.095 | H
Resistance 9.95 |
b Magnetic Flux Density | 0.38 | T
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Figure 4.5: Transfer Function: G(s)

4.3.3 Parametric Uncertainty and Neglected Dynamics

When the beam moves, mover shakes against stater, and model parameter of the plant
varies. Furthermore we consider the neglected linear dynamics of the plant. In this section,

we measure these two types of uncertainties by experiments.

Perturbation of Model Parameters

When the distance between the stater and beam, mover sticks out of permanent magnet of
stater, then the thrust goes down. Inductance of coil, resistance and spring constant vary
according to the motion of mover. In this subsection, we measure and decide the limit of

parameter variation. Parameter perturbations caused by the motion of mover and stater

are shown in Fig. 4.6.
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From these figures, we decide the limit of the perturbation as Table 4.2. We can see
that a perturbation of electromagnetic thrust constant K, is biggest. Here we did not

measure a perturbation of parameter D, and we assumed that a limit of perturbation of

D, is same as one of parameter K;.

Table 4.2: Parameter Variation

Parameter | K, | L | R | K, | D,

Variation[%]

15
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Figure 4.6: Parametric Uncertainty

Uncertainties caused by neglected dynamics

In this subsection, we consider the uncertainties which was not contained in equation (4.14),
(4.16). A real transfer function G(8)reat Was measured by experiments. For measurement,
FFT CI-6400 (Ono Sokki) was employed.

Uncertainty caused by unmodeled dynamics: A,,,4 is written as output uncertainty
that follows.

A= 2 o) < i) (4.17)

Aymq is plotted with solid line, and the upper bound of A,y r(jw) is plotted with

dashed line in Fig. 4.7, where r(jw) is decided as
W

r(jw) = 6-107%(1 + —10—

2 - 0.1 ) (4.18)

This is the 1st order improper function.

100 T T T

8of &
60t r

40t / ]

7
8l - :;;ﬂ/’k—
. - BT AR

10° 10 10*
Frequency [rad/sec]

Magnitude

Figure 4.7: Uncertainty A, ,4
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4.4 Control System Design

In this section, we design a controller which satisfies the robust performance specification
?

by using u-synthesis[61] against uncertainties considered in the last session.

4.4.1 Review of p-synthesis

Figure 4.8: Closed-loop with Uncertainty

In Fig.4.8, for T}, := Fi(G,K) € C™", the set A € C™" whose structure is block

diagonal is generally defined as,

A = {diag(élIna t ')5sIrsaA17 t '9AF)I6i € R7 Aj € Cm_,)(m_,} (419)

S F
Xri+ X mj=n
1=1 j=1

Now, the structured singular value p is defined as follows,

1

pa(Ty) = —
) = e (M)A € A el AT = 0}’

(4.20)

unless no A € A makes det(I — AT,,) =0, in which case, pa(T,y,) := 0.
If F(G,K) is stable, then, for all A, the system in Fig. 4.8 is internal stable and,
HFu(Togs A)|]oo < 1 if and only if the structured singular value u satisfies the inequality,

ﬂA(Tzw) <L (4'21)
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4.4.2 Construction of the Generalized Plant
Introduction of parametric uncertainty

Based on Table 4.2, we select the uncertain physical model parameters as K.,,L,R K, D,.

And we define that the 1st order parameter Pa with uncertainty is expressed by
Pa = (1+6§)Pag, 6:={6|6 € R, |6 <1}, (4.22)

where Pag is nominal value, ¢ is the bound of perturbation. Further, we treat over 2nd
order parameters R/L, K,/L, 1/L as 1st order parameters.
Now we can calculate the generalized plant P which is considered parametric uncer-

tainties as equations (4.23), (4.24). And its block diagram is shown in Fig. 4.9.

T = Arz+ Mwy;+ Nw, + Bu
y = Cz+ Owy

(4.23)
zg = Kuz
z, = Kuu
A= {d: b4 6u]|b4s, 6. € R,
{zag[d] ”dJ ' (4.24)
164/l < 1, 16ulloe < 1}(j =1, --,6),
where
(1 0 11 0 0 |
0 0 00 0 0
_ 1 4 4 _ 4 4M 4M.
0 0 00 O 0
1
i 0 _M;; 00 O 0 |
K,=K,K,,
R -
FI 0 0 0 0
K, 0 0 0 0
X , & 0 o B0 o
Kd:dzag[ﬁ%ﬁh'af%&}ieﬁklﬁpl, =1 0 o o %
0 ]\’1 0 0 0
0o 0 D, 0 o0 ]
A~ N ~ 1
Ko=RKe Ku=t¢, Ko =

and, K;, K, are bound of parameter perturbations|[%].
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Figure 4.9: Block Diagram of the Closed Loop System with Parameter Uncertainty

Introduction of Neglected Dynamics

In this section, we utilize Ayma which was derived in the previous session, and treat it as
unstructured multiplicative output uncertainty, and we guarantee the stability against this
uncertainty. This Aynqe includes the uncertainties of K, which is spring constant of stater
and friction of linear bearing, and so on.

Now we utilize its upper bound r(jw), and select the weighting function W5(s) as

following 1st improper function,

Wz = ag + a1S. (425)

Specification for Control Performance

To improve the control performance, we introduce the weighting W, for sensitivity function.
The weighting function W; should have integral property to reject disturbance. The state

space model of W) is defined as,

Aty + By,
C11.1;1:l7u)1 + leuw1~

Tywr =

Yuw1 = (426)

Generalized Plant

From equations (4.23), (4.24), (4.25) and (4.26), the final generalized plant P is as follows,

and its block diagram is shown in Fig. 4.10, where we transfer the state variable to contain

the pressure f, in state variable.
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(4.27)

(4.28)

(4.30)
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Figure 4.10: Block Diagram of Generalized Plant

4.4.3 Controller Design

After some experimental trial and error, in order to reject the disturbances at low frequency

bands, the performance weighting function W is chosen as

Wi(s) = . 50 — (4.31)

(1+27r-1.0)(1+27r8.0)(1+ 5 )(1+27r-9.0)

2m - 8.5
From Fig.4.7 and (4.18), we choose the unstructured uncertainty weighting function

W, for neglected uncertainty as

Wy(s) =r(s) =6-1073(1 +

) (4.32)

Then, we calculate the controller K which satisfies (4.21) and (4.29) by using D — K
iteration[61] approach. On each iteration, we approximated D matrix as an over 2nd order
real rational function, and after five times iteration, we obtained final controller to satisfies
equations (4.21) and (4.29) which achieves robust performance specification.

The order of this controller is 52 states, hence we employed balanced truncation method,

and obtained 10-state final controller p. Of course, we confirmed K, met the spec. The
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transfer function of the final controller K, is written in equation(4.33) and shown in Fig.
4.11.

Here, ||DsF(P,K,)D5'||l, = 0.885, and suppua(Fi(P,K,)) = 0.851. And the fre-
quency responses of the maximum singular Valuewand the structured singular value g with

the controller K, which was obtained 1st iteration and the controller K, are shown in

Fig.4.12.

5 (8 426.5)(s + 3.64 - 10%)(s + 5.40 £ j106)

K = 1.75-10" :
Culs) : (s +6.01)(s +5.36 - 10°)(s 4 5.77 £ 723.0)
(5893 + j28.4)(s +16.7 £ j74.3)
(s +6.69 & 7104)(s + 7.04 £ j109)

(4.33)
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Figure 4.11: Frequency Response of Controller K,

4.5 Experimental Results

In this section, we evaluate the performance and stability of the obtained controller K,

against various force disturbance, compared with conventional H,, controller[57].

4.5.1 H,, controller based on differential game theory

For a comparison, we introduce He, controller based on differential game theory(82](57].

This controller was designed to improve a step response in the time domain[57]. We define
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Figure 4.12:  &(T1,) (dashed) and y (solid)

it Kgame. The transfer function of the controller K. is written in (4.34), and frequency

response of K, and Koy, are plotted in Fig.4.13, by solid and dashed line, respectively.

529.0 - (s + 3.14)(s + 4.71)(s + 5.54 + j22.7)

K yame(s) = :
Caame(s) (s +0.625)(s + 2.05 £ 722.5)(s + 2.79)(s + 6.42)
(s+38.24 j67.9)(s + 54.7 + j16.3)

(8 +85.7)(s +496)(s + 10.4 + j95.4)

(4.34)

K game has a higher gain at the low and middle frequency range, and lower gain at the
high frequency range, than K,. On the other hand, a phase of K, leads at the middle and

high frequency in comparison with K j4me which shows robust stability.

