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Chapter 1

INTRODUCTION

This thesis scopes a multi-layer neural network (MLNN), and analyze its mechanism
of the pattern classification. In this chapter, first, the history of study of the MLNN
is introduced, then the back ground of this study is explained, and finally, the

organization of this thesis is shown.

1.1 History of Study of Multilayer Neural Net-

works

In 1969, M. L. Minsky and S. A. Paper [1] demonstrated some limitation of a single-
layered neural network whose activation function is a linear function by applyving
many classification problems. This is called the linear neural network in this paper.

The single-layer neural network consists of the input layer and the output layer.
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They showed that the neural network performs the lincar mapping from the mput
into the output, however, nonlinear mapping cannot be solved by this type of neural
network. The exclusive OR problem was one of the famous — examples that could
1ot solve by the linear neural networks. After that, the neural network no longer

nsed as the all-purpose classifier, and the studies of the neural network were declined.

In 1986, D. E. Rumelhart, J. L. McClelland and the PDP research group wrote
a book named Parallel Distributed Processing[2]. Its subtitle is explorations in the
microstructure of cognition. The aim of this book was building a theory of cognition
in the microstructure, however, some of them can be applied to the machine learning
for the pattern classification, optimization and so on. The back-propagation (BP)
algorithm and the Boltzmann Machine are introduced in this book. Especially, BP
algorithm applied to the MLNN using the sigmoid activation function, is useful
for the pattern classification. The BP algorithm is characterized by followings:
(1) BP algorithm is based on Least Mcan Square (LMS) algorithm developed by
Widrow and Hoff [3]. The LMS algorithm is an important member of the family
of stochastic gradian-based algorithms[4]. (2) Sigmoid function is a monotonically
increasing nonlinear function, so nonlinear mapping of the input and output pattern
can be realized. (3) Moreover, the hidden layer, which locates between the input
laver and the output layer, is added. Since using a nonlinear activation function,
by increasing the number of the hidden layers, the classification performance can be
increase[5]. In [2], the algorithm is given and many examples are shown, however,

theoretical analysis and designing methods are not sufficiently discussed.
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After PDP is published, many rescarchers and engineers applied the BP algo-
rithm to many applications, and they showed usefulness of the NMLNN using BP
algorithm. However, there are many rule of thumb to train the network but it is

still difficult to use the MLNN using BP algorithm for real problems.

Theoretically, Funahashi[6] proved that the two-layered NN can approximate any
continous function with any accuracy if a large number of hidden units are used.
Amari gave some mathematical foundations of neruocomputing by using information
theory[7], and Widrow and Lehr [8] reviewed several neural network models and gave
some insight to the models. Levin, Tishby and Solla proposed a statistical approach
for the MLNN [9]. T.Poggio[10] proposed a model especially for the approximation
of functions based on the regularization theory. This model can be realized by using
network called the radial basis function network. This network is different from the

MLNN discussed in this thesis.

On the design point of view, Wada and Kawato introduced an information cri-
terion using corss validation and applied it to decide the number of hidden units for
approximtely correct (PAC) learning [11]. Vapnik-Chervonenkis (VC) dimension[12]
i1s also used to reducing the number of the hidden units. There are many papers re-

lated to reducing the number of hidden units and fast convergence[13, 14, 15, 16, 17].

As mentioned above, there are many papers related to specific problems, however,
theoretical analysis of superiority of the MLNN against  convensional — methods

and its mechanizm that realize the superiority is not well discussed.



1.2 Background

Recently, neural networks (NNs) have been applied to the signal processing fields,
including signal detection [18, 19, 20, 21, 22}, digital demodulation (23, 24, 25, 26],
digital signal classification [27, 28, 29]. In these applications, the NN methods can
provide good performances. Furthermore, there are many papers comparing multi-
laver NNs (MLNNs) and statistical methods in the application point of view. For
example, pattern classification performance, complexity of structure for implemen-
tation and computations have been taken into account in comparison in Tsoi and
Atlas[30, 31] , Gish[32], and Lippmann (5], respectively. From these results, the
MLNN method has recognized to be superior to linear Signal Processing (LSP)
methods under some conditions. However, these conditions have not been well dis-

cussed from theoretical point of view.

In this thesis, comparison between the MLNN and the LSP methods used in
signal classification is discussed. Usually, the MLNN method is useful for arbitrary
pattern classification. On the other hand, the LSP method is good for detecting
the signals specified by frequency components. The purpose of this thesis is to
investigate usefulness of the MLNN method in the signal processing field, therefore,
the signals specified by frequency are considered. Thus, the signals are C'lassiﬁecl

based on their frequency components.

Furthermore, the observation period is very short. This means that the number

of the signal samples is set to be very small. Since, in this case, frequency information
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may be lost to some extent, the signal classification becomes more difficult. This
kind of limitations appears in the digital communication, the signal processing, and
the real time image processing [32] fields. From practical view point, computational
complexity is also limited. Namely, the comparison will be discussed based on length
of the signal sequence and complexity of implementation.

Since the MLNN is a non-parametric model, the generalization for untrained
data is an important criterion. Furthermore, robustness for noisy signal classifi-
cation is also compared. Through theoretical and experimental results, we derive
the conditions, under which we can estimate which method is useful in frequency

sclective signal classification.

1.3 Organization of the Thesis

In chapter 2, the pattern classification mechanism of the MLNN is analyzed. The
classification realized by the MLNN can be seen as dividing the input pattern space
and form the class region by hyper-plane formed by the connection weights. Then,
the degree of freedom to form the class region is analysed[33].

In chapter 3, two training data selection methods are proposed to guarantee
generalization[34] . For the MLNN, to select the training data to guarantee the
generalization is important. I pointed out that the important data for the purpose
is to be near the class boundary or the connection weights, and to select the data

near the class boundary, two algorithms of the pairing method and the pairing and
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training method are proposed. Computer simulation is carried out to investigate
usefulness of the two methods.
In chapter 4, an application for frequency selective classification is investigated

through computer simulations. The computer simulation 1s carried out under two

conditions that are uniform activation function[33] and several activation functions[35.

36]. In the case of uniform activation function, the sigmoid function is used. In the
case of several activation functions, the sigmoid function, the sinusoidal function and
the gaussian function are used. For the classification task, multi-frequency signal is

used.

In chapter 5, an application for frequency sclective classification by using the

linear signal processing (LSP) methods are discussed[33, 37]. The analysis is carried
out based on the pattern classification rather than the frequency analysis. Given
a signal of N samples, it can be viewed as N dimensional vector. Then, dividing
the N-dimensional space to assign the same class signals to the same class region.
Therefore, the classification performance is analyzed by the degree of freedom to

form the class region in the N-dimensional space.

In chapter 6, by computer simulation, the classification performance of the
MLNNs and the LSP methods are compared based on classification accuracy, the
number of samples of the signal and the computation. Moreover, the dial-tone sig-
nal, which is the concrete signal of the multi-frequency signal, is used. The dial-tone
signal is used for push button phone. From the results, the MLNN can achieve high

classification performance with small computations compared with the LSP methods
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for complex problems(33, 37, 38].

Chapter 7 summarizes and concludes some results. The reason of superiority of
the MLNN methods against the LSP methods is due to high degree of freedom to
form the class region of the MLNN, and the superiority is clear when the computa-
tions of the algorithm or the number of the samples of the signals are limited. When
the computations or the number of the samples of the signal is not limited, the clas-

sification performance of the MLNN methods and the LPs methods are almost the

same.

13
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Chapter 2

PATTERN CLASSIFICATION
BY MULTILAYER NEURAL

NETWORKS

2.1 Introduction -

In this chapter, a mechanism of the classification by the multilayer neural network
(MLNN) is analyzed. For this purpose, the classification by the MLNN is treated

as division of the input pattern space to match the pattern classes.

First, the structure of the MLNN is introduced. Next, the function of the hidden
layer and the output layer is shown. Then the performance of the classification of

the MLNN is analyzed based on the degree of freedom to form a class region. From
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this analysis, the MLNN has a high degree of freedom to choose the combination of
the connection weights from the hidden layer to the output layer. Realization of to

the correct classification is shown. The ability of training is also discussed.

2.2 Pattern Classification by Neural Networks

2.2.1 Structure of Multilayer Neural Network

The multilayer neural network used in this paper is a two-layered neural network .

consists of the input layer, one hidden layer and the output layer. The discussion in
this chapter is based on this type of the MLNN. However, the results can be applied
to the MLNN more than one hidden layer, then the gencralization of the discussion
will not be lost. Fig.2.1 shows an example of the two-layer MLNN with three input
units, three hidden units and three output units.

Assuming that the network consists of N input units, J hidden units and IV
output units. The length of N and I is sct to be as the same as the number of
samples of the signal and the number of the signal classes. Accordingly, N samples
signal is represented as an N-dimensional vector. The target signal is set for one class
that one output unit is activated and the others are inhibited. In this chapter, there
are p = 1 ~ P signal classes, and there are m =1 ~ M of N-dimensional signals.
The mth signal of pth class is denoted x,m = {xpm(n),n=ng ~ng+ N — 1}. Here,
ng is the starting point of the observation. Each sample of the N-samples signal

is applied to the input unit in parallel, so Nth unit received Tpm(nog + N —1—mn).

16

The input potential of the jth hidden unit is denoted by net;. This is calculated as
a weighted sum of the input-hidden unit connection weight w,; multiplied by the

input signal as follow.

N-1
net; = Y WyTpm(ng+N—1-n)+ 0; (2.1)
n=0

Here, 6; is the bias of the jth hidden unit. The output of this unit is calculated by

using the hidden unit’s activation function fy.

Y; = fu(net;) (2.2)

In the output layer, the input and the output of the unit is calculated by the
same manner. The input potential of the Ath output unit is denoted net), and the
output of this unit is y,. Then if the connection weight from the jth hidden to the

kth output unit is wj, and the activation function of the output unit is fo(-),

J-1

net, = > wiry; + Or (2.3)
Jj=0
Ye = fo(nety) (2.4)

The training algorithm of the connection weights is the supervised training. In
this paper, Back-propagation algorithm is used. Therefore, the activation function

used as fy(-) and fo(-) should be a differentiable function.
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2.2.2 Pattern Classification

In the MLNN, the input signal applied to the input layer is semi-classified in the
hidden laver, and is classified to suitable class in output Javer. In this section, I
<how what kind of classification is done by above process. Moreover, the degree of

freedom of the pattern classification is discussed in Sec.2.3.

The MLNN performs a kind of mapping which map the input patterns to discrete
classes. This mapping is achieved by linear combination described by Eq.(2.1) and
Eq.(2.3), and the nonlinear mapping of Eq.(2.2). So, first, the pattern classification
property of single neuron[39] is shown.

The input pattern is @pm = {Tpm(n),n =0~ N — 1}, the connection weights
are denoted w = {w,,n =0 ~ N — 1}, and the bias is 8. To classify the input
patterns into two classes of X, Xo, w and § which satisfy the following Eq.(2.5)

must be exist.

T,m € X1, SN wnrpm(n) +6 >0

Tpm € X?a ZAz_()l '11’71‘/[7;)771(”) +60 <0

Here, a monotonically increasing function includes non-continuos function is as-
sumed as the non-linear function correspond to Eq.(2.2) and (2.4). 0 threshold
lincar activation function shown in Eq.(2.6) is an example. y is the output unit
output.

18

B 1, Z;T:Ol Wy Tpm(N) +6 >0
y= N (2.6)
0‘ an—ol ’IU,,.'Tpn,(77) + ¢ <0
The right side inequality of Eq.(2.5) shows that the N-dimensional space is divided

into two regions by one hyper-plane of next equation.