4.5.2 Experiments

Controller design was done in continuous time domain, then we have to discretize obtained
controllers, because we utilize digital controller. Obtained controllers was discretized by
the well-known Tustin transform as

z—1

241’

(4.35)

e

[v2)
i

where sampling rate is 1[ms].
We gave 2.5[N] force disturbance at the output of the plant all through the experiments,

where reference force is 20[N]. Tt is said that system should be controlled up to about 20 [Hz]
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Figure 4.13: Frequency Response of K, and Kome

to control the real active pantograph. We consider this specification, we applied following

four types of disturbance to the plant in order to evaluate control performance.

(1) Step disturbance
(ii) Sinusoidal disturbance (25.1]rad/sec))
(iii) Sinusoidal disturbance (75.4[rad/sec])

(iv) Sinusoidal disturbance (100.5[rad/sec])

Frequency of the disturbance (ii) and (iv) are both resonant frequency of springs, and at

this point, mover and stater would vibrate extremely. Each experimental results is shown

in Fig. 4.14, 4.15, 4.16, 4.17.

4.5.3 Consideration

The results of experiments (i) are almost same with both controllers, however, the response

of K, shows that a little steady state error is left.

This result with K, was caused by the low gain of K, at the low frequency. Improvement

of the robust stability of K, made its gain lower at the low frequency.

The results of experiments (ii) show good disturbance attenuation property of both

controllers Ky, and K.
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In experiments (iii) and (iv), both mover and stater vibrate extremely, distance between

i i ordi i i ter perturbations get
mover and stater is getting long. According to this motion, parameter per ge |

IS

largest of all situations.

N
T

Especially on experiment (iii), compared with both controllers, u controller K, atten-

uates disturbance, however, H,, controller Ky, can not follow the speed, and amplifies
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vibration. Further, Frequency response of disturbance attenuation property is shown in

1
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o

Fig.4.18. This figure indicates K, presses the vibration peak at the 75[rad/s].

And we can see that controllable frequency range of Kyqme is only 100[rad/s], but one

ES

of K, is wider, and the limit is about 180[rad/s]. As a result, u controller sacrifices the

N
T

performance at the low frequency, and improves performance and stability at the middle

and high frequency, then we conclude this p controller is a well-balanced in the frequency
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4.6 Conclusion
4 In this chapter, we improved the control performance of active pantograph system which
Z /\ has very oscillating property, at the resonance frequency by applying p-synthesis approach.
g OA/ \/ We considered parametric uncertainty and uncertainty caused by unmodeled dynamics,
& -2r ! and measure their quantities, and we expressed them as structured uncertainties via LFT,
“o 02 of4Time [SEC]OB 08 1 setup the robust performance problem. And then, we solved the above problem, designed
A) Controller K a robust controller.
ontro u

Finally, we showed several experimental results, and indicated the effectiveness of pro-

posed control system design methodology by comparing conventional H,, controller with
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Chapter 5

Robust Control of Robot

Manipulators

Robot dynamics is highly interfered, nonlinear, and complicated. Experimental evaluations
of Hy/p control to nonlinear plants are now expected. Hashimoto and Asai treated H,,
control or u synthesis of a robot manipulator, but dynamic couplings between joints were
not considered, and the uncertainties caused by modeling errors was treated the external
disturbance[27][4].

In this chapter, I apply robust H,,/u control to robot manipulators and evaluate its
effectiveness. We guarantee the robust stability of the robot manipulator control system
against model perturbations and dynamic couplings.

Our approaches taken here are as follows.

® p-synthesis with exact linearization (Section 5.1)
e constant scaled H,, control considering structured uncertainties (Section 5.2)

o linear parameter varying representation approach (Section 5.3)

5.1 pu-Synthesis of the Robot Manipulator Using Ex-
act Linearization

In this section, I evaluate the controller performance depends on the sampling period,

and indicate high-speed processing system are indispensable for a sufficient achievement

of Hoo/p control. u-synthesis and high-speed DSP are utilized in order to achieve robust

performance of the trajectory tracking control for g robot manipulator.
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First, we consider the dynamics of the robot manipulator, and derived a linear model
as well as the uncertainties for the plant. Then we construct a generalized plant considered
the time delay, and setup robust performance objectives. After that, we apply u-synthesis
to robust control for a real robot manipulator. We design control systems by D — K itera-
tion approach, and three controllers designed in consideration of time delay are obtained.
Finally, the experimental results show that high-speed processors can bring out the high

performance of the designed controllers.

5.1.1 Introduction

The latest digital signal processors have high-speed and high-precision performance, and
they cut time delay and quantization errors of real-time control. This contributes the
development for practical use of H., /u control theory[61][74]. If you do H../u design,
the order of an obtained controller would be far higher than the order of a model for the
plant. And when you control robot manipulators, you have to deal with nonlinearities of
dynamics. In order to implement high order controllers or to compensate nonlinearities
of the plant dynamics, we let processors do a tremendous number of multiplication for
computing of control inputs. Implementation of high-order controllers and/or nonlinear
compensations would be so complex that usual digital controllers could not realize designed
controllers very well. The latest digital signal processors have high-speed and high-precision
performance, and they cut time delay and quantization errors of real-time control.

Here we particularly consider a time delay. The sampling period of controllers mainly
depends on the time delay which includes a hardware specification, controller computation,
and so on. High-speed processors can bring out the high performance in the designed
controllers. Even if you design a complex controller which may have a good performance,
an usual slow processor could not realize its performance [28]. In this section, we utilize
#-synthesis and high-speed DSP in order to achieve robust performance of the trajectory
tracking control for robot manipulators. Further, we evaluate the performance of the
controller depends on the sampling period experimentally.

The remainder of this section is organized as follows. At First, we consider a dynamics of
the robot manipulator, and derived a linear model as well as the uncertainties for the model.
Next, we construct the generalized plant which is considered the above uncertainties. Then,
we design control systems by D — K iteration approach, and three controllers designed

in consideration of time delay are obtained. Finally, we carry out experiments using a
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DSP. The experimental results show that high-speed processors can bring out the high

performance in the designed controllers. Robust performance can be realized owing to the

latest high-speed digital signal processors.

5.1.2 Robot Manipulator Dynamics and Uncertainty Modeling
We know that the ideal dynamics for an n-link manipulator derived from the Euler-
Lagrange equations is shown as follows [10].

M(q)§+ h(g,q) = u (5.1)

where ¢(t) € R" denotes the generalized coordinates which represents joint positions,
M(q) is a positive definite n x n generalized inertia matrix, and h(qg, §) represents coliolis,
centripetal, gravity forces, moments and frictional forces. The control input u € R™ denotes

the vector of generalized input forces. Let
T
¢'(t) = (¢i(t), - 42(1) (5:2)

represent a desired path in joint space that we would like to the manipulator to track. We
assume that ¢%(t) is continuously differentiable with ¢?, ¢, §%. For the problem of tracking

the desired trajectory (5.2) and its velocity, we define the error vectors
e=le, e =[g—¢% ¢—¢". (5.3)
Now (5.1) and (5.3) give the error dynamics shown as follows.
€1 = ey (5.4)

by=—M"Th+ My — § (5.5)

We replaced the problem of path tracking by one of stabilizing the system (5.4) and (5.5)

in error space. Next, we define an implementing model of the ideal dynamical model (5.1)

as
M(9)j + h(q,q) = u (5.6)
where M and h are the available models of M and h, respectively.

Given the plant (5.1) and the available model (5.6) we shall implement a feedback
control law of the following form.

u(t) = M(§)(¢ +v) + h(g, §) (5.7)
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Equation (5.7) represents the familiar inverse dynamics algorithm, but applied to the avail-
able model rather than to the real physical model, and moreover, 1t uses the measured and
hence noisy values of the state. Substituting the control law (5.7) into (5.5) and (5.6), we
have

él = €, (58)
b =—M""h+ M~ (M@)(§ +v) +h(3,§) +ut) - ¢ (5.9)

The equation (5.9) is rewritten as follows.

&2 = v+ (5.10)
n = E(@+v)+ M Y AR +u) (5.11)

where
E:=M"M~1I, Ah=h(g,q¢) - h(q,q) (5.12)

Finally, the error equations (5.8) and (5.11) may be written in the following state-space

form:
e = Ae+ B(v+n) (5.13)
y = Ce (5.14)
where
€1 0 I 0
e:[ ,A:[ ],B:[],C:[l o).
€2 0 0 I

Next, we consider the system (5.13), (5.14) when the control signal v is the output of a
linear controller applied to the measured tracking error e. Let the transfer function of
the plant G(s) = C(sI — A)~'B. Note that G(s) represents a set of uncoupled double
integration. The system (5.13), (5.14) may now be represented by the block diagram of
Fig. 5.1, where the lower loop has been closed by a controller K'(s) which is to be designed.
From equation (5.12), we define the function H(:) : R* x R™ x R™ — R™ as follows.

H(g%(t),q(1),4(t)) = n— Ev (5.15)
= E§ + M(Ak+ud).
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K L (s[—A)" C}g
!’ e y

Figure 5.1: Feedback structure.

5.1.3 Control System Synthesis

For the control system design, we employ the u-synthesis in order to achieve robust per-
formance of the trajectory tracking control. A computing environment p-analysis and

synthesis toolbox [6] with MATLAB is then employed to calculate controllers.

Construction of the Generalized Plant

Consider the block diagram in Figure 5.1. We must design a robust controller to stabilize
the closed loop system for the function E and H which have uncertainties. Furthermore,
we would like to design a controller to maintain performance against disturbances and
noises. These control objectives should be fitted in y-synthesis formulation[6][74]. First,

we employ the following assumptions for the uncertainty function E and H.

Assumption

o We treat the functions H and F as a linear time invariable uncertainty depend on
y(t) and v(t), respectively. And they can be written using py € C™*™, pg € C™X™,
E€CV Wy e CV", Ay € C™ " Ag € C™*" as follows.

H=pgAyWy, ||Ag|, <1. (5.16)

E=ppAsWg, |Ag|, <1. (5.17)

PH, pE, Wg and Wy are the weighting functions for Ay and Ap. Rearranging the block
diagram in Fig. 5.1 with these weighting functions, we can construct the generalized plant

shown in Fig. 5.2. The fictitious uncertainty block Ap (|Ap|l,, < 1) is introduced in order

to fit the above control objectives exactly in the #-synthesis framework. The appended
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uncertainty block Ap is used to incorporate the robust performance calculation. pp € Cnxn
and Ap € C™*™ are the weighting function for Ap. prs Wy, pe, Wi, pp, Wpe are all design
specifications as well as design parameters.

Then the block diagram Tp represents time delay which is given by,

Time delay
Tp(s) = Ie™*T, (5.18)
where T is a sampling period. The open-loop interconnection P which includes Tp in

Fig. 5.2 is often referred to as the generalized plant. The problem to be evaluated in this

section is as follows.

Problem

The controller performance depends on the sampling period.

Figure 5.2: Generalized plant.

¢-Synthesis

Considering the generalized plant in Fig. 5.2. We first define a block structure A as
Ap 0 0
_A__:: 0 AE O ApeCXN AReCn™ X" AyeCnXn 3. (519)

0 0 Apy
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Next, we treat the consider a generalized plant P partitioned as

p= [P” P”} . (5.20)
-P21 P22

Obviously, we can get a lower linear fractional transformation F;(P, K) on P by K

Fi(P,K) = Py + Pk (I — PnK)™" Pa. (5.21)

Then, robust performance condition is equivalent to the following structured singular

value test

sup pa (Fi(PK) (jw)) < 1. (5.22)

For M € C™", pa(M) is defined as
1
palM):= min{a (A): A € A, det (] — MA) =0}’
unless no A € A makes I — MA singular, in which case ua (M) := 0.

(5.23)

5.1.4 Application of p-synthesis for a Robot Using DSP

In this section we apply the previously described p-synthesis methodology to design a

control system for a parallel link robot manipulator.

Parallel Link Robot Manipulator

A simple parallel link robot manipulator with two degrees of freedom is utilized for exper-
iments. It is shown schematically in Fig. 5.3. Each joint is actuated by an 11 watt DC
motor through reduction gear. The reduction ratio is 1:8. Two incremental encoders are

used to obtain the rotating angles of each joint. A mass of the robot manipulator system

is about 2 kg.

Linearized Model

Consider the parallel link robot manipulator shown in Fig. 5.3. Here ¢; and ¢, denote the
angles of the link 1 and link 2, respectively. Let

g=lg q" (5.24)

denote a generalized coordinate representing the joint position. The dynamics of this 2-link

manipulator can be expressed as

M(q)g + h(q,q) = u, (5.25)
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@ - - - center of mass

m; ; mass of link i
li : length of link i

l¢i ; distance from the previous joint
to the center of mass of link i

Figure 5.3: Parallel link robot manipulator
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where
. -
Cy C2 COS(Q2 - fh)J h(q q) _ [*Cz sm(q2 - q1)q2 + €4 COS q4
A/I = ) ’ - . . _ .0
@ ¢z cos(ga — q1) €3 c28in(gz — ¢1)G; + ¢5 cos gy

T
u = [7'1, T2]
The values of constants in (5.25) are as follows.

' - - -2 -3
[ercaescacs | =[6.78x107% =423 x 107" 1.61 x 107 7.43 x 1072 7.12 x 107% |

According to (5.13) and (5.14), the state space representation of the experimental
manipulator is easily derived. This robot manipulator has 2-links, when we do real-time
control with this manipulator, however, we treat them independently. Hence the state-

space representation for each link is expressed in the following form.

¢=Az+ Bv, y=:Cxz (5.26)
where
& (i=1,2), A [0 1] B m G=[1 0]
Tr = . v:in = Py 1= y s = y = y _— .
[(L] v 0 0 1

DSP-based Digital Control System

The experimental machine is controlled by a digital controller DSP-CITpro (dSPACE
GmbH) [15]. The configuration of the DSP system is shown in Fig. 5.4. This system
is mainly constructed with DS1002 which is a processor board, DS2101 which is a 12-bit
D/A converter board and DS3001 which is an incremental encoder board. Processor board
DS1002 uses a DSP TMS320C30 which can execute one instruction in 60 ns with 32-bit
floating point arithmetic, and D/A converters have the maximum conversion speed of 3 pus.
All programs are written in C language under the DOS/V environment. We utilizes the C
code generator which convert MATLAB data into C language. The motor driver amplifies
control signals twice to actuate DC motors. This DSP system has enough processing s

peed for the real-time control of this robot manipulator.

D-K iteration

The D — K iteration involves a sequence of minimizations over either K or 1) while holding

the other fixed, until a satisfactory controller is constructed. First, for D = I fixed, the

controller K is synthesized using the well-known H,, optimization method. Let G = é,
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Host Computer

Motor
Driver

DS 2101

DS 3001

Robot
Manipulator

DSP-CIT pro

Figure 5.4: Digital control system

and P = P;. P, involves the linear model G and all frequency weighting functions Wp,

Wg, Wh, pp, pg, pr and time delay Tp. First of all, we ignore the time delay Tp, that is
TD = 1. (527)

After some preliminary design experience, the weighting functions are chosen as follows.

1.1 x 108 _
Wp = T4 /1 X 100" pp=1.0x107? (5.28)
1 1.0 x 1073
Wg = 36x107° +18_/}_ /345 pp = 2.5 x10° (5.29)
1 1.0 x 1073
Wy = 1.0x107° * i/+ 5730 , py=10x10° (5.30)

First, the following H, control problem yields the central controller K.
IF (P E D]l <ms 1 =13 (5.31)

There are several algorithms for the calculation of the Riccati equations and we employed

the standard Schur method. After second iterations, this value v was reduced to 1.0. The

following H,, control problem

[Fi (P, K)o <720 72=1.0, (5.32)
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yields the controller K,, where P; denote the second open-loop interconnection structure.

Robust performance condition is now achieved with the u controller /.

Time Delay and Performance

The sampling rates of controllers mainly depends on the time delay which includes a

i i i is section, we evaluate
hardware specification, controller computation, and so on. In this se ,

the relation between performance and sampling period. We calculate the maximum sam-

pling period 7' which achieves the robust performance specification (5.22) by iteration
with above design parameters (5.28), (5.29), (5.30). The current controller K has 9 or-
ders, and time delay function Tp is approximated to the 1st order transfer function by
Pade approximation[35]. A prospective controller Ky will be 10-order one for each joint.

Consequently, we obtain the maximum sampling period Tinax, Where
Troax = 250 5. (5.33)
It T is greater than 250us, we could not find any controllers to achieve the robust perfor-

mance condition. With the digital control system depicted in Fig. 5.4, the fastest sampling

rate T, which was realized is

Tin = 140 5. (5.34)

Hence as the sampling period T, the following three constants T,, T} and T are chosen.

o T, = 150us < 250pus, v, =1.00 (5.35)
o T, = 210us < 250us, v, =1.00 (5.36)
o T, = 350us > 250us, ~2=1.03 (5.37)

The resulting 10-order controllers
ok, oK, eK,

are obtained respectively. The controllers K, and K, are satisfied robust performance
condition, on the other hand, The controllers K. does not achieve robust performance.