N-1
Z Wy Tpm(n) +6 = 0. (2.

n=0

[S]
-1
—

In other words, if there are the connection weight w and the bias 6 satisfy Eq.(2.6),
then the region includes the patterns belong to X; and X divided into two regions
by the hyper-plane. This sort of the signal set is said to be lincar separable.

The activation function of the MLNN described in Sec.2.2.1 is a differentiable

function. The sigmoid function written as Eq.(2.8) is an example of the function.

1

f(net) is a monotonically increasing function and the output is an analog value in
the range of [0,1], however, as Eq.(2.9), using an output threshold of 0.5, Eq.(2.5)

work as the division condition of the classcs.

> 0.5, SN w,apm(n)+6>0
(' (2.9)
<05, SNt warpm(n) +6 <0
The signal classification by single hidden unit is as the same as one by single

neuron. Then, all the patterns are divided into two classes at the output of the

19



hidden unit. In general, the pattern classification is not always linearly separable.
o accuracy of the classification at the hidden layer is not guaranteed. When there
are J hidden units, all the patterns are classified into 27 subclasses at the hidden
laver. These subclasses are formed by the connection weights from the input layer
and the hidden layer.

On the other hand, to match the input of Eq.(2.5) to the output of the hidden
units, and to match the output of the equation to the single unit of the output layer,
it can be found that all patterns are classified into two classes by the single output
unit. In other words, the subclasses formed by the hidden layer is combined into
two regions by single output unit. If the subclasses are lincarly separable at the
Lidden layer, it is possible to classify the signals correctly. The degree of freedom of

the classification by the MLNN is discussed in Sec. 2.3.

2.3 Analysis of Degree of Freedom for Pattern

Classification

Analysis of the degree of freedom of pattern classification is done based on the degree
of freedom to form the class region at the output layer.

In this section, to analyze the degree of freedom of the pattern classification,
the number of combinations of the subclasses to be linearly separable is counted
out. The subclasses are formed at the hidden layer. If the subclasses are linearly

separable, they are classified correctly by the hyper-planes formed by the connection

20

weights from the hidden layer to the output laver. Therefore, to count the number
of the combinations of subclasses linearly separable at the hidden laver is equal to
cstimate the degree of freedom to form the regions in the N-dimensional space to
achieve the classification.

T. Cover counted the number of dichotomies of the random patterns by single
neuron in the statistical sense[39, 40]. A. Nowalczyk extended Cover’s result to the
fist hidden layer[41]. J. Makhoul showed partitioning capabilities of two-layer neural
networks[42]. However, in this paper, the analysis is curried out in the deterministic
sense.

For analysis, assuming that the activation function of the hidden unit is a thresh-
old function. This assumption is as the same as in Sec.2.2.1. By using the thresh-
old function substituting for the sigmoid function, the class region will be slightly
changed, however, the number of the hyper-plane is kept as the same as the onc using
the sigmoid function. The region can be adjusted through the training process, and
if the number of the hyper-plane is the same, the degree of freedom to form the class
region will be the same. To ease the discussion here, the linear threshold function is
used in the followings. Two classes classification of two dimensional input patterns
by the MLNN that consists of two input units and one output unit is considered.

In the followings, analysis is curried out for two cases: two hidden units, three

hidden units.
(1) Case of using two hidden units.
From Eq.(2.5), all the patterns X are divided into two sub-regions by single

21



lidden unit. In the case of two hidden units, the input space is divided into four
subregions as depicted in 2.2(a) by the connection weights from the input layer to
the hidden layer. In this figure, two solid lines are the hyper-planes formed by the

connection weights.

The four subregions are combined into two class regions by single output unit,
then two class regions formed by the combination of these four subregions should be
linearly separable. In general, the number of the hidden units is J, the MLNN has a
degree of freedom to form the class regions formed by linearly separable combination
of the subregions out of 2/ combinations. In Fig.2.2(a), linearly non-separable com-
binations of the subregions are I and III form a region for one class, and II and IV
form a region for the other and its opposite combination[43]. The combination ex-
cept above can combine the subregions into two class regions. To ease the following

analysis, the hidden unit output space is used.

Since the activation function of the hidden unit is the threshold function, the
output of the hidden unit will be 1 or 0. So, combinations of the output of the
hidden unit are (H;, Hz) = {(0,0),(0,1),(1,0),(1,1)}. Here, the first hidden unit
is denoted by H; and the second hidden unit is denoted by Hs, respectively. As
depicted in Fig.2.2(b), these four patterns can be considered as vertices of unit a
square in R?. Length of the side is unity. The class boundary is the tilted line in the
figure. Then, counting the number of combinations of the subregions to be linearly
scparable by the output unit comes down to solving the number of the hyper-plane

lincarly separating the vertices of the square.

22

Since the bias is included into the connection weights, the hyper-plane can be
shifted from the center of the square. So, at the beginning, the case of using the bias
is analyzed. Two, three and four vertices’ scparations are considered, because, some
input patterns will be classified by using a partial pattern. Total of the vertices
are two, the number of combination to select two vertices from four, and to select
one vertex for one class from two vertices, then 4Cy x5 C; = 12 is the possible
combinations of linearly separable. Here, ,,C, denote the number of combinations
of n objects that can be made from a set of m objects. ,,C, is calculated as ,,C, =
m!/(n!x (m—n)!). In the case of total of the vertices is three, 4C3 x {3C14+3Cs} = 24
is a possible number of linearly separable combinations. All the vertices are used.
1Ca x {4C1 4+ (4C2— 2) +4 C3} = 12 is the number of the combinations. In the case of
each two vertices is separated, as described in Fig.2.2(a), the relation of two vertices
is i exclusive OR, these two vertices are lincarly non-separable. Then these two
combinations are excluded from the number of the combinations.

The counting of 12 + 24 + 12 = 48 is the number of combinations of linearly
separable. The ratio of all the combinations (484 2( the number of the combinations
of linearly non-separable)) to the number of combinations of linearly separable arc
48/50 = 0.96, so it can be concluded that a degree of freedom of forming a class

region of the MLNN is high.
(2) Three hidden units case

In the case of three hidden units, the hidden unit outputs are represented as cube.
That is (H],HQ,H3)z{(0,0,0),(0,0,].),(O,l,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}- Flg'
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ure 2.3 shows the lLidden unit output space and states as vertices.

In this case, linear separability is considered based on vertices on the Three-dimensional

plane and on the two-dimensional planes. Three-dimensional plane is consisted with
four vertices of (1,0,0),(1,0,1),(0,1,0) and (0,1,1), as an example. (1,1,0),(1,1,1),(0,1,1)
and (0,1,0) are vertices on two-dimensional plane.

There are same number of linearly separable and linearly non-separable combi-
nations on a two-dimensional plane as two hidden units case. There are six two-
dimensional planes in the cube, so from the result of two hidden unit case, the

combination of vertices on two-dimensional planes are obtained.

For vertices on the three-dimensional planes, there are four combinations  of
vertices in exclusive OR. If two combinations of the vertices are in - exclusive OR,
they are linearly non-separable. The vertices {(0,0,0), (1,1,1)}, {(0,0,1), (1,1,0)},

{(0,1,0), (1,0,1)} and {(0,1,1), (1,0,0)} are in exclusive OR. Figure 2.3 shows one of

the exclusive combination. White circles and black circles are linearly non-separable.

To count the number of linearly non-separable combinations, there are three ways
to select linearly non-separable combinations of the vertices, two, three and four.
In the case of two combinations of vertices in exclusive OR, there are 4Cy x Y16~
12C;. For three combinations of vertices in exclusive OR, there are 4C3 X 5256
10Cy. For all combinations of vertices in exclusive OR, there are 4Cy x Y1858 <C;.
Summation of above is 288. In this case, the number of all the combinations of the
vertices is 12, 16Ci (527 :C;) = 5060. So, ratio of linearly separable combination

is (5060-480)/5060=0.905.
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To generalize above discussion, the number of combinations of the vertices in oX-
clusive OR on the N-dimensional hyper-plane included in the N-dimensional hyper-
cube must be obtained. Here, the N-dimensional hyper-plane in the N-dimensional
hyper-cube includes the vertices that are in exclusive OR. The coordinate of one ver-
tex in exclusive OR on the N-dimensional hyper-plane in the N-dimensional hyper-
cube is given by inverting each element of the coordinate of the other vertices. And
the hamming distance of the vertices in exclusive OR on the N-dimensional hyper-
plane in the N-dimensional hyper-cube is N. Then the number of combinations of
the vertices in exclusive OR on the hyper-planc in N-dimensional hyper-cube is half
of all the combinations of the vertices or 2" /2 = 2¥=1. The number of all combina-
tions of the vertices in an N-dimensional hvper-cube is calculated by the follOwing

equation.

2N -1
> awnCi(Y. ;Cn) (2.10)
71=2 m=1

50, by subtracting the number of the combinations that is linearly non-separable
from Eq.(2.10), the number of the combinations of lincarly separable in the N-
dimensional hyper-cube can be solved.

The number of the combinations that include the vertices in exclusive OR on

N-dimensional hyper-plane in the N-dimensional hyper-cube is given by

2N=-1_ i-1 2N i
Yo G Gl YD av_aiCy)). (2.11)
i=2 k=1 j=0

Now, the number of the combinations of linearly non-separable is counted. In
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t-dimensional hyper-cube, the number of the vertices is V', the number of the sides

is E. the number of the faces is F, and the number of cells is C have some relations

as follows[44].

V-E+F-C=0 (2.12)
This is called as Euler-Poincare’s multi-cell body theorem. For hyper-cube, each
value is as follows.
V=16,E=32,F =24,C =38
Assuming this theorem is true more than 5-dimensional hyper-cube, we can get

the next table.

Table 2.1: Relation of vertices and cell of hyper-cube over 3-dimensional hyper-cell

dimension | vertex | cell(face for 3-dimension)
3 8 6
4 16 8
d 32 10
n 2" 2n (n > 3)

For N-dimensional hyper-cube, the number of linearly non-separable combina-
tion of the vertices on the N-dimensional hyper-plane is given by Eq.(2.11). The
number of the linearly non-separable combination of the vertices on single N — 1-

dimensional hyper-plane is also given by Eq.(2.11), and is multiplied by the number
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of cells. So, the number of the linearly non-separable combinations of the vertices is
sum up from the number of the combination of the vertices on the N-dimensional
hyper-plane to the number of the combination of the vertices on the 2-dimensional
plane. The number of cells included in the N-dimensional hyper-cube is induced
from Table2.1.

For example, in the case of 3-dimensional cube, the number of lincarly non-
separable combination of the vertices on 3-dimensional hyper-plane is given by next

calculation.

23-1.1 i—1 23 _2i
Do wa G Gl Y p5aC))
i=2 k=1 =0
3 i—1 8—2i
=3 4G G D] 5-2iC)))
=2 k=1 7=0

= 288 (2.13)

The number of linearly non-separable combination of the vertices on single 2-
dimensional plane is given by Eq.(2.11) and the number of faces is given by Table2.1

as 6, then,

4
2Cy X 20y x Y 4Cj x 6=132x6=192 (2.14)
§=0

is the number of linearly non-separable combinations of the vertices on the plane.
Then, the solution is given by sum up these results as 288 + 192 = 480.
The number of combinations of all the vertices of the cube is given by Eq.(2.10)

and is 5060, then the ratio of the number of combination of vertices of linearly
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separable is (3060 —480)/3060 = 0.905. This result is showing the degree of freedom
of the classification by three hidden units, then the ratio is decreased compare to the
case of two Lidden units, however, the number of the combinations of the vertices
that are linearly separable is drastically increased.