These controllers K,, K, and K. are obtained as results of the second D — K iteration.

5.1.5 Experimental Results

The designed controllers K,, K; and K, are continuous-time systems. In order to im-

plement these three controllers with the digital control system shown in Figure 5.4, we

discretized them via the well known Tustin transform.
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The obtained H, controller K. achieves robust stability condition, and z controller
K, and K, achieves not only robust stability but also robust performance specification.
Hence, we will evaluate robust performance as well as robust stability of the closed-loop
system.

The manipulator succeeded in tracking of the specified path using the controllers A,
Ky and K.. Further in order to evaluate robustness, we changed the dynamics by adding
a load of 30[g] to the edge of the link 5 in Fig. 5.3. This weight is enough heavy for this
simple manipulator to evaluate robust performance. In this circumstance, manipulator
also succeeded in tracking.

The desired trajectory in the joint space given by

Desired trajectory

sindrft — 1

ai(t) = T frad), gd() =

cos2mft — 1
—4!— [rad]. (5.38)

The experimental results are shown in Fig. 5.5 through Fig. 5.7, where the dashed
lines indicate desired trajectories, and the solid lines indicate sensor outputs in the joint

space. All of experiments are carried out with a load of 30[g].

e If frequency f is equal to 1[Hz], all of three controllers show good performance. The
results shown in Fig. 5.5 indicate these three controllers achieves robust stability.
But we can not distinguish the performance of these three controllers from these

data.

e If frequency f is equal to 2[Hz] which mean that the manipulator’s moving speed is
twice as fast as the former, tracking responses with all of the controllers deteriorate.
Comparing Fig. 5.6 (c) with Fig. 5.6 (a) and Fig. 5.6 (b), we can see that the
response with K, deteriorate extremely, but the responses with the controller K, and

K, maintain better tracking characteristics against a relatively hard requirement.

o Next, 9-order controller K, designed without considering time delay is realized with
the sampling periods of T}, T}, T.. The obtained discrete-time controllers by Tustin

transform are defined as
o Kd,, o Kd,, e Kd..

Controllers K,, K, and K, are different since they are designed. On the other hand,

controllers Kd,, Kd, and Kd, are same one when designed, but they are implemented
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with different sampling periods. Using these controllers Kd,, Kdy and Kd., some

out under the condition that f = 2[Hz]. Corresponding

in Fig. 5.7. These results are really similar to Fig.

experiments were carried
experimental results are shown

5.6. We can notice that performance of K d. is remarkably bad. Controllers K d, and

K dy maintain their performance.

From all these results, we can see that the controller performance depends on the
sampling period. Further we showed that the Ho,/pu control application needs a high-
speed processor like DSP in order to bring out the full performance which a controller has

by nature. In other words, high-speed processors like DSP can realize the complex control

law as Heo/ pt.

5.1.6 Conclusion

This section has presented that performance of controllers depend on their sampling rates
experimentally. We have indicated that if time delay for implementation get over a thresh-
old value T}y, the design specification of the controller is not satisfied. This represents that
high-speed processors are indispensable, and control system design should be considered
time delay for the achievement of performance specification.

For the control system design, we utilized p-synthesis methodology and carried out
experiments with a robot manipulator using DSP. First, we considered a dynamics of
the robot manipulator, and derived a linear model as well as the uncertainties for the
model. We employed the computed-torque method to obtain a simple linear model for
manipulators.Secondly, we constructed the generalized plant which is considered the above
uncertainties, and set robust performance objectives as a structured singular value test.
We designed control systems by D — K iteration approach. Three controllers: Ty, T,
and T are obtained, which are designed in consideration of time delay. Next, continuous
controller K, designed without considering time delay was discretized to Kd,, Kd,, and
Kd. with the sampling rate of T,, T}, and T, respectively.

After that, we carried out a lot of experiments using a DSP. Experimental results
show that controller K. and K d, which have long sampling period are not satisfied robust
performance. This showed that high-speed processors can bring out the high performance

in the designed controllers. In other words, robust performance can be realized owing to

the latest high-speed digital signal processors.
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Figure 5.5: Tracking response with 30g weight at 1Hz
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Figure 5.6: Tracking response with 30g weight at 2Hz
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Figure 5.7: Tracking response with 30g weight at 2Hz
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5.2 Robust H. Control of Robot Manipulators con-

sidering structured uncertainties

This section proposes a linear robust control scheme for robotic trajectory tracking based

on the H.. control theory. After the introduction of our experimental manipulator, the dy-
o ‘

namics and model uncertainties of the whole robot system including actuator are discussed.

Then, setting up the control objectives in Hy synthesis framework, an Ho, controller is
designed with the static constant scaling matrix D. Finally, with experimental results,

we show the effectiveness of the proposed linear robust H, control scheme for a robot

manipulator.

5.2.1 Introduction

Almost all the industrial robots are controlled by independent joint PD (proportional
and derivative) controllers, and they have good control performance to a certain extent.
The reason this approach is useful for the nonlinear coupled robots control is most of
them(except direct drive robot) have reduction systems which possess large gear ratio,
hence they could be treated as linear independent plants approximately. However, PD
controllers can not achieve sufficient performance on tasks which require both quick and
accurate trajectory tracking, because they are designed without consideration of the dy-
namic coupling between joints.

The model-based control, including the PD control, is an advanced control scheme
which uses the dynamic model of the manipulator. When a precise model is available, this
control scheme completely linearizes and decouples the manipulator dynamics. However,
use of an inaccurate model easily degrade the performance and the obtained tracking
accuracy may be inferior to the independent joint PD control. Since the modeling error
is inevitable in the modeling procedure, robust control is necessary to accomplish high
performance[72][73].

This section proposes a robust compensation scheme based on the H,, control the-
ory [61] [T4]. The controller consists of a model-based linear robust controller, and it is
not employed inverse dynamic computation, hence once the controller is obtained, com-
putational burden for H,, controller is small add on, because the H., controller is linear
and time-invariant and the computational burden is only matrix vector multiplications.

The sampling period of this approach is shorter than the other nonlinear control schemes.
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Moreover, the control input is continuous. Therefore, the H., controller is suitable for
realization of real-time model-based robust control.

We demonstrate the robustness of the proposed scheme by experiments on a parallel
link miniature robot manipulator. Taking the actuator dynamics into account, the nomi-
nal linear dynamic model of the manipulator is derived. Dynamic couplings between joints
and the gravity forces are treated as the structured uncertainties. These uncertainties are
nonlinear, but bounded by known constants, hence we employ the H,, control approach
with small gain theory to achieve robust stability. The controller is designed with consid-
eration of the perturbations of link parameters caused by loads putted on the end of the
hand. The experimental results exhibit remarkable robustness of the proposed controller

compared with the conventional computed torque method with PD controller.

5.2.2 Robot Control System
Experimental Robot Manipulator

A simple parallel link(four-bar linkage) robot manipulator with two degrees of freedom is
utilized for experiments. It is shown schematically in Fig. 5.8. Each joint is actuated by an
11 watt DC motor through a reduction gear whose ratio is 1:8. This manipulator has two
incremental encoders and potentiometers, but we use only encoders to obtain the rotating
angles of joints. The total mass of this robot manipulator system is about only 2 [kg]. The

link construction of this manipulator is as in Fig. 5.9.

5.2.3 Robot Dynamics

Generally, the ideal n-link robot dynamics is shown as follows [10].
M(q)§+h(g,9) +Vi+glg) =T (5.39)

where
M(q) € R™™ :inertia matrix

h(q,q) € R™ : Coliolis and centrifugal force
Vv € R™*™ : viscous frictional matrix
glg) € R™ :gravity force

q(t) € R™ :joint angle

T € R* : control input
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Figure 5.8: Robot Manipulator

@: center of mass
Mi: mass of link i

li : tength of link i
lci

Figure 5.9: Link Construction of the Manipulator
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Correspondent dynamics of this four-bar linkage manipulator is as follows.

[ My M3 cos(gz — ql)] [?2’1]
M, COS(% - (h) M, i)
N [ 0 —Mi2¢28in(gy — QI)} [QlJ
Mi2¢y sin(g2 — q1) 0 2
Fy 0 ¢ Vi cos 1 T1
+ |+ = ] . (5.40)
0 Follg V cos ¢, Ty
M11 = mllfl + m;;lfs + m4lf + .[1 + 13 = 3.7672 X 10‘3
M12 = mngch — m4lllc4 = —1.6806 x 10~°

M22 = mglgz + m3l% + m4134 + 12 + 14 = 2.8659 x 10—3
Fy = F, = 0 (ignored )

Vi = (male + males + mali)g = 9.0108 x 102
sz = (mglcg + m312 — m4lc4)g = 1.9183 x 1072
5.2.4 Actuator Dynamics
The gear ratio n (> 1) gives the following equation.
9mi = N4, (l = 1)2') (541)

where ¢, = (g1, ¢m2]? is the motor angle. Writing a torque balance for this system in

terms of torque at the rotor yields
Tmi = ml(.jmi + Dmi‘}mi + Taiy (Z = 172) (542)

where J,,; and J,,; are the inertia of the motor rotor and D,,q, D,,, are viscous friction
coefficients for the rotor, and 7, = [7,1, Ta2]T is driving power translated to links. The
torque is stated by means of a single motor torque constant which relates armature current
to the output torque as

Tmi = Kyt (t=1,2.) (5.43)
where 7 = [4;, 3)7 is the armature current, and K is the motor torque constant. The back
electromotive force (emf) constant describes the voltage generated for a given rotational
velocity as

Vb = Ky Gimis (¢ =1,2.) (5.44)

where K is the back emf constant and v, = [vbl,vbz]T is the back emf.
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The output voltage of the D/A converter, i.e., the control signal is usually amplified and

put into servo motor. Here its amplifier gain: K, is defined as constant(:=2).

The armature circuit of a DC torque motor 18 described by a first-order differential

equation given by

L%ig + Ri; + vy = Kaviy (1=1,2) (5.45)

.. . : — T
where L is the inductance of the armature winding, R is the resistance, and v = [vy, vy)" is

{he armature voltage. From the principle of virtual work, the following equation is derived.

Ti = NTais (Z = 1,2) (546)

where 7 = [71, )7 is torque at the load.

If L << R ( in this motor, L = 9.0 X 10-4[H] and R = 7.9[Q2], hence its condition is
sufficiently satisfied), then from these above equations, the dynamic model of this robot

manipulator containing actuator is shown as follows.

Robot Dynamics with actuator
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Model Parameters

T?'l]l = 391 x 10_3, ?'}ng = 239 x 1073

iz = 1.68 x 107° - cos(g2 — ¢1)

Mg = —1.68 x107° - cos(gz — q1)

dy, = 9.37x1073 dyy = 9.37 x 1073

dig = —1.68x107% ¢ - sin(g2 — q1)

dy = 1.68x107%. ¢ -sin(qa — q1)

g1 = 901 x107%2.cosqy, g = 1.92x1072-cosgqy
a = 6.89x 1072

(5.48)

Table 5.1: Parameters of Arm

o~

mi (]| & o] | L [mm] | 1 kgm?]

1| 86.7 128.0 0.0 2.87 x 1073
2 | 744 50.0 0.0 2.70 x 1073
3| 18.0 128.0 64.0 |1.33x 107"
4 | 28.0 178.0 39.0 |6.00x107°

Table 5.2: Parameters of Actuators

[fnn mlz} [fh} + [dAn 1{12] [91} n [91} . [01} ' (5'47)
mo1 o] L@ dy dnllg g2 U2
where

iy = 1*Jm1 + M, iz = Miacos(q2 — q1),

g = My cos(g — q1), My = 7°Jm2 + Mo,

dy = (D1 + f"—';{—(ﬁ), dip = —Mi2¢sin(g2 — q1),

dyn = Myugsin(g — ), dyy = 1*(Dma + L}?h),

g1 = Vicosg, g2 = Vpcosg,

o« = ke

Numerical values of the parameters of the arm and the actuator are shown in Table

5.1 and Table 5.2, respectively. Those tables give following ramerical values of the model

parameters.

Symbol Value
Tty Jma | 2.25%107 [kgm?]
7 8
D1, Dpna 0 ( ignored )
R 7.9 (9]
K, Ky 3.4x107?
K, 2

Linear Robot Dynamics

In equation (5.48), M1, M2, dys, dyy and « are constant model parameters. It is obvious

that |7y, | and |rhg,| are far larger than max |f12(q)] and max |thg1(q)], and IJUI, {ng| are
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larger than max |(212(q, 9) and max |6221(q, ¢, if g=1. Hence we treat the nonlinear term

in (5.48), i.e.,
The constant terms, i.e.,

h is defined as

N A 7 i b uncertain terms.
Mg, Mat, di2, dan §1, and g2 as structured

5 5 i d - al linear robot dynamics, whic
My, Moy di1s d22s and a construct the nomina y ,

follows. . 5 .
n d 0 v
[m” 0 } [ql] +[ o } [ql] :a[ 1}. (5.49)
0 mQZ 62 0 d22 q2 U2

Linear Robot Dynamics with Uncertainties

Next, consider the ignored nonlinear terms, M2, Mat, di2, da1, 91, and §,. It is obvious

sin(@(t) — @ () <1, cos(@(t) —a) <1 Va, ¢ (5.50)
And there are same upper bound of the rotating speed.
q.l(t)a Q2(t> S Qmax V t. (551)

The positive constant number gmax [rad/s] is the maximum rotating angle speed ¢ to be
stabilizable the system. In this system, ¢max is defined as 30[rad/s). Therefore, the magni-

tudes of the ignored nonlinear terms are bounded by known constants such that

[fs| < 1.68 x 1075 1= Aringg,
g1 < 1.68 x 107° = Avha,
dia] <5.04x 107 == Adys,
Idyy| <5.04 x 107% == Ady,
&) <9.01x107% := Ag,
g2 <1.92x107% := Ag. (5.52)

Furthermore, we would like to design robust controller against change of the load at
the end of link 4. If a certain load m; would be attached in that place, arm parameter,
my, les, Is (Table 5.1) would change. According to them, myq, M2, a1, M2 6212, (221, a1,
and g, would vary.

Hence its perturbations caused by the pay-load of them are defined as,

81t 8tivrg, 87z, 61nas, 6y, 6day, 61, 8. (5.53)

From (5.52) and (5.53), we define the following terms.
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my = 6y, My = Ay + 6o,
a1 = Arng + g Mgz = Oy,
diz = Adpp+ 5312, dy = Ady + 6dy,
G = Ag+ 04y, G2 = Ag+Ag.
(5.54)
Hence the robot dynamics with the uncertainties is defined as
[ﬁ?n + M6y my203 ] {91]
ﬁlz}&; i Mg + Mazby | L G2
dyn di205 q g1 v
S [
da16e  dag 92 7 V2 ( )

where

16 <1 (1<j<6),  flAlf<L

The block diagram of the robot dynamics is shown in Fig. 5.10.

~

Arm 1 =1

4 oy | L alifla1]e
+-A- m” S S

Y1

81— S1A,

8% 82 A1

iNE

Arm 2

Vo8]

- L]
42|
J

-

Figure 5.10: Block Diagram of the Robot Dynamics
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5.2.5 Design

General Design Objective
We defined the design specification of the performance and the stability of the system

as follows. Our objective is to achieve the robust stability for structured/unstructured

uncertainties caused by nonlinear dynamical coupling of the links and pay-load my, and to

achieve the asymptotic tracking for the reference signal. To put it concretely, the objective

is expressed as following 3 points. (See Fig. 5.11).

Z, W,
W. 1 A,

r—>f—>e K G [roeo—e W, >z,
B u + +
, y

Figure 5.11: Closed-loop Interconnection Structure

1. The controller K stabilizes the closed-loop system against é;, &2, ~, Az, which are

included in G (see Fig. 5.10 and Fig. 5.11).

2. We define the another unstructured uncertainties W,(s)A,(||A.]| < 1) which indi-
cates the neglected dynamics in the modeling process. W, is a stable, rational transfer

matrix. The system should maintain stability against this uncertainty.

3. The closed-loop system should have low sensitive characteristic. The weighting func-
tion for the performance condition is given by W,. W, is also a stable, rational

transfer matrix.

Then the obtained open-loop interconnection structure is shown in Fig. 5.12, where

Wal 0 Wsl 0
W, = . W= . (5.56)
0 W, 0 Wy

In Fig. 5.12, [vy,vy]T are control inputs, which are motor voltages, and [g1,g2] are the

outputs, which are rotating angles. The velocity of the angle is not used for feedback

control.
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Robust H., Control

First, let define the uncertainty block structure A as

A = {dwg [513 527 637 54, 653 56, Ag’ Aaa As]a
Al Sk<3) €C¥2, 6(1<j<6)eR}, (5.57)

where, A, = diag[A;, Ay], and A, is a fictitious uncertainty for performance. Suppose

that P denote the generalized plant, and LFT on P by K is defined as F; (P, K).
A is an nonlinear uncertainty, but its L, gain is bounded as [|JA]] < 1. A satisfies input-

output stability. By using small gain theorem, the control problem is to find a controller

K which satisfies

H(F (P K) (j0) |l < 1, (5.58)

This is the sufficient condition of the stability. To reduce the conservatism of the stability,

the static constant scaling matrix D is employed [62]. Hence the condition should is

transformed as follows.