On the other hand, if the biases for the output units are not used, the hyper-plane
cannot be shifted. Then the vertices located at diagonal Cannot be classified into the
same class. Therefore, the number of combination of the vertices that are linearly
separable will be decreased. For two vertices separation with two hidden units, the
number of the combination of vertices that are linearly separable is 4C5 X2 €y = 12,
three vertices case is 4C3 x {(3C; — 1) + (3C2 — 1)} = 16, all the vertices case is
4Cq x {4Cy — 2} = 4. Then totally, the number of the combinations is 32. T he ratio
of all number of the combination of the vertices to the number of the combination
of the vertices that are linearly separable is 32/50 = 0.64 so, the degree of freedom
to the classification is decreased. In general, the MLNN uses the bias for the output
units, then former results of 48/50 = 0.96 can be expected, and higher degree of
frecedom to the classification can be held.

When the sigmoid function is used as the activation function, above results can
be changed. In this case, the hidden layer outputs are distributed near the vertices
as shown as gray area in Fig.2.4.

If the distribution of the hidden unit outputs can be divided by the line hence,

the results of the linear threshold function can be applied. r denotes some limit of

distribution that the above results can be applied. Assume that the distribution of .
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the hidden unit outputs is the same, 7 is given by the circle whose radius is » and
its tangential line, 7= 0.42. This value is approximately equal to the limit of the
distribution from each vertex of 0.5. And after train the network, the hidden unit
output tends to be 1 or 0 [43], so the distribution will be small. Or assuming that
the distribution is small, the pattern classification performance of the MLNN will
not be decreased. Therefore, the degree of freedom to form a class region using the

sigmoid function is the same as that of using the lincar threshold function.

From above analysis, the degree of freedom of the MLNN to form a class region
or the number of the hyper-plane (kind of the connection weight from the hidden
layer to the output layer) is high, so in the case of the input patterns are distributed
widely and complicatedly, the MLNN can form the class regions. The rcasons of
this capability of forming a class region come from non-linearity of the activation

function and the architecture of using hidden layer.

However, the MLNN is a non-parametric method and at the same time, it is
trained by using relation of training patterns and its class [2], then convergence of
training the network is not guaranteed. And the class region is decided by training
patterns, so if the distribution of the training patterns is biased, the classification
performance will be decreased. Therefore, the performance of the MLNN is depend-

g on selection of the training pattern and the training method.
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2.4 Learning Ability and Convergence Property

Supervised learning algorithms, like the back-propagation (BP) algorithm, were pro-
posed to train the MLNN[2]. The supervised learning is used to train the MLXNN.

Thus, discussions on learning ability and convergence property are important.

As described in Sec. 2.2.2, for the MLNN, the classification problem is equivalent

to dividing the N-dimensional space into several sub-spaces.

As mentioned before, the number of the signal samples is assumed to be small.
This is further divided into the following two cases, (1) a very small number, and
(2) a relatively small number. Furthermore, the circuit complexity, which is mainly
determined by the number of the hidden units, is practically important. Two cases,
(a) a small number of the hidden units, and (b) a large number of them, are taken
into account.

In the case (1), the frequency components become vague. In other words, the
regions, in which the signals of each class are distributed, are changed from their
original distribution. Sometimes, the class regions are mixed and overlapped. How-
cver, if they are not overlapped, it is possible to separate the areas into the different

classes.

In the case (2), the signals include accurate frequency components, and they are -

distributed in some specific regions. The regions of the different classes are sepa-
rated. However, the boundary between them may be complicated and narrow. In

the linear filter methods, the filter design is equivalent to approximate this boundary
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by using several sets of the filter coefficients or the impulse response samples.

In the MLNN method, in order to achicve complete separation, which is to form
the complicated boundary, many hidden units are required. For this reason, the
learning converges slowly, and it is easily to be trapped into the local minimum.
Therefore, the initial connection weights should be carcfully selected.

On the other hand, if a small number of the hidden units are used, the complete
separation is impossible. However, relatively high classification rate can be obtained
due to high degree of freedom of forming the boundary as mentioned in Sec.2. In

this case, stable and fast convergence can be obtained.

2.5 Summary

In this chapter, the classification using the MLNN is treated as division of the input
pattern space to match the pattern classes. The degree of freedom of the MLNN
to form the class region is analyzed and the number of the combination of vertices
that are linearlity separable is counted for two and three hidden units, respectively.
Moreover, the suggestion for expansion of the results for any number of the hidden
units is given. From the results, the MLNN has high degree of freedom to form
the class region. The reason of this result comes from non-linearly of the activation
function and the architecture of having hidden layer.

The MLNN needs the training process, then the ability of training is discussed. If

the number of the network parameters is more than one required to solve a problem,
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so adjustment of many parameters to obtain a solution will be difficult, then con-
vergence speed becomes slow. On the other hand, if the number of the parameters
is smaller, then, adjustment of small number of the parameter to obtain a solution

is casy, however, their remains some residual error.

o— Q
I (0,1) (1.11)
Iv H,
11 Boundary N
ITT
(¢, ©
0,00 (1,0
(a) (b)

Figure 2.2: Signal detection region of MLNN with two hidden units. (a) Sub-class

regions in input space. (b) Class boundary in hidden unit output space.
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Chapter 3
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MINIMUM TRAINING DATA
Figure 2.3: Hidden unit output space of three hidden units. SELECTION FOR

MULTILAYER NEURAL

(0,1) / (1,1)

NETWORKS

3.1 Introduction

(0,0) (1,0)
In the classification problems, a multilayer neural network (MLNN) trained by

o _ supervised learning algorithms are capable of extracting common features or rules
Figure 2.4: Distribution of hidden unit outputs with Sigmoid function.
of training data through a training process. This is a benefit of using the MLNN

for the classification. However, the suitable architecture of the MLNN and a small
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number of training data are required. The error back-propagation(BP)[2] algorithm

is a popular algorithm for solving the classification problems.

One of the main interests of the supervised learning algorithms is how to select
the training data. A huge number of the training data may guarantee generality of
the MLNN. On the other hand, it will require a very long training time. Therefore,
it is desirable to reduce the number of the training data while maintaining general-
ization. Cachin [46] proposed the error-dependent repetition(EDR). Presentation
probability of the training data is proportional to the MLNN output error. How-
ever, the entire data are used in the training process. M. Kutsuwada proposed iterate
learning method to fix the generalization arca[47]. This is one of the approaches to

guarantee the generalization performance.

In this chapter, we propose a method to select the efficient training data, with
which generalization is guaranteed[34]. The selected data can locate around the
houndary between classes. This method can be applied to reduce in data memory
and computations of off-line training, where a sufficient number of training data
can be obtained in advance. Furthermore, it will be useful for an on-line training,
where all training data cannot obtain at the beginning, rather they are gradually

increased.

Efficiency of the proposed method is investigated through computer simulations.

The BP algorithm is used to train the MLNN. Two kinds of problems are employed
as examples.
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3.2 Activation Functions

In this chapter, a two-layer MLNN is used to classify the data. N samples of a piece
of data @ = {a(i),1 = 1 ~ N} is applied to the input layer. The /th input unit
receives x(7). The connection weight from the 7th input to the jth hidden unit is
denoted w;;. The input potential net; and the output y; of the jth hidden unit arc

given by

N
net; = Z wi;a (1) +0; (3.1)
t=1
yj = fu(net;),j=1~J (3.2)
1 _ e—netj
Fu(net;) = ——— Iy (3.3)

where, fy(-) is an activation function in the hidden layer and 6; is a bias. The input

potential net; and the output y of the Ath output unit are given by

J
nety = Z wiry; + O (3.4)
j=1
U = fo(nety),k =1~ P (3.5)
1
t) = —m—— ,
fo(?l@ I‘) 1 + e~ netk (3 6)

where fo(-) is an activation function in the output layer.
The number of output units is equal to that of the classes. The MLNN is trained

so that a single output unit responds to one of the classes.
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3.3 Geometrical Property of Input and Output

Input of the jth hidden unit is expressed by Eq.(3.1). The input space can be
separated into two regions by a line formed by net; = 0 at the input of the hidden

unit. A distance between this line and the input data is given by

\Zf,v:l wia(i) + 9j| |net;|
(l]' = =

(3.7)

[l gl
w; = {w;;,i =1~ N} (3.8)

llw;|| is an L, norm of the weight vector w;. Then the input potential net; 1s
proportional to the distance d;. The activation function Eq.(3.3) is a continuous
monotonically increasing function, then the hidden unit output y; is also continuous
monotonically increasing with respect to the distance d;. However, y; is not a linear
function of the distance.

The output of the output unit y; is separated by the regions of y, > 0.5 and

yi < 0.5. The input potential net;, = 0 provides a decision boundary. This is called

a network boundary in this paper. The class boundary means the boundary of the
input data classes. If the training converges, the network boundary will agree with
the class boundary. Then a distance from the class boundary to a data is related to
|y — 0.5]. In this case, the input potential of the output unit net; is also related to
the distance. |

In conclusion, |y — 0.5 and |nety| are continuous functions with respect to the

distance between the data boundary and the input data.
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3.4 Pairing Method for Training Data Selection

The proposed data selection method combines a training process and a pairing
method. In this section, a pairing method is first described.

In this thesis, two classes X; and X, are taken into account for convenience.
However, the proposed method can be applied to more than two classes.

In the pairing process, the nearest data of different classes evaluated using the
Euclidean distance is selected. Let X; and X, be set of two data classes, and x;
and 2 be element of them. x; and x, are paired with each other through the

following steps.

Step 1: Select x; (or x3) from X (or X ) randomly.

Step 2: Select x} (or %) from X, (or X), which has the shortest distance to the

x; (or x,), selected in Step 1.

Step 3: Select ¥ (or &) from X; (or X5), which has the shortest distance to

(or x¥), selected in Step 2.

When all data are selected from X; (or X,) in Step 1, the pairing process is com-
pleted. Otherwise, return to Step 1, and repeat the above process. In this process,
the same data will not be selected. Finally, the data x} and 23, selected based on
the distance, are included in the reduced data set.

If the class boundaries in the data space are based on the distance, the data

located close to the boundary can be detected by this method.
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3.5 Training and Pairing Method for Training

Data Selection

3.5.1 Algorithm

This method combines the training and the pairing as follows:

Step 1: Some number of the training data are randomly selected from X; and X

. Let the sets of the selected data be X] and X7 .
Step 2: Train the MLNN using the data in X7 and X35 .

Step 3: Select the data, with which the network output errors have relatively large

error. Let these data be xf and 5.

Step 4: Select the data x] and «} from X7 and X3, which have the shortest
1 2 1 2

distance to x§ and xf, respectively.

Step 5: Select the data z}® and x}° from X7 and X35, which have the shortest
distance to b and ¥, respectively.

pe
] -’152

A set of f, b and z}° will be used in the next training process. Replace the
data in X7 and X} by the new training data, and return to Step 2.

When new data are provided, they are included in X7 and X5 . The remaining
data of X; and X, can be also used for this purpose. If the number of the new data
is large, some number of the data may be selected, and are included in X| and X}

. After that, return to Step 2.
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The data selected in Step 3 satisfy

Xi={zylz:) <ap t =1} (3.9)

XZZ{:BQIy(:Bg)>(I_.f=O} (310)

where y(-) express the output, t is the target, and ay and a_ express some levels,

for instance 0.7 and 0.3, respectively.