1D (Fi (P, K) (jw)) D7 ]oo < 1, (5.59)

where

D= didg[dl,dza oy dgyd7 X Ioxo,ds X Iy, dg % ]2x2a12x2]

Controller Design
Specification and Design Parameters

The specification of the controller K is as follows.

e The close-loop system is internally stable and maintains the performance toward the

plant perturbation by the added load my (=30[g]) at the hand.

The driving DC motor does not have much power (11{W]), and gear ratio 7 is relatively
small (7 = 8), hence the physical maximum load capacity is 100[g]. This 30[g] load bring
107 % increase of my4, 230 % increase of .4 and 820 % increase of Ij.

The arm parameters in Table 5.1 is changed by an added load m. Changed parameters
are shown in Table 5.3. This table gives the magnitude of structured uncertainties as below.

These parameters are employed for the controller design.
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4,
83
84
ds
S
A, T
—_— A2
N
(& \
} .y T 2.
al =
8
 HEG =
1
1y [ 1L
V, a |y - . "y Al +4 o yl
| \ mla 5] g, sﬂ/
Arm 1
wsl -
{2
(b —
w — @_' Za
S
7 H el z,
° vy | L 1 RIS
v2 \a + »ml 4, N s q y2
Arm 2
Wan® N— /

Figure 5.12: Open-Loop Interconnection Structure

Sty =4.92 x 107% by, = 8.93 x 1071
8mg = 8.93 x 1074 81y = 1.40 x 1073
bdiy =178 x 107 8dy; = 1.78 x 1073
6 =840x107%2  §§, =6.39 x 1072

After some primitive trial and error experiments, we decided the design parameters as

follows.

Wa=W, = 5x107%,

Wa=W, = 5x107° (5.60)
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Table 5.3: Changed link parameters

i=4 m;[g] | l;[mm] | I;[mm] I;[kgm?
Original 28.0 | 178.0 39.0 6.00 x 107°
Changed | 58.0 | 178.0 | 128.0 | 5.52 x 10~

The final controller K(s) is obtained, which satisfies the H,, norm specification (5.59). We

employed a static constant scaling matrix D as follows [62].

D = diag[3.74 x 1077,6.10 x 1077,3.37 x 1077,
6.72 x 1077,2.07 x 107°,2.79 x 107°,

1.13 X 10° - I552,6.26 X 1072 - [5y o,

1.00 'IZ)(Q,IQ)(Q] (5.61)
The controller A is as below.
Ki1(8) Kio(s
K(s) = [ ,”( ) ,”( )} (5.62)
}\21(3) 1822(3)

Frequency response of the controller is shown in Fig. 5.13, and the singular value of the
closed-loop transfer function Fj(P, K) is plotted in Fig. 5.14. In Fig. 5.13, Kiz(s) and
K5, (s) are nearly 0, hence they does not appear. It can be seen that the design objective

has been satisfied from Fig. 5.14.

5.2.6 Experiments
PD Computed-Torque Control

We prepared the computed-torque controller with PD compensator so as to compare with

a H,, controller. The employed PD computed-torque controller is shown below.

v=M(q)u+ h(g;q) + Vq+g(q),
u=qq+ Kv(qd - Q) + Kp(qd - Q)v (5-63)

where, K, = 10000, K, = 200, and M(q), k(¢,q), V, g(q) are defined in (5.39) and (5.40).

The gains: K, and K, are selected to be satisfied a critical damping condition [10].



124 CHAPTER 5. ROBUST CONTROL OF ROBOT MANIPULATORS

H_infinity Controller

Magnitude
am

10' 10 10° 10
Frequency (rad/s)

Figure 5.13: Frequency Response of the Controller

Experimental Results

The designed Ho, controller is a continuous-time system. In order to implement this
controller with the DSP system, it is discretized via the well known Tustin transform,
where sampling period is 50us. But the computed torque controller is implemented with the
100us sampling period, because of its calculation of nonlinear compensater. Digital Control
System possesses DSP TMS320C30(TI). The manipulator succeeded in tracking of the
smooth desired trajectories using the H,, controller. Then, the results of the step responses
are shown in Fig. 5.15 and 5.16, where dashed and solid lines indicate desired trajectories

and sensor outputs in the joint space, respectively. Step width is 0.5[rad](28.65[deg]) in
the all figures.

1. Result 1: In Fig. 5.15, the hand does not have any load. Both results show good

responses.

2. Result 2:  When the hand has 30[g] load, both controllers indicated good response
as Result 1. Specification had been satisfied.

3. Result 3: In Fig. 5.16, the hand has 60(g] load. The H., controller shows better

response in these figures.
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Singular Value of the Ciosed-loop System

o
©

Magnitude
o o o o o °
o w a o > ~
T T T .
Nl ]

(=]
pN
L

pmeie e

10° 10 10
Frequency (rad/s)

Figure 5.14: Singular Value plot of (P, K)

From the above experimental results, it has been indicated that the proposed H,, controller

holds good robust performance experimentally.

5.2.7 Conclusions

This section proposed a linear robust control scheme for the robotic trajectory tracking
based on the H, control theory. We demonstrated the robustness of the proposed scheme
by experiments on a parallel link robot manipulator.

Taking the actuator dynamics into account, the nominal linear dynamic model of the
manipulator was derived. The coupling between joints and the gravity forces were treated
as the real structured uncertainties. These uncertainties are nonlinear, but bounded by
known constants, hence the constant scaled H,, control scheme was employed to achieve
robust performance specifications. The controller was designed with consideration of the
perturbation of link parameters, which was caused by loads putted on the end of the hand.

The experimental results showed remarkable robustness of the proposed controller.
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(b) PD Computed-Torque Control ( no load )

Figure 5.15: Step Response: Ho, Control and PD Computed-Torque Control ( no load )
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Figure 5.16: Step Response: Ho, Control and PD Computed-Torque Control ( 60[g] load )
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5.3 p-Synthesis of Robot Manipulators Using Linear

Parameter Varying Representation

In this section, we present a robust control for a flexible-joint robot manipulator using
linear parameter varying representation. The robot manipulator dynamics can be brought
to a quasi linear parameter varying (LPV) form by a state transformation. An LPV system
is defined as a linear system whose dynamics depend on an exogenous variable which can
be measured upon system operation. In this case, the scheduling variables are the joint

angles ¢. which are state variables. Using a quasi-LPV form, we design a robust controller

by p-synthesis to achieve robust performance specification.

5.3.1 Introduction

Gain scheduling methodology has proven to be a successful design method in main en-
gineering application. This idea is to construct a global feedback control system for a
time-varying and/or nonlinear plant from a collection of local ’linear’ ’time-invariant’ de-
signs [66][67][3][60] [83].

The gain scheduled design is novel in that it does not involve linearizations about trim
conditions of the plant dynamics. Rather, the plant dynamics are brought to a linear
parameter varying (LPV) form via a state transformation.

In this section, we present a LPV approach [66] [67] to a gain scheduled flexible-joint
robot manipulator design. The robot manipulator control problem under consideration
1s gravity force cancellation. In standard gain scheduling, the design plants consist of a
collection of linearizations about equilibrium conditions indexed by the scheduling variable,
in this case the link angle, ¢. In the present approach, the design plants also consist of a
family of linear plants indexed by the joint angle. A key difference between the present
approach and standard gain scheduling is that this family is not the result of linearizations.
Rather, it is derived via a state-transformation of the original plant dynamics. Since no
linearization is involved, the approach is not limited by the local nature of standard gain
scheduled designs. Since gain scheduling generally encounters families of linear plants
indexed by a scheduling variable, Shamma [66][67] defined to such a family as a Linear
Parameter Varying (LPV) plants. LPV plants differ from linear time-varying plants in
that the time-variations (i.e., the scheduling variable) is unknown from the first but may

be measured/estimated upon operation of the feedback system. Such a family is called
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LPV in case the scheduling variable is actually endogenous to the state dynamics. In this
case, the scheduling variable is the joint angle. This is actually an endogenous variable.
Once in a LPV form, a robust controller using u-synthesis is designed to achieve robust
performance condition.

The remainder of this section is organized as follows. First, we derive the LPV form
of the nonlinear flexible-link robot manipulator. Next, we design a linear robust controller
based on p-synthesis. Then the simulation results for the flexible-link robot manipulator

system are presented. Finally, some concluding remarks are given.

5.3.2 Robot Dynamics
Flexible Joint Robot

The plant that is a 2-DOF flexible joint robot manipulator is shown in Fig. 5.17.

Figure 5.17: 2-DOF Flexible Joint Robot Manipulator

This system is constructed with two DC motors and a parallel link robot manipulator.
Each joint is actuated by an 11 watt DC motor through a reduction gear whose ratio is 1:8.
This manipulator has four incremental encoders, two of them which measure link angle,
are used for the feedback control, and the other two encoders are employed to measure
only joint angles. The total mass of this robot manipulator system is about only 2.0 [kg].

Link flexibility can be changed according to spring at joints [56].
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Modeling

The dynamic model of the DC motors and joints are described as following equations,

. mAI? . an K
Je191+aR 6y + k(0 —nqr) = R vy,
. a, K2, anK
Dty + 2l 4 k(0 = 1) = T (5.64)

where Jy; is inertia of DC motor, @, is amplifier gain, K is back electromotive force (emf),

k is spring constant, 5 is gear ratio, 6; 1s motor angle, and ¢; is link angle (¢ =1, 2).

Furthermore, the dynamics of the parallel link robot manipulator is written as follows[57].

[ My, M3 cos(qz — %)] [fh}
M, COS(Qz - fh) My, g2
[ h —Mi3¢s8in(g2 — %):l [fh}
+ o )
Mi2¢: Sln(Qz - q1) fa 92
Vi si k(6; —
N { lsmﬁh] _ [71 ( 1 77‘]1)] _ (5.65)
Vy sin gy nk(0, — ngz2)

Model parameter values are listed in Table 5.4. Hence the dynamics of this robot manip-

ulator with actuator and flexible-joint is expressed by eq.(5.64) and (5.65).

Table 5.4: Parameter of the experimental system

Parameter Symbols Value

Motor Inertia [Nm/sec?] | Jo1, Joz | 2-25%1076

Amplifier Gain a, 2.0
EMF constant [V/rad-s] K 3.4x1072

Resistance [Q] R 7.9

Gear ratio n 8.0

spring constant [kgm /rad] k 1.74
Inertia element [N-s?/rad?] My, 3.77x1073

M12 -2.30x 1073

My 2.86x1073
Gravity element [N] Vi 8.99x 1072
Va 2.08x1072
LFrict:ion element [N-s/rad] | f1, fo | 9.37x1073
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LPV Representation

If we assume a priori bounds on the angular velocities of the links,

From (5.64), (5.65), and (5.66), the following state-space model is derived.

where

lg1| < vy, |G| < va.

a[2] =] ] s

z = [% Q2]Ta w = [91> b, 01, G, 917 éz]T

u = [vy, vz]T,
_ 0 -
0
0
0
my(z)Visin gy + mya(2)Vasin ¢,

my2(2) V) sin g + moa(2)Va sin g,

0
L 0 i
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 O 1
0 0 0 0 0 O 0
—myn?k —mizn*k mynk mignk iy Mgy 0
—maan®k —maan®k mygnk magnk Mgy Ty, 0
W0 —F 00 0 -3y
2k k
I 0 Qh— 0 -7 0 O 0
B()ooooooaf,{;oT
z) = .
amh | 7
0 0 00 0 O 0 R
ﬁ’l]l(Z) = —777,12(2)]‘/[121/1 sin(q2 - Ch) — muF],
le(z) = —my(2) M0, sin(g; — q1) — Mo by,
Thm(z) = _m22(z)M12V1 sin(q2 - Gh) — myo by,

Thzz(z) = —m12(2)M12V2 Sin(Qz - Q1) — Mg Fy,

o o O

o OO
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(5.66)

(5.67)
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mn(z) = M22/{M11M22 - ]V[fg C052(92 - (h)},
maa(z) = —Miz cos(qa — q1)/{MuMz — M2 cos* (@2 — 1)},
maa(z) = M /{MuMa — M?, cos*(g2 — @) }-

In equation (5.67), z(t) is the controlled output, and the nonlinearities depend only on

z(t). Such systems are sometimes called “output-nonlinear” systems.

We assume that there exist continuously differentiable functions Weq(2) and ueq(2) such

that

z

) ] + B(2)teg(2)- (5.68)

Weq

0= 1)+ Ale) |
In other words, we have a family of equilibrium states parameterized by the controlled
output z(¢).
Further, we can easily find the equilibrium states as

- _ ﬂ . -
Nq — ;Esing

V- .
Mgz — £ SN q2

0

0 0
Weq(2) = 0 , Uy = ol
0

LV sin ¢

namK

RV
L m———m%squ _

Next, we divide A(z), B(z) to conform with [z w]T as

e o A

From (5.67), (5.68) and (5.69), it is easy to show that the state dynamics may be written

AN R st | I A i

Furthermore it is transformed as

as

d [ z } _ [0 Ar2(2) } [ z } . [ B (z) }
dt |w— Weq 0 An(z) — Dwe,Ap(z)] lw— Weq Bi(z) — Dwey By (2) v
(5.71)
where  Dw., = 0we,/0z.

We have obtained the above linear parameter varying representation (LPV) model,

with the variable z(t) as the “exogenous” parameter.
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5.3.3 Control System Design
Problem Setup

In this section, we design the control system by using the obtained LPV model representa-
tion. Now we consider the block structure shown in Fig.5.18, where the block P, shows

the LPV design plant.

e

Figure 5.18: Control Problem

The design specification for the robustness and the performance is defined as.

e Robust stability specification
The block A,, shows the input uncertainty of the plant (motor and joint), especially
the perturbation of the spring constant of the joint. A,, is the linear time invariant
multiplicative uncertainty, at the plant input and the function W, is its weighting.
Hence the robust stability condition for A, is ||Tw,, z,.|lec < 1, where Ty, 7, is the

transfer function W, — Z,,.

e Performance specification
The performance specification is to keep the influence below from the reference r
to the error e. This requirement should be replaced to the problem which find the
controller K to achieve ||W,Tre||oo < 1, where W}, is a weighting function, and T} is

the transfer function r — e

The above design specification is fitted in the u-synthesis framework [74].
At first, we introduce the fictitious performance uncertainty A, and define the linear

time-invariant block structure A with A, and A,, as follows.

A, 0
A::{[ ? A } C AL A, €CP2 Al <1, HAmeg}. (5.72)
0 A
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Hence the control problem is to find the controller K which satisfy the following structured

singular value test, where Py, is the generalized plant which is constructed with Py, and

the weighting functions, W, and Wi..

sup 1A (Fi (Pygen, K) (Jw)) < 1. (5.73)
weR

Design

In this section, we do not schedule the controller gain on the parameter z, and we fix the

zas z,:= [ 2 0]7, and design the fixed u controller. Here our approach taken here is

so-called D — K iteration approach, which is to find the controller K to satisfy

sug N (Df; (Pyen, K) D71 (]cu)) <1, (5.74)
we€

where D is a scaling matrix.

For the weighting functions, we selected the below functions according to the several

simulation results.

1 [T O
W, =20 x 107" x 2 [ } (5.75)
s+10{0 1
10 [1 0
W, = 3.0 x [ } (5.76)
s+0.1 10 1

A p-synthesis design procedure [74] was performed with this formulation at the set

point z; := | 5 0 ]T. That is the z-dependent coefficient matrices of the LPV plant P

were evaluated at z, := [ 2 0 ]7 for the design. The first pass led to a frozen z robust
performance level of 1.09. After two iterations, this value was reduced to 0.8. For the

scaling matrix D, we selected the following static matrix
D = diag[—2.68 x 1072,2.97 x 10°,2.05 x 1072, I55,] (5.77)

The obtained final controller K (s) is as below.
Kii1(s) Kio(s
K(s) = [ ,11( ) Ko )]
IXgl(S) ]\’22(8)
The frequency response of the controller K is shown in Fig. 5.19, where K;;(s) and K2(s)

(5.78)

are indicated by the solid line and the dashed line, respectively. Kio(s) and Ko (s) are
relatively small because of the reduction gears.

Now gain scheduled design procedure would typically involve repeating of design at
the fixed-¢ set points and its interpolation. However, it turns out the obtained controller

delivered robust performance for all {18 x 18} (g1, ¢;) sets. Thus, no controller gain-

scheduling was employed.
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Figure 5.19: Frequency Response of the Controller i’

5.3.4 Simulation Results

With the obtained final controller K(s), we realize the control law on the simulator,
SIMULINK, and evaluate the effect of this proposed approach. For the comparison, we
add the result with the PI controller.