3.5.2 Data Distribution

Purpose of the training in Step 2 is to find the data, which locate close  to the class
boundary, with less computations. Thercfore, the training is stopped at the middle
stage in the training process using some criterion. In subsection 3.7.2, this criterion
of an off-line training is described. Even though the training is not completely
converged, the data, which locate close to the class boundary can be detected using
the output error. The details are described in the following.

For convenience, a two-dimensional pattern classification given by Fig.3.1 (a) is
employed. It is assumed that the triangle network boundary shown in Fig.3.1(b) is
formed in Step 2. The data inside the triangle corresponds to Class 1, and the
data outside corresponds to Class 2. In this case, the regions are further divided
into A, B, C and D as shown in Fig.3.1 (b). This means that the data locate in B
and D are exactly classified into Class 1 and Class 2, respectively. Furthermore, the

data in A and C are miss-classified into Class 2 and Class 1, respectively.
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Figure 3.1: (a) Class distribution, (b) Classification result by not well achieved

network.

Following the process in Step 3, the data in A and C will remain due to large
output error by miss-classification. Further, the data locate close to the network
houndary, in B and D are also detected due to relatively large errors. The error
is highly related to the distance from the  boundary. However, it is not always
proportional to the distance. This will be discussed in Sec.3.7.2. Therefore, the data,
with which the output error is relatively large, locate near the network boundary,
which is the triangle, at least.

However, the data, which locate close to the network boundary, do not cause
large output error. Therefore if the data x{ and z§ are only selected, the efficient
data, which locate close to the boundary, will be missed. Figure 3.2 shows an

example, where the data locate in the shaded parts are only satisfy the conditions

42

Eq.(3.9) and Eq.(3.10), and are detected.
For this reason, the pairing method is combined with the training process. The
data in the different classes locate close to { and «§ can be found. They are denoted

by o} and &} as shown in Step 4, respectively.

Figure 3.2: Example of two-class classification.

3.6 Training Data Selection in Off-line and On-
line Trainings

The proposed data selection method can be applied to both off-line training and
on-line training [40]. In the off-line training, all data are given at the beginning of
the training. If a large number of training data is available, the data selection is
needed to reduce the training time. In the on-line training, the training data are
not given all together, but are given successively. Furthermore, they may change

continuously. If the data successively received are all accumulated, then the number
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of the data will be extremely large. Therefore, in this application, the training data

selection 1s important.

3.7 Computer Simulation

3.7.1 Classification Problem and Simulation Conditions
Classification Problem

Two-dimensional two-class classification is employed for computer simulations. The
number of input unit N is 2, and the number of output unit A" is 2. Then, The data
is X = {X,X>} and the input data is = {x(i),7 = 1,2} .

Figure 3.3 shows a concept of the problems. One of the classes is shown as shaded
region, and the other is dotted region. White region between the classes shows a
gap, so there is no overlap.

In problem 1, two classes are defined as follows:

Xy = {z|x(1)? +2(2) < (r =)} (3.11)

Xy = {z|2(1) +2(2)° > (r +7)) (3.12)

here, 7 is the radius of the circle and is 0.39. v is the width of the gap, and is 0.02.

In problem 2, two classes are defined as follows:

X, ={x|Asin(27 - (1)) < a(2) =7} (3.13)
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(a) Circle in Square

(b) Sinusoidal in Square

Figure 3.3: Concept of problems. (a) Circle in square, (b) Sinusoidal in square.

X, = {x|Asin(2r - 2(1)) > 2(2) + 7} (3.14)

where, the 4 is the amplitude and its value is 0.22.

Simulation Conditions

The number of data for each class is 1000. Six hidden units are used. Two hun-
dreds of data for each class are selected randomly from 1000 data. These are used
in following simulations. For the training, learning-rate parameter 7 is 0.1, and
momentum constant a is 0.8. These are decided by experience. Circle in square
is called problem 1, and Sinusoidal in square is called problem 2 in the following

sections.



3.7.2 Off-line Training

Pairing Method

For off-line training, pairing and training methods are used. Figure 3.4 shows ran-
domly selected data, and Fig.3.5 shows the data found by pairing method. From

Fig.3.5, the class boundary is formed by data properly. Sixty-five data are selected

for cach class.

The MLNN is trained with selected data. The stopping criterion is 0.001 in

the mean square error (MSE) at the output layer. Iteration of 23763 is needed for

convergence.
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Figure 3.4: Randomly sclected data.
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Training and Pairing Method

selected in problem 2.
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The initial training is stopped at the MSE of ¢ <0.05. The thresholds, a; and a_,
are 1.0, and are equal to € of 0.073. In problem 1, 207 of data are selected from

Class 1, and 164 from Class 2. From Class 1 and Class 2, 116 and 150 of data are

Figure 3.6 shows the results. From these figures, the boundary is detected prop-

For stopping the training, four hundreds of validation data are used to have a

consistent stopping criterion for conventional method and proposed one. The valida-

tion data are subsets of the entire data sct. The network output error is calculated
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Figure 3.6: Sclected data

for validation data every iteration. The stopping criterion ¢ of the validation data
is 0.001. Table 3.1 shows the results. In the table, computation of the conventional
method is 1.0, and the computation of the proposed method is represented as a
ratio of proposed method of conventional one. From this table, the computational

complexity is reduced by this process.

Figure 3.7 shows relation among the distance and the output unit output. The
MLNN in step 2 of Problem 1 is used. The input data of (a) is 2(2) = 0 and (b) is
(1) = 2(2). In the figures, the horizontal axis is the distance from the origin of the
data space to a data. The vertical axis is the output of the output unit to the. input
data of the horizontal axis. From the figures, (b) has a slope much steeper than

(a) near the class boundary, which is at & 4.0 in the horizontal axis. Then data
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locate on (a) outputs different value from the data on (b) for the same distance as

mentioned in subsection 3.5.2

Unit output
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(a) Input datais 2(2) =0
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(b) Input data is 2(1) = x(2)

Figure 3.7: Unit output and distance in data space

3.7.3 On-line Training

The on-line training is simulated using partial data of the problems. Problem 1 is

used in this simulation. Entire data X is separated into three sets as described
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helow.

X, = {zl]x(2)>0.167} (3.15)
Xpia = {2]|-0.167 < 2(2) < 0.167} (3.16)
Xioun = {z]2(2) < —0.167} (3.17)

Each subset data includes 333 data.
X.p is used as the training data of Step 1. X ;¢ and X goun are used new

training data in training of Step 2 of Sec.3.5. The stopping criterion ¢ in Step 1 is

0.05, and 0.01 for training convergence, respectively. The thresholds for all steps

are 1.0.
Figure 3.8 shows the result of on-line training using selected data. The training
is converged and their percentage of correctly classified are 100 % for entire data

sct. The boundary is also detected properly.

3.8 Summary

The training data selection methods used in the MLNN have been proposed. The
Pairing method uses the Euclidean distance to find sets of the nearest data to the
initially randomly selected data. The training method selects the data based on
the network boundary of the MLNN. These methods are combined in this method.
Validity of the training methods has been given, and it was confirmed that the
training method never lost the data near the class boundary by using pairing method.

=
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Proposed methods have been applied to two applications. One of them is reducing
the training of the off-line training, and the other is the on-line training. The training
has been converged by using a combination of paring method and training method.
The computations to converge the training has been reduced. Training method is
also applied to on-line training. In this case, data are sclected from the partial data.
The training has been converged. Therefore, proposed methods are supported by

the simulation results.
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Table 3.1: Comparison of computational complexity between conventional and pro-

posed training.

Prob. 1 Proh. 2
Conv. | Proposed | Conv. | Proposed
Init. 0 134 0 18
Epoch 2444 | 4394 89 390
N of data | 2000 | 114 2000 | 62
Comp. 1.0 0.10 1.0 0.14

Init.: Epoch of initial training.
N of data: Number of data.

Conv.: Conventional method. Comp. Computation
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Chapter 4

FREQUENCY SELECTIVE
CLASSIFICATION BY
MULTILAYER NEURAL

NETWORKS

4.1 Introduction

Advantage of multilayer neural networks (NNs) trained by the back-propagation
(BP) algorithm is to extract common properties, features or rules, which can be '
used to classify data included in several groups [2]. Especially, when it is difficult to
analyze the common features using conventional methods, the supervised learning,
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using combinations of the known input and output data. becomes useful.

In this chapter, frequency selective classification by multilayer neural networks
(MLXNNs) is studied. The signals are classified according to the frequency com-
pouents included in the signals. Since the frequencies are assigned alternately to
several groups, it is difficult to distinguish the waveforms within a short period,
and using limited number of samples. The following advantages of the MLNN over
conventional methods were confirmed. The neural network can classify the signals
using a small number of samples and a short observation period with which the
Fourier transform cannot classify. The number of calculations is sufficiently smaller
than the convolution calculation, required in digital filters.

A sigmoid function is the one of the most popular activation functions used in
the MLNN. However, it is not always optimum. Therefore, properties of activation
functions are investigated in this chapter. For this purpose, some typical functions
are taken into account. They include a sigmoid function, a radial basis function and
a periodic function. They will be compared with each other in classifying multi-
frequency signals. Effects of noisy signals will be also discussed in the training and
classification processes.

As a result, a rule of thumb for selecting the suitable functions and the combi-
nation of several kinds of functions will be provided.

Since the MLNN method is useful for general pattern classification. Therefore, in
order to fairly compare the MLNN methods and the linear signal processing methods,

the following multi-frequency signals are taken into account. The frequencies are
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located alternately between the signal classes, and the amplitude and the phase of
each frequency component are generated randomly. Therefore, the signal waveforms
of the different classes are similar and similarity between classes is small. This kind

of classification may be a difficult problem.

4.2 Multi-frequency Signal

The pth signal class, denoted X, includes M signals.

X, ={tm(n)ym=1~Mn=0~N -1} (4.1)

The multi-frequency signal is defined as follows:

R
Tpm(n) = Z Ay Sin(wprnT + Grar) (4.2)

r=1

where, wy, = 27 fp,,, fpr is the rth frequency component of the pth class. T is a
sampling period. Amplitude A,,,. and phase ¢,,, of each frequency component are
randomly generated in (0, 1] and [0,27), respectively. Two classes are used. The
number of the signal samples is N=10 or N=20. The frequencies in one class (class
1) are 1, 2 and 3 Hz, and in the other class (class 2), 1.5, 2.5 and 3.5 Hz, respectively.
A sampling frequency is 10 Hz. These frequencies can be scaled.

2000 input signals are prepared for each class. For the MLNN, 200 signals are
used for training, and 1800 signals for testing. After the training converges, the

training signals were perfectly classified. Thus, the MLNN is equivalently evaluated
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with 2000 signals.
For noisy signals, the additive noise, uniformly distributed in [-0.5,0.5], is uscd.

The SNR is about 6.5 dB.

4.3 Multi-frequency Signal Classification by Us-

ing Sigmoid Function

4.3.1 Multilayer Neural Network Design

The MLNN with a single hidden layer is taken into account. Minimizations of the
number of hidden units have been well discussed [17, 48]. In this paper, however,
it is determined by experience. Almost the highest classification performance was
obtained with three hidden units. The number of output units is equal to that of
the signal classes. A single output unit is assigned to one class. This means the
MLNN is trained so that a single output unit responds to one of the signal classes.

Back-propagation (BP) algorithm is used for training the networks. Both noise-

free and noisy signals’ sets are used in a training phase and a testing phase. The -

learning rate 1 and the momentum term coefficient a are 0.1 and 0.8, respectively,
which are decided also by experience. The training is stopped when the mean
squared error is less than 0.01 or the number of iterations exceeds 3000.

A ratio of the number of the correctly classified signals and the number of the

cntire testing signals, defined as “classification rate”, is evaluated under several
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conditions. A signal is classified into the pth class if the pth output unit takes the

maximum value.

4.3.2 Training and Classification

The classification rates are listed in Table 4.1 in percentage. The MLNN can provide
high classification rates. The classification rates of using the signals with 20 samples
are better than those of the signals with 10 samples. Therefore, non-lincarity is

notable for 10 samples’ signals and is not notable for 20 samples’.

Table 4.1: Probability of exact signal classification in percentage

Methods N=10 N=20

NFS | NS | NFS NS

MLNN | 97.8 | 86.9 | 97. 91.5

-1
=1

N : Number of samples

NFS : Noise Free Signal, NS :Noisy Signal



4.4 Multilayer Neural Network by Using Several

Kinds of Activation Functions

4.4.1 Network Structure and Equations

A single-layer neural network is taken into account. N samples of the signal ,,(n)
are applied to the input layer in parallel. The nth input unit receives x,m,(n).
Conuection weight from the nth input to the jth hidden unit is denoted w,;. The

input and output of the 7th hidden unit are given by

N-1

net; = Y w,;Tym(n) +0; (4.3)
n=0
y; = fu(net;) (4.4)

Letting the connection weight from the jth hidden unit to the Ath output unit

be wj, the input and output of the kth output unit are given by

J-1 .

net, = Z Wiry; + 0y (45)
7=0

Yr = fo(nety) (4.6)

The activation function of the output layer is the sigmoid function. In the hidden

layer, some activation functions include the sigmoid function are used.
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The number of output units is equal to that of the signal groups denoted by P.
The neural network is trained so that a single output unit responds to one of the

signal groups.

4.4.2 Training and Classification

Signals are categorized into training and un-training sets, denoted by X7, and X7,
respectively. Their elements are expressed by a7,m(n) and xp,,(n), respectively.
The neural network is trained by using Trpm (1), m = 1 ~ My, for the pth group.
Here, Mr is the number of the training data. After the training is completed, the
untrained signals zy,m»(n) are applied to the NN, and the output is calculated. For
the input signal zy,m(n), if the pth output y, has the maximum value, then the

signal is exactly classified. Otherwise, the network fails in classification.

4.4.3 Selection of Activation Functions

What kinds of activation functions should be selected is very important. At the same
time, it is a very difficult problem. In this chapter, the following typical functions
are selected for the hidden layer.

When binary target can be considered, then the sigmoid function can be used in
the output layer.

Sigmoid function:
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1

Yij = fsig(77€fj) = W (4.7)

Sinusoidal function:

Y; = fein(net;) = sin(mwnet;) (4.8)

Gaussian function:

Y; = feau(net;) = e " (4.9)
The input vectors are distributed in an N-dimensional space. Three functions

divide the space as follows:

>ay, net;>Ty
feig(net;) oo (4.10)

<a-, netj < Ty,

> ay, |net; —(2nm 4+ §)| < Ton

fsin(netj) (411) :

<a_, |net; — (2nm + 37)| < Tein

>ay, |netj] < Tye
foau(net;) (4.12)
<a_, |netj| > Tyau
Here, n is integer.

These space divisions are fundamental, and independent to each other. This is

an idea behind selecting the above three functions.
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Next step of selecting activation functions is how to combine them. It is also
highly dependent on the distribution of the input signals, and is very hard to de-
termine before hand. For this reason, hoth the homogeneous function and the

composite functions are investigated.

4.4.4 Training and Classification

Simulation results are shown in Table 4.2. The training converged using three hidden
units for all activation functions. In the case of the Gaussian and the sinusoidal
function, the training almost converged with one hidden unit. In this case, noise
free signals are used. From this table, the MLNN using the Gaussian activation
function achieved the best classification rates. It can classify the un-training signals
with only one hidden unit. The MLNN using the sinusoidal activation function
achieved worse classification rates than that of the Gaussian activation functions.
These two activation functions have similar shape however, differential is non-zero
for the sinusoidal function while differential of some part of the Gaussian activation

function is zero. This difference will be effect to achieve the classification.

4.4.5 Simulation Using Three Activation Functions
Additive Noise

White noise, denoted noise(n), is generated as random number, and is added to the

!

om(11) is given by

signal a,,,(n). Noisy signal z
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Table 4.2: Classification rates by three functions|{%)]

Activation | Hidden || Training Untraining

Function Unit #1 | #2 | #1 | #2

Sigmoid 1 44.5 1100 | 47.9| 100

3 100 {100 |97.4 100

Sinusoidal 1 86.0 | 99.0 | 79.8 | 99.0

3 100 | 100 | 92.6 | 100

Gaussian 1 99.5 | 100 | 98.1 | 100

3 100 | 100 | 99.1 | 99.9

Ty (M) = Tpm(n) + noise(n) (4.13)

Training and Classification

The noisy, multi-frequency signals are used for training. N is 10 and M 1s 2‘00 for
cach group. After training, un-training signals with white noise are applied, and
classification rates are evaluated. White noise is uniformly distributed in the range
4+0.5. The results are shown in Table 4.3. Columns with (A) and (B) list the recog-

nition rates using the training signals without and with white noise, respectively.

The MLNNXN trained without noise is also used for comparison. From these results,

it can be confirmed that training using noisy signals is useful to achieve robustness.
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Table 4.3: Classification rates using training signals. (A) without and (B) with

white noise [%]

Activation | Hidden (A) (B)

Function Unit #1 | #2 | #1 | #2

Sigmoid 1 47.0 | 52.9 | 92.8 | 28.5

3 973184 |826|78.0

Sinusoidal 1 80.2 1209 61.7| 87.7

3 65.9 | 36.2 | 79.9 | 82.7

Gaussian 1 08.214.8 | 71.7165.9

3 85.3 | 46.3 | 79.8 | 70.2

Convergence Rates

Figure 4.1 shows learning curves obtained using the three hidden units. The MLNN
with the Gaussian function can converge faster than the other. However, the error
does not well decreased. The MLNN with the sinusoidal function can also converge
faster. At the same time, the error can be well decreased. A convergence rate using
the sigmoid function is slow. However, the error can reach to the same levei as in
using the sinusoidal function.

Learning curve of the sigmoid function is stable after decreasing the network out-
put errors. However, the learning curves of the sinusoidal function and the Gaussian

function are unstable. Followings are some analysis of unstable of learning curve
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of the Gaussian function and the sinusoidal function. Stable and unstable of the
learning curve comes from difference of the shape of above functions. The sigmoid
function has two saturated regions, so in these regions, small change of the input
that produced by modifying the connection weight did not change network output.
However, the Gaussian function and the sinusoidal function do not have saturated

regions, then small change of the input changes the network output drastically.

4.4.6 Convergence Property Using Single Hidden Unit
Noise Free Multi-frequency Signals

The MLNNSs trained without noise are further investigated by hidden unit input and
output distribution. Figure 4.2(a) illustrates this distribution, using the sigmoid (a),
the sinusoidal (b) and the Gaussian functions (¢). One and two follow a, b and ¢ in

the figure show the number of hidden units.

In the case of the sigmoid function, the data class 1(#1) and the data class 2(#2)

have to be located at the right or the left side. This is a fundamental space division

property of the sigmoid function. Thus, the network has to adjust the weights, with
which the hidden unit input data are completely separated into the right or the left
side. The data #2 is concentrated at the edge of the o as shown in Eq.(4.10), but
the data #1 is distributed widely. From this result, the distribution of the hidden
unit inputs generated by the multi-frequency signals cannot satisfy the requirements

given by Eq.(4.10).
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In the case of the sinusoidal function, the hidden unit inputs of the data #2
locate near one of the peaks and the data #1 distributed widely. The sinusoidal
function has large differential coefficient except for the peak. Then the data #2 can
be shifted around one of the peaks fast. On the other hand, the data #1 can locate
in the region of f,(net;) < a_. Therefore, the requirement of the fundamental
division property given by Eq.(4.10) is satisfied by the multi-frequency signals.

In the case of the Gaussian function, the data #2 locate around the peak. Dif-
ferential coefficients around the peak are large, then, the data #2 can be shifted
toward this area very fast. Most of the data #1 are distributed both sides.

From these results, the hidden unit inputs of the multi-frequency signals can be
concentrated on a narrow range for one group, and the other is distributed widely
for the other group.

Thus, the space division property of the Gaussian function is the best match

with the distribution of the multi-frequency signals. This function can provide the

best accuracy as shown in Table 4.2.

Noisy Multi-frequency Signals

In Figure 4.2 (b), (a), (b) and (c) correspond to the hidden unit inputs and output
distributions, in which random noise is added. The network is trained by using
the pure multi-frequency signals. After the training, the untrained noisy signals are

applied to the MLNN. The distribution of the hidden unit inputs is easily spread by

adding the noise.
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In the case of the sigmoid, the data #2 distributed widely. However, the most
of the data #2 still remains in its own region. Because it has wide stable regions.
This is a reason why it can provide better accuracy than the others.

In the case of the Gaussian, the data #2 distributed over the other region,
hecause, a single peak is very narrow. Then these data easily move over the other
group’s region. Thus, the accuracy is decreased by adding the noise.

The sinusoidal case, the data #2 also widely distributed. However, the sinusoidal
function is a periodic function, having several narrow stable regions. Thus, it can

provide higher accuracy than that of the Gaussian function.

4.4.7 Convergence Property Using Several Hidden Units
Homogeneous Activation Functions

Figures 4.3, 4.5 and 4.7 show distributions of the hidden unit inputs and outputs.
The MLNNSs are trained by using the signals without noise. The sigmoid, the sinu-
soidal and the Gaussian functions are separately used. For each figure, (a), (b) and
(¢) correspond to one of the hidden unit. (al), (b1) and (cl) are the response for

the data #1, and (a2), (b2) and (c2) are for the data #2.

From these figures, there are two types of distributions, these are concentrated

and dispersed distributions. One of two groups is located at near the peak of the
functions and the other is widely spread. The overlap of the distributions between

the two groups causes miss-classification.
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In Fig.4.3, it is very interesting that the data #2 is located at the middle of the
slope. Since this region is not a stable region. it can be expected that accuracy is
easily degraded by adding the noise. As shown in Table 2, it is true. The classifica-
tion rates are 97.3% for the data #1 and 8.4% for the data #2. Accuracy for the
data #2 is greatly reduced.

Figures 4.4, 4.6 and 4.8 show distribution of the inputs of the two output units.
In these figures, (a) and (b) correspond to the data #1 and the data #2, respectively.
The region of overlap of the solid and the doted lines will cause miss-classification.
We can investigate from these figures, how the hidden units separate the signals into
two groups. In the case of #2 data are applied, there is no overlap. So, the hidden
unit input space is well separated. In the case of #1 data are applied, there is some
overlap. These overlaps cause miss-classification. These results are consistent with
the accuracies shown in Table 4.2.

From the figures, the input space of the output units is well separated by the
sigmoid and sinusoidal function. So, it cau be concluded that three hidden units
cooperate to make the distribution of the inputs to the output unit to be li'nea‘rly

separable.

Composite Activation Functions

Three functions can be combined in the same hidden layer. This combination is
called "Composite Activation Function’ in this thesis.

Table 4.4 shows classification rates using the multi-frequency signals without

71



noise. In this table, the symbols D through J correspond to the combination of the
functions.

The combination C, having three Gaussian functions, achieves the best accuracy.
The convergence rate is also the fastest among three functions. The combination D,
having all activation functions, achieves better accuracy than the others except for
C. However, I and J, which include two Gaussian functions, are worse than D.

I through M are compared with E through J. E and F are better than I\
Then adding both the sinusoidal and the Gaussian to the sigmoid can improve the
performance. H is better than L, but G is worse than L. Then adding the Gaussian
to the sinusoidal can do better than the sigmoid function.

In the most of the combinations, the Gaussian achieves better accuracy. Then,
property of each function does not appear straightly in the combinations.

Table 4.5 shows classification rates of the network trained using the noisy signals.

Training itself did not converge in all cases. This means that the accuracy is not

100% for all combinations of the functions.

The network using the homogeneous activation function A and B have higher
acenracy than the others. However, C does not achieve better accuracy than the
others. Then the homogeneous activation function cannot always achieve better
accuracy than the composite activation functions.

The network using the composite activation function J has higher accuracy, while
C and I have worse accuracy than the others. G and H also provide good accuracy.

E and F achieve worse accuracy while A provides good one.
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I\ through M are compared with E through J. G and H are better than L. Then
adding the sigmoid or the Gaussian to the sinusoidal works well. X is better than E
and F. Then adding both the sinusoidal and the Gaussian to the sigmoid does not
work well.

The sinusoidal and sigmoid functions achieve good accuracy in the most of the
combinations. However, the sinusoidal combination does not always achieve better
accuracy. Thus, property of each function is not straight in the combination. as

previously discussed in the no additive noise case.

4.5 Reducing Training Data for Learning Con-
vergence

There are many papers related to data selection method[46, 47, 49], however, in
this section, the data selection method to guarantee the generalization performance
1s investigated through computer simulation. This method is different from the
training data selection method that introduced in chapter 3. The data selection

method is applied to a multi-frequency signal classification.

4.5.1 Selection of Training Data

In general, by increasing the number of data used for training the MLNN, the
generalization performance will be increased. However, difficulty of the network

convergence and the computation for the training will be increased. Therefore, in
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this section, the training data selection method for reducing the training data 1s

proposed and is investigated through computer simulation.

There are two types of the data due to the place in the data space. One is
near the class boundary and the other is placed in the class region. From Eq.(2.7),
the class boundary is rewritten as net, = 0. Here net, is kth output unit. Then
in all the training data, some data that produce large plus or minus value at the
input of the output unit places in the class region. Therefore, at the early stage of
the training, these data are important to form the class region, however, after the
region is roughly formed, the data near the boundary is important to modify the
class boundary. Then in this time, the data that produce large plus or minus values

will not be used to modify the class boundary.

The data selection method reduces training data in the training process. Until
the mean squared error (MSE) is reached at some threshold Eq, all the training data
are used for the training. After that, the inputs of the output units are calculated,
and the data exceeding the threshold of the absolute value of the input of the output
unit Th are removed and the training is done with remained data until MSE of the

output units reaches some stopping criterion. Therefore, the network is trained by

using the data that are placed near the class boundary. Fig.4.9 shows the training

curves. The solid line shows the training using all the training data, and the dotted
line and dashed line correspond to the proposed methods. Ey is 0.032. From the
figure, the training is converged almost the same iteration. However, the number of

the data used for training is reduced in proposed methods, then the computation

74

for the training will be reduced. The threshold of Th=3 is equal to output 0.95
of the output unit. Figure 4.10(a) and (b) show the classification rate of class 1
and 2,(c) shows the number of the data that arc reduced. From the figure, when
threshold Th=3.0, then 653 of the data are reduced, and the classification rate after
the training is almost the same as the one trained without reduceing the number
of the data. From above results, it can be concluded that the reduced data in the
training process are not useful to modify the class boundary. Therefore, usefulness

of this method is proved.

4.6 Summary

Properties of the activation functions for multi-frequency signal classification have
been discussed using multilayer neural network supervised by BP algorithm. The
Gaussian function can provide the highest performance for the signals without noise.
However, it is sensitive to the additive noise. The sigmoid function is not useful for
a single hidden unit. If several hidden units are used, then the sigmoid function
becomes useful, and is insensitive to the additive noise. The sinusoidal function is
useful for noisy signal.

Moreover, the training data selection method is proposed. By using this method,
the classification rates are the same as the one trained by using all the data. The
number of training computations is reduced. Therefore, the proposed method guar-

antees the generalization performance and at the same time, reducing the number
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of training computations.
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Table 4.5: Classification rates using signals with noise

Combination Training Untraining

Sig | Sin | Gauss | #1 | #2 | #1 | #2 | Ave.
Al 310 0 83.5186.0 826|789 80.8
B| 0| 3 0 84.5189.079.9 827 81.3
cCl 0] 0 3 87.0 | 81.5|79.8|70.21 75.0
D| 1 1 1 77.01925]69.1 843} 77.6
E| 2 1 0 88.5|77.0(80.9|67.8 | 744
F|l 210 1 78.5]98.5|63.8 859 | 74.9
G| 1 2 0 74.0 1925|694 |87.0| 78.2
H| 0| 2 1 79.0 1925|723 | 84.3 | 78.3
11 0 2 84.0 | 87.5 | 73.5 | 75.9 | 74.7
J 1|10 1 2 84.5|82.0|81.0| 785 | 79.8
K| 2|0 0 91.5|70.5|81.3|69.3 | 75.3
L| 0| 2 0 80.3 |83.0|79.1|73.6| 76.4
M| 0] O 2 75.5(850|74.6 | 76.1| 754
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Chapter 5

PATTERN CLASSIFICATION
BY LINEAR SIGNAL

PROCESSING METHODS

5.1 Introduction

The classification by the linear signal processing (LSP) methods are introduced in
the pattern classification point of view. The classification mechanism and its classifi-
cation performance are discussed. The LSP methods are not a pattern classification
method, however, they are used in the process that can be seen as a pattern

classification. In the analysis in this chapter, the signal consists of N samples is

seen as the N-dimensional vector. As the same as the pattern classification by the
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MLNN, the pattern classification is regarded in the same light as dividing the N-
dimensional space into the class regions to suit the distribution of the signals. Then.
the classification is performed based on the distance between the filter coefficients

and the patterns.

5.2 Linear Signal Processing Methods

5.2.1 Pattern Matching Methods

A classification by using pattern matching method is carried out to measure a dis-
tance from a template pattern to an input pattern, and the input pattern is classified
into the class that the nearest template is included. This method is called the near-
est neighbor method[50]. The Euclidean distance and the Maharanobis generalized
distance(MGD)[51] can be used as the measurement of a distance. In this thesis,
the nearest neighbor method using the Euclidean distance is called by Euclidean
method, and the nearest neighbor method using the MGD is called by the MGD
method. In both of using the Euclidean distance and the MGD, each class’ tem-
plate forms a subclass. In the case of small number of templates are used, templates
roughly cover the class region and form the class boundary. Then, mis-classification
will be occurred.

The classification performance by the Euclidean method will be dropped when
the distribution of the templates is biased. On the other hand, the MGD measures

the distance from the central vector of the pth class templates g, to the input signal
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z by

&= (x-p,)C,lx~pu,) (5.1)

Here, C, is the covariance matrix of p class signals. The central vector is a mean
vector of the signals that correspond to the training signals of the MLNN. 2! is
the transpose of a vector . From the equation above, the MGD normalizes tlie
distance (x — ;LP)Q by the covariance matrix of the templates, so the classification
performance is robust against the placement of the templates.

The k-mean clustering [52, 53] and the Gaussian Classifier [50] are famous pattern
classification methods. The k-mean clustering performs as the same as the Euclidean
method using many templates. The Gaussian classifier can be considered as a single
layer linear perceptron. It measures the distance by the MGD, and estimates the
joint-probability density of the input data as the Gaussian distribution. Then, this
method has the same classification performance as the MGD method using many
templates. Due to the reasons above, the Euclidcan method and the MGD method

are employed as the pattern classification methods.

5.2.2 Frequency Analysis Methods

The Fourier transform and the filters[54] are useful as the signal classification method
using frequency analysis. By using the Fourier transform, if the frequency compo-
nent of the pth class is the maximum among classes, then the signal is classified into

the pth class. The classification by the filters, a filter bank that consists of the filters
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for each c.ass, is used to identify the input signa. c.ass. If the pth c.ass fi.ter output
in power is the maximum among the fi.ters, the input signa. is c.assified into the pth
¢.ass. In both cases, the Fourier kerne. or the fi.ter coefficient is designed to extract
specified frequency component. Therefore, pre-processing is needed to estimate the
key frequency information to achieve the c.assification.

The Fourier kerne. and the fi.ter coefficient are correspond to the temp.ate pat-
tern of the pattern c.assification. However, the Fourier kerne. and the fi-ter cocffi-
cients are designed, so degree of freedom to sc.ect these coefficients are .ower than
se.cction of temp.ate of the pattern c.assification. More detai.ed discussion is given

in Sec. 5.3.

Fourier Transform

For the Fourier transform, the frequency component of the input signa. {z(n),n =
0 ~ N — 1} or  is extracted by ca.cu.ating the inner product of the input signa.

and the Fourier kerne. {e™*"Tn =1~ N }.

Xw)= ) a(n)e T, (5.2)

Here, T is the samp.ing period and w = 27 f. Then, the Fourier kerne. is corre-

sponding to the temp.ate pattern of the pattern c.assification method.

86

Finite Impulse Response Filter

Finite Impulse Response (FIR) filter with a direct form[34], the output signal of the

FIR filter is calculated by Eq. (5.3) in the steady state.

N-1
yp(n) = > x(k +no)hy(n — k), hy(n—k)y=0n-k<0 (5.3)
k=0

Here, hy(n — k) are the filter coefficients, by which the pth class signal can be
extracted. This type of the FIR filter is called as FIR1 in this thesis.

The signals can be also detected by suppressing the class frequencies. This type
of the FIR filter is called FIR2 in this thesis. The transfer function of the pth class,
denoted H,,,,(z) , has zeros on the unit circle at the corresponding frequencies.

K

Houp,(z) = ho H(l —2coswuTz7! +272) (5.4)
k=1

where hp is a constant and w,y. is the frequency components included in pth class.
The output is calculated by using Eq.(5.3). The order of the transfer function of

the FIR2 is as the same as the number of the samples of the signal.

Infinite Impulse Response Filter

An infinite impulse response (IIR) filter [54] requires a low-order transfer function,
which are a small number of coefficients. However, the recurrent structure requires
higher computation than the FIR filter.

One of the IIR filter realization is a cascade form of the second-order circuits,
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whose transfer function is written as

ag+ a;z7 1+ axz? .
H(z)= : 5.
(=) L4+ byzt 409272 (5:5)
The output y(n) is calculated as
w(n) = x(n) — byw(n —1) — byw(n — 2) (5.6)
y(n) = qouw(n) + ayw(n — 1) + axw(n — 2). (5.7)

x(n) wi(n) 0 v (n)

Figure 5.1: Second order IIR filter.

w(n) is an internal variable as shown in Fig.5.1. A high-Q filter can be realized
using a low-order transfer function. However, the linear phase response cannot be

guaranteed.

5.2.3 Spectrum Estimation Methods

Maximum Entropy Method(MEM)[54], which is a spectrum estimation method,

estimates an auto-regressive (AR) model of the signals. The main benefit of using
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this method is that it can estimate an interest spectrum using the limited number
of signal samples.
From the Wienner-Khinchin’s law, the spectrum is equal to the Fourier transform

of the auto-correlation of the signal. The power spectrum P(w) is given by

M
Pw)= Y = (5.8)

i=—M

Where, v; is the auto-correlation sequence of the signal a(n) with 7 lag. A is the

order of the filter. The power spectrum P(w) is modeled by

M &
’1 + Zk:l (lk~k

ap and {ax} are unknown coefficients of the prediction-error filter. These co-

P(w) 2 (5.9)

efficients are obtained by Eqs.(5.8) and (5.9). Akaike showed limit of M as M <
(2 ~ 3)\/(]\‘7) [55]. If M is less than above, false peaks will not be appeared. The
classification is as the same as the FIR filters.

Another method in this category is a super-resolution algorithm (Multiple Sig-
nal Classification: MUSIC)[56]. The MUSIC is used to estimate frequencies and
directions of waves arrive at the uniformly spaced linear sensor array. The number
of sensors is limited. Usually, the MUSIC allows around 30dB of SNR(Signal Noise
Ratio) [4]. This SNR is smaller than that used in the simulation in chapter 4 and
6, since, maximum entropy method is employed.

From above discussions, the following methods are employed as the LSP methods:

The pattern matching method using the Euclidean distance and the Maharanobis
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generalized method; the frequency analysis method using the Fourier transform

and the filters; and the spectrum estimation method using the maximum entropy

nmethod.

5.3 Analysis of Degree of Freedom to form De-

tection Regions

e
(a) FIR filter cocfficients and output samples (b) FIR filter coefficicnts and output sample
distributions. (Small number of samples are used) distributions. (Many samples are used)

(a)N is large and k; is small. (b) N is small and ky is large.

Figure 5.2: Signal detection region of FIR filter.

Classification performance of the LF methods is investigated based on the spec-
trum distribution of the signals regarding the number of the signal samples.

When many samples are used to represent the input signals, the frequency com-
ponents are almost the same as the original signal’s. Then highly accurate signal
classification is possible by the LF methods. To analyze a frequency component by

a high-Q bandpass filter (BPF), difference of the output power between the input
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signals that include or not include the frequency components are obtained. \ore-
over, the output of the high-Q BPF nearly regarded as a sinusoidal waveform. Then
it is possible to identify that the frequency component is included in an input signal
or not with small number of filter output samples.

If the input signal is in the pth class, the outputs of the pth class filter y,(n) and

the others y, (n) satisfy the following equation.

n+NL;—1 n+h;—1
Yo gn) > mad.  yy(n)] (5.10)
n=n) n=n,

Where, LA} is the number of the filter outputs, and is assumed to be small. Supposing

an appropriate threshold a, this condition can be replaced by

ni+h;—1 m+hk;-1 N—1
DSl =>" 13 a(k+no)hy(n — k)| > a. (5.11)
n=nj n=nj k=0

In this equation, the right hand inequality forms some regions in an N-dimensional
space, where the pth class signals are included. This region is called a signal detection
region of the pth class. Figure 2 (a) shows a conceptual image of the signal detection
regions given by Eq.(5.11) for two-dimensional signals. The shaded parts are the
signal detection regions and the solid line shows a boundary of the regions that
formed by y,(n) = 0 in Eq.(5.11). The signals of the pth class are concentrated in
the shaded parts and the other class signals are distributed around the boundary.
When the number of the signal samples is small, the frequency components or
the spectrum distribution is distorted from those of the original signal’s. Becausc,

using a small number of the signal samples is equal to using a short interval window,
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and this affects the amplitude response of the signal. The signal detection region is

formed by

ny+ I, -1

ST yp(n)] > (5.12)

n=nj
Where Ivj, > L. The region specified by this inequality is wider than that given
by Eq.(5.11). Equation (5.12) can be satisfied when some outputs take large valucs
than a. Then the condition of the classification is relaxed by using many output
samples. A conceptual image of this extended regions is illustrated as some shaded

parts in Fig.2(b).

5.3.1 Signal Classification by Output Power

The same number of the filters as that of the signal classes is used in the signal

classification. The pth class filter is designed to extract the frequency components '

of this class, and to suppress those of all the other classes. The power of the pth

filter output S, is calculated by

ny+h -1

Sy = Z yf,(n). (5.13)

n=n,
Where, y,(n) is the filter output and I is the number of the output samples. n,
is the beginning of the steady state response. Classification is done by using the
following criterion.
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If S,=max{S,} then z€ X, (5.14)
P

that is the signal is classified into the pth class.

Next, computation complexity required in calculating the output power is dis-
cussed. The FIR filter with a direct form always needs N computations in calculating
one output as shown in Eq.(5.3). One computation includes one multiplication and
one addition. It is independent of the filter order denoted Ngyg. In other words, a
very high-Q, which is high-order FIR filter can be used to achieve higher resolution
without increasing in the memory capacity and the number of computations. The
output samples in the steady state are used in calculating the output power.

On the other hand, the IIR filter has a recursive structure as shown in Fig.5.1. In
calculating the Mth output y(A), the filter should operates from n =0 ton = M.
Letting filter order be Nyjp, y(M) requires (5/2)Ny g M computations. It is mainly
determined by Nyrg and M, not N. Here, we assume the 2nd-order section needs
five computations as shown in Fig.5.1. Furthermore, y(Af) in the steady state should
be used in estimating the output power. Thus, even though N;g < Npjp, the IIR
filter may require more computations than the FIR filter in estimating the output

power.

5.3.2 Degree of Freedom of Space Division

The degree of freedom of forming the class region is discussed in the following. The

filter coefficients used to calculate y(n) are hy(n — N + 1) ~ h,(n). Thus, a sct of
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successive N coefficients is used to calculate y(n). Let this set be h,(n, N). There
is strong corrclation among h,(n, N). In other words, they cannot be determined
independently. They are designed to extract the necessary frequencies. h,(n,-\")
corresponds to a set of the connection weights from the input to the hidden layers.
These connection weights do not have any constraints. They can be adjusted us-
ing the training data. Therefore, the MLNN can realize more flexible subregions.
and is superior to the LF method in pattern classification. However, the MLNN
is dependent on the training data. The training should be done to achieve good

generalization performance.

Discussions based on computer simulation will be given in Sec.6.5 and Sec.6.6.

5.3.3 Correlation of Partial Coefficients of Filter

The input of the FIR filter is denoted by z(n), its coefficients are denoted h(n).

Then, the output of the filter y(n) is given by the next equation.

N-1

y(n) =Y x(k)h(n —k) (5.1

k=0

ot
b
(&1}

Here, (n) consists with N samples of n =0 ~ N — 1. To get y(no), the coefficients
of h(ng) ~ h(ng—N+1) are used, and for y(ng+m), h(ng+m) ~ h(ng+m—-N+1)
are used. Denote above as hg(n) and h,,(n), and by using time domain window w(n),

they can be rewritten as follows.
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ho(n) = h(n)w(ng—n).n=0~N =1 (5.16)
h(n) = h(n)w(ng+m—-—n),n=0~N -1 (5.17)
1, 0=sn=N-1
w(n) = (5.18)
0, n<0, N=n

First, narrow bandwidth lowpass filter (LPF) is discussed[57]. The passing-band
denotes f., the sampling frequency is f,, the amplitude response at passing-band
is unity, and stopping-band is zero. Then the impulse response of the LSP h(n) is

given by the next equation.

1 weT .
h(n) = %/ T dwT, w, = 27 f.
—wT
(5.19)
2f.sinw.nT fe
= =f—— wanT =2n(F)n 5.20
. o T Wen ﬂ(fs)ﬂ (5.20)

When the order of the filter is Ny — 1, then the coefficient i(n) shifted (N; —1)/2
to the right is used for the interval of 0 ~ Ny — 1.

Next, the similarity of ho(n) and h,,(n) is discussed. From Eq.(5.20), to compare
wenoT and we(ng + m)T, the difference of these two is wemT = 27(f./f)m. In
general, for narrow bandwidth LPF, f./f. > 1 then, for some small m that satisfy

fo/fe > m 2n(f./fs)m < 2 is true and Nig(n) and h,,(n) become similar.
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Moreover, the filter cocfficients of the FIR filter or the impulse response nar-
row bandpass filter (BPF) (denotes h,(n)) is discussed. In approximately, f,(n) is
given by the impulse response of the narrow Bandwidth LPF multiply the sinusoidal
waveform whose center frequency is at the passband. Here, several band is consid-
cred, and the center frequencies are fi, fo, f3, respectively. Then hy,(n) is written

as follow.

hy(n) = h(n){cos(27 finT) + cos(2w fanT') + cos(27 fanT)} (5.21)

As the same as the former discussion, the filter outputs of y(ng) and y(ng + m)

are calculated by using the partial coeflicients of the filter.

hpo(n) = hy(m)w(ng — n) (5.22)

hpm(n) = hy(n)w(ng +m — n) (5.23)

Tn this case, fi, f2, f3 < fs is not always true, then the similarity of the filter
cocfficients is not guaranteed. Therefore, as the waveform itself, hyo(n) and hy,(n)
are not similar. However, the sinusoidal waveform to generate the h,(n) has a high
correlation among the partial waveforms, so the correlation of hyo(n) and hp,(n)
will be high. In other word, in the range of fo/fe > m or ho(n) = hm(n) is true, the
correlation of ho(n) and h,,(n) is the same as the correlation between the samples
of the sinusoidal wave.

When m is relatively large and the correlation of wave form of hg(n) and h,,(n)
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become lower, the correlation of hyo(n) and hy,(n) becomes lower, however, they
Liave some correlation.

As discussed above, the correlation of the partial cocfficients of the narrow BPF
filter is high, therefore, the degree of frecdom to form a class region in the \™-

dimensional space by partial coefficients of the filter is low.

5.4 Summary

In this chapter, the classification performances of the LSP methods are analyzed
based on their capability of forming the class regions related to the signal distribution
in the N-dimensional space.

From the analytical results, the pattern classification performance is related to
the number of the samples of the signal. When the signal consists of many samples,
the orthogonality of the frequency components of the signal is guaranteed, then
the output power of the filter for the signal that does not include the extracting
frequency components is always relatively small. Then the classification is possible
by using the small number of the output sample of the filter. On the other hand, the
number of the samples is small and the orthogonality of the frequency components
is not guaranteed, the output power of the filter for the signal does not include the
extracting frequency components is not always small and many output samples of

the filter need to do exact comparison.
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Chapter 6

COMPARISON BETWEEN
MULTILAYER NEURAL
NETWORKS AND LINEAR
SIGNAL PROCESSING

METHODS

6.1 Introduction

In chapter 2, the pattern classification ability of the NMLNN is  analytically

Investigated and it has been pointed out that the MLXNN has a large degree of
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freedom to form the class region in an N-dimensional space.

In chapter 5, the pattern classification performances of the LSP methods are
investigated theoretically. From the analytical results, the filter methods design its
coefficients to extract specific frequency components. So, the degree of freedom of
sclecting filter coefficients is small.

These analytical results claimed that the MLNN has a superiority to form the
class region in an N-dimensional space, however, the classification performances of
the MLNNs and the LSP methods are not investigated. To make clear the supe-
riority of these two, in this chapter, the signal selective classification performances
of the MLNNs and the LSP methods are compared through computer simulations.
The comparison is curried out from several points of view; classification rates, num-
ber of the signal samples and the computational complexity of the methods. The
classification problems used here are the multi-frequency signal classification (refer

to section 4.2) and the dial-tone recognition.

6.2 Multilayer Neural Networks

The network structure is as the same as used in the chapter 4. Minimization of the
number of the hidden units has been well discussed [17, 48]. In this chapter, however,
it is determined by experience. Almost the highest classification performance was
obtained with three hidden units. The number of output units is equal to that of

the signal classes. A single output unit is assigned to one class. This means the
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MLNN is trained so that a single output unit responds to one of the signal classes.

Back-propagation (BP) algorithm is used for training the networks. Both noise-
free and noisy signals’ sets are used in a training phase and a testing phase. Noise
used in this chapter is as the same as the one used in Sec. 4.2. The learning rate
7 and the momentum term coeflicient a are 0.1 and 0.8, respectively, which are
decided also by experience. The training is stopped when the mean squared error is
less than 0.01 or the number of iterations exceeds 3000.

A ratio of the number of the correctly classified signals and the number of the
entire testing signals, denoted “classification rate”, is evaluated under several con-
ditions. A signal is classified into the pth class if the pth output unit takes the

maximum value.

6.3 Design and Classification of Linear Signal

Processing Methods

6.3.1 Design of Linear Signal Processing Methods

When the frequency components of the signals are known in advance, the filter spec-
ification can be determined, and the filters can be designed to extract the necessary
frequencies and suppress the unnecessary ones. Usually, high-Q amplitude and lin-
ear phase are desirable. On the other hand, when the frequencies are not known,

the filters cannot be designed following some specifications, rather they should be
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designed through some training algorithms like "adaptive filters”. In this paper,
however, it is assumed that the frequency components of the signals are knowh, and
the former case is taken into account.

(1) FIR Filter 1 (FIR1)

Figure 6.1 shows an example of the amplitude response of a 1000th-order FIR
filter for the class 1. It has the peaks at frequencies 1, 2 and 3 Hz, and the band-
width is 0.02 Hz. For class 2, the amplitude response that has the peaks at class 2
frequencies is used.

The FIR filter with a direct form [54] is used, the output signal of the FIR
filter is calculated by Eq. (5.3) in the steady state. As discussed in section 5.3.1, a
very high-Q, which is high-order FIR filter can be used to achieve higher resolution
without increasing in the memory capacity and the number of computations. The
output samples in the steady state are used in calculating the output power. A

linear phase is easily realized.

0.9|
o8t
o7}
X1 3
éus +

0.4t
o3}
o.2r

0.1

Figure 6.1: Amplitude response of FIR1 filter designed to extract class 1 signals.

(2) FIR Filter 2 (FIR2)
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The order of the transfer function of the FIR2 is as the same as the number of
the samples of the signals. The order is nine and nineteen for N = 10 and .\" = 20.
respectively. The zero frequencies are located on the unit circle.

(3) IIR filter

The transfer function of the ith second order circuit is given as follows:

1= 2cosf. izt 4272
1 —2r;c086, 271 +r2z—2

Hi(z) (6.1)

Here, r; is the magnitude of the ¢th poles. r; is less than one. 6, and 6. are the pole

and the zero frequencies, respectively. They are given as next equations.

eln :277'&’ i1=1,2, (6.2)
s
f:i
0.; = 2n—, i=1,2, 6.3
f (6.3)
(6.4)

where, f, is the sampling frequency.

The total transfer function is

H(z)= fIlHi(:). (6.5)

In order to realize a high-Q filter, fifteen zeros and three poles are used for each
class. r; in Eq.(6.1) for the class 1 are 0.9943, 0.995 and 0.9985, for the class 2,
0.994, 0.995 and 0.9985, respectively. The pole frequencies are 1.0, 2.0 and 3.0 Hz

for the class 1, and 1.5,2.5 and 3.5 Hz for the class 2, respectively. All zeros locate
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on the unit cyele. Figure 6.2 shows the amplitude response of the class 1 filter. The

impulse response is shown in Fig. 6.3.

250

200}

J I

o 0.5 1 1.6

2 256 3 3.6 “ 4.5 5
FrequencylHz]

Figure 6.2: Amplitude response of IIR filter to extract class 1 signals.

300
Output sampla: n

Figure 6.3: Impulse response of class 1 filter.

By using this filter for classification of the multi-frequency signals, the classifica-
tion rate for the signals with 10 samples and noise free signals is 86.9%. To achieve
this accuracy, 2000 output samples are required. This rate is not good compared
with that of the FIR filter will be shown in Sec.5.5. The reason is the phase distor-
tion caused by the high-Q amplitude response. By using a lower-Q filter than the
above, the classification rate was increased from 86.9% to 95.4%. In this case, r;

in Eq.(6.1) are changed to 0.94, 0.94 and 0.98 for the class 1, and 0.92, 0.935 and
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0.98 for the class 2. In the lower-Q IIR filter. 200 output samples are required. On
the other hand, since the FIR filter always can guarantce the linear phase, a very

high-Q filter can be effectively used as shown in Fig. 6.1.
(4) Maharanobis Generalized Distance (NMGD)

As shown in Eq.(5.1), the MGD uses the covariance matrix of the signals that
correspond to the training signals for the MLNN. The signals are generated by
using Eq.(4.2), then the signals are correlated to each other, so the covariance matrix
becomes a singular matrix. To make the covariance matrix be a non-singular matrix,

small white noise in the range of £0.001 are added to the signals.

The covariance matrix is calculated by using the signals that correspond to the
training signals of the MLNN. According to increasing of the number of the signal
to calculate the covariance matrix, the accuracy of the covariance of the class region
is increased, and the generalization is more effective. In this chapter, 200 signals arc
used to calculate a covariance matrix for each class. Ineffectiveness of using more

than 200 signals is confirmed by further experiment.
(5) Maximum Entropy Method (MEM)

Auto-correlation sequence of the pth class signals are used to get the ag and
{a} of the prediction-error filter of the pth class. From [53], the limit of M is
M< (2~ 3)\/EN ). From above equation, A is decided as M = 7 for 10 sample

signals, A = 10 for 20 sample signals. They are decided by trials.
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6.3.2 Classification Rules

The classifications by LSP methods are carried out as described in Sec.5.2. However,

the Fourier transform and the MEM methods use relaxed criterion as follows.

Criterion Define an amplitude response of the input signal at f,,,p =1~ P,r =
1 ~ R as A,,. The input signal is classified into the class that includes the
maximum number of A, is maximum in Ay, at fo,r =1~ R. Where, p'

indicates all classes without pth class.

6.4 Computational Complexity

Normalized computational complexity (NCC) is defined to compare classification
performance based on the same number of computations. The parameter for each
method and the calculation of NCC is described in the followings. The number of
samples is N, and the number of class is P. In the NCC, the inner product of two
N-dimensional vector is normalized as unity.

(1) Multilayer Neural Network (MLNN)

The NCC for the MLNN is calculated for the network architecture that performs
the highest classification for the training and the testing signals. The parameter of
the NCC for the MLNN is the number of the hidden units. After the training
converges, the hidden unit outputs approach to 1 or 0 [43]. So, the sigmoid function
can be replaced by a threshold function in the test phase. Therefore, the calculation

of the sigmoid function is omitted from NCC. In this case, NCC = M + (M P/N).
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Here, M is the number of the hidden units, and P is the number if the output units.
(2) FIR filter 1 (FIR1)

From Eq.(5.3), one output sample of the FIR1 is calculated by the inner product
of the input signal and the filter coefficients. Then NCC for one output sample is
unity. When the number of output samples is Iv', the number of classes is P, then
NCC = IP. Here, the parameter of NCC for FIR1 is the number of the output
sample A
(3) FIR filter 2 (FIR2)

FIR2 calculates its one output sample as an inner product of the input signal
and the filter coefficients. Due to the architecture of the FIR2, only one sample is
used. Then, NCC =1 and there is no parameter of NCC.

(4) IIR filter (IIR)

In the case of N, pole frequencies and N. zero frequencies are used and N, > N,,,
then N. of the 2nd-order circuits are used. Each circuit includes five inner products
of the signal and the filter coefficients, then computation for one filter output is
N, x5+ (N.=N,)x3=2xN,+3x N.. Then NCC =(2x N,+3 x N.)/N.
N, is as the same as the number of frequencies included in one class. The number
of the output samples is the parameter.

(5) Fourier transform (Fourier)

The Fourier transform of the signal is given by Eq.(5.2). In this equatioh, the

inner products of the signal and the complex number of the Fourier kernels are

required. The inner product of the complex number is counted as twice of the real
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number’s. If a signal includes R frequency components, then NCC = 2PR. The
parameter of NCC is the number of observation frequency components R.
(6) Euclidean Distance (Euclid)

If the template and the signal are N-dimensional vectors, and the computation
of the Euclidean distance is as the same as the inner product’s, then NCC = PN A[L.
Here, M is the number of the templates and is the parameter of NCC.

(7) Maharanobis generalized distance (MGD)

To calculate the covariance matrix of the signals that correspond to the training
signals of the MLNN, if the number of the signals is Af, A/ inner products are
required. However, this covariance matrix can be used to measure the distance, and
no re-calculation is required. Then this computation is omitted from NCC. From
Eq.(5.1), if the signal is N-dimensional vector, NCC = (N?+N)P/N= NP. There
is no parameter of NCC.

(8) Maximum entropy method (MEM)

The computation of solving the prediction-error filter is omitted from NCC.
Because, this process is as the same as the design of the filter and the training
phase of the MLNN. From Eq.(5.9), NCC = 2PAMO/N. M is the number of the

observation frequencies, and O is the order of the filter. The parameter is M.

The number of parameters for each method is listed in Table 6.1 and 6.2. Table -

6.1 is for limited computation. In the case of the limited computation, the compu-
tations of the methods are the same as the computation of the MLNN. The number

of parameters is integers, so NCC for all methods is not exactly the same. Table
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0.2 is for not limited computation. In this case, the number of parameter is set to

achieve the highest accuracy.

Table 6.1: Normalized computational complexities and the number of parame-

ters(Computation is limited).

Methods N=10 N=20

NCC NP | NCC NP

MLNN | 3.6 3 3.3 3
FIR1 4.0 2 4.0 2
FIR2 2.0 - 20 -

IIR 5.1 1 5.1 2

Fourier | 4.0 1 4.0 1

Euclid 4.0 2 4.0 2
MGD - - - -

MEM 2.8 1 4.0 2

N: Number of samples

NP: Number of parameter

As described above, NCC of the FIR2 is the number of the classes P and for the
MGD is multiple of the number of the signal samples N and P. These parameters
are decided by the classification problem, then NCC is fixed value for these methods.

From Tables 6.1 and 6.2, for 10 samples signal and two class classification, NCC is
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Table 6.2: Normalized computational complexities and the number of parame-

ters(Computation is not limited).

Methods N=10 N=20

NCC NP |NCC NP

MLNN 48 40 4 40
FIR1 20 10 20 10
FIR2 - - - -

IIR 1020 200 | 510 200

Fourier 12 3 12 3

Euclid | 400 200 | 400 200
MGD 20 - 40 -

MEM 84 3 120 3

N: Number of samples

NP: Number of parameter

2 for the FIR2, and for the MGD, NCC is 20. Under the same condition, NCC for
the MLNN is 3.6. Therefore, FIR2 is used when computation is limited, the MGD

is used when computation is not limited.
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6.5 Multi-frequency Signal Classification

6.5.1 Classification of Multi-frequency Signals

The following two conditions are investigated: the number of computations is limited
or not limited. In the former case, computations of the LSP methods are decided
as almost the same as in the MLNN method.

The classification rates with limited computations are listed in Table 6.3 in per-
centage.

In the case of the computation is limited, for the Fourier transform method and
for the MEM method, only one observed frequency is used for each class. Then there
are 3C x3 C7 = 9 combinations of the ohserved frequencies of two classes. So, the
classification rates are calculated for nine combinations, and the average of them are
listed on this Table. In the Table, the multilayer neural network is denoted as the
MLNN, the FIR filter of extracting the specified frequency is denoted as FIR1, FIR
filter of suppressing the specified frequency is denoted as FIR2, IIR filter is denoted
as IIR, the Fourier transform denoted as Fourier, the pattern matching method using
Euclidean distance is denoted as Euclidean, the