Simulation is done with the following conditions.

e Time response with step reference.

e Response of the first link.

o The reference angle is 90 degree(0.785[rad]).

e Solid line: u controller, dashed line: PI controller.

The result is shown in Fig. 5.20. It can be shown that response indicates overshooted

which is caused by the spring, but it is quickly got under control.
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Step Response
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Figure 5.20: Simulation Results of the Step Response

5.3.5 Conclusion

In this section, we apply a linear parameter varying approach to a flexible joint robot
control. At first, we introduce the flexible joint robot, and after that derive the LPV form
of the nonlinear flexible-link robot manipulator. Next, we review background material
on LPV systems, gain scheduling control and p-synthesis. Then we presented the design,

simulation results for the flexible-link robot manipulator system.
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5.4 Consideration and Investigation for Approaches

All three control methodologies showed the better robustness and performance than con-
ventional PD or computed torque method. Each method has its merits and demerits, and

summary is written as follows.

e u-synthesis with exact linearization

— The evaluation of the uncertainties: £ and H are conservative.

— The controller employs inverse dynamic computation, a sampling period of this

approach is long. This long sampling period deteriorate the control performance.

— The generalized plant is relatively simple and control system design is easy.
e constant scaled H,, control considering structured uncertainties
— The evaluation of the uncertainties contains less conservativeness because un-

certainties are described as structured.

— The controller does not employ inverse dynamic computation, computational
burden for the controller is only matrix vector multiplications. The sampling

period of this approach is shorter than the other nonlinear control schemes.
— The control input is continuous.
-- The generalized plant is very complex and application of this approach to 6-DOF
manipulator is not easy.
e linear parameter varying representation approach
— Controller implementation contains nonlinear calculation but the total burden
is not so heavy.

— Feedback gain is regulated according to the link angle, hence the performance

against arm position is excellent.



Chapter 6

Conclusions

In this thesis, I discussed robust H,/u control and uncertainty description of mechatronic
systems including robot manipulators.

The contribution of this thesis is as follows.

e We made a set of plant model and quantify the model uncertainties, and clarified the

limit of allowable class of perturbation for robust stability and performance.

e We applied this robust H.,/u control theory to robot manipulators in order to show
the effectiveness of H.,/p control law for nonlinear robot manipulators. Our ap-

proaches taken here were as follows.
— p-synthesis with exact linearization

— constant scaled H, control considering structured uncertainties

— p-synthesis using linear parameter varying representation

e We developed the H,/p control technique and applied it to real mechanical systems,
then evaluated the performance of the control theme and expressive ability of LFT
against various forms of uncertainties. And we showed that H,/u control has a good
framework to treat uncertainties, in order to guarantee robust stability and robust

performance by using magnetic bearing, a pantograph system with linear DC motor,

and robot manipulator

Chapter 2

Chapter 2 referred a general robust control problem. In this chapter, at first, framework of

the robust control was described, especially about modeling, uncertainty, and uncertainty

138
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descriptions. Then H., control problem/theory, and p-analysis and synthesis approach

was introduced.

Chapter 3

In chapter 3, robust control of magnetic suspension systems was described.

Section 3.1

In this section, we experimentally evaluated a controller designed by u-synthesis methodol-
ogy with an electromagnetic suspension system. We have obtained a nominal mathematical
model as well as a set of plant models in which the real system is assumed to reside. With
this set of the models we designed the control system to achieve robust performance ob-
jective utilizing p-synthesis method. Firstly, four types of different model structures were
derived based on the several idealizing assumptions for the real system. Secondly, for ev-
ery model, the nominal value as well as the possible maximum and minimum values of
each model parameter was determined by measurements and/or experiments. Thirdly, a
nominal model was naturally chosen. This model has the simplest model structure of all
four models and makes use of nominal parameter values. Then, model perturbations were
defined to account for additive unstructured uncertainties from such as neglected nonlin-
earities and model parameter errors. Fourthly, we defined a family of plant models where
the unstructured additive perturbation was employed. The method to model the plant as
belonging to a family or set plays a key role for systematic robust control design. Fifthly,
we setup robust performance objective as a structured singular value test. Next, for the de-
sign, the D — K iteration approach was employed. Finally, the experimental results showed
that the closed-loop system with the u-controller achieves not only nominal performance

and robust stability, but in addition robust performance.

Section 3.2

In this section, we proposed the gain scheduled H, robust control scheme with the free
parameter for a magnetic bearing in order to eliminate the unbalance vibration. We
treated the changing unbalance vibration caused by varying rotational speed as the known
frequency-varying disturbance, and adjusted the controller gain according to the rotational
speed of the rotor using the free parameter @ of the H controller. The obtained controller

K has high gain at the operating frequency. First, the dynamics of the AMB system was
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considered and a nominal mathematical model for the system was derived. Next, the con-
ditions for the existence of controllers were derived, and, we designed the gain scheduled
H. robust controllers using LSDP. It rejected the sinusoidal disturbance of the varying

oo

rotor speed. Finally the simulations and experimental results showed the effectiveness of

this proposed method.

Chapter 4

In this chapter, we improved the control performance of active pantograph system which
has very oscillating property, at the resonance frequency by applying u-synthesis approach.
We considered parametric uncertainty and uncertainty caused by unmodeled dynamics,
and measure their quantities, and for these uncertainties, we setup the robust performance
problem. And then, we solved the above problem, designed a robust controller. Finally,
we showed several experimental results, and indicated the effectiveness of proposed con-
trol system design methodology by comparing conventional H,, controller with time and

frequency responses.

Chapter 5

In chapter 5, robust control of robot manipulators was discussed.

Section 5.1

This section has presented that performance of controllers depend on their sampling rates
experimentally. We have indicated that if time delay for implementation get over a thresh-
old value Ty, the design specification of the controller is not satisfied. This represents that
high-speed processors are indispensable, and control system design should be considered
time delay for the achievement of performance specification. For the control system design,
we utilized p-synthesis methodology and carried out experiments with a robot manipula-
tor using DSP. Firstly, we considered a dynamics of the robot manipulator, and derived a
linear model as well as the uncertainties for the model. We employed the computed-torque
method to obtain a simple linear model for manipulators.Secondly, we constructed the
generalized plant which is considered the above uncertainties, and set robust performance
objectives as a structured singular value test. We designed control systems by D — K
iteration approach. Three controllers: T,, T,, and T, are obtained, which are designed in

consideration of time delay. Next, continuous controller K, designed without considering

CHAPTER 6. CONCLUSIONS 141

time delay was discretized to Kd,, Kd,, and Kd, with the sampling rate of T,, T}, and T,
respectively. After that, we carried out a lot of experiments using a DSP. Experimental
results show that controller K, and K'd, which have long sampling period are not satisfied
robust performance. This showed that high-speed processors can bring out the high per-
formance in the designed controllers. In other words, robust performance can be realized

owing to the latest high-speed digital signal processors.

Section 5.2

This section proposed a linear robust control scheme for the robotic trajectory tracking
based on the H,, control theory. We demonstrated the robustness of the proposed scheme
by experiments on a parallel link robot manipulator. Taking the actuator dynamics into
account, the nominal linear dynamic model of the manipulator was derived. The coupling
between joints and the gravity forces were treated as the real structured uncertainties.
These uncertainties are nonlinear, but bounded by known constants, hence the constant
scaled H,, control scheme was employed to achieve robust performance specifications. The
controller was designed with consideration of the perturbation of link parameters, which
was caused by loads putted on the end of the hand. The experimental results showed

remarkable robustness of the proposed controller.

Section 5.3

In this section, we apply a linear parameter varying approach to a flexible joint robot
control. At first, we introduce the flexible joint robot, and after that derive the LPV form
of the nonlinear flexible-link robot manipulator. In section 5.3.3, we review background
material on LPV systems, gain scheduling control and u-synthesis. Section 5.3.4 presents

the design, simulation results for the flexible-link robot manipulator system.
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In this thesis, [ discussed the latest advanced robust control theory and uncertainty
description for mechatronic systems.

Ho/u and linear fractional transformation has a good expressive ability of uncertainty.
Guarantee of the robust stability depends on small gain theorem and Nyquist stability

criterion. The small gain theorem is very powerful, and useful in a variety of ways. Con-

servativeness is the only demerit.

In this paper, I did not treat the uncertainty caused by unmodeled nonlinear dynamics.
This is the most challenging issue in the robust control theory. If I could, I would like to
contribute to solve this problem theoretically.

To conclude, I would like to hope that Robust Control Theory and Mechatronics will

develop infinitely(oco)!!
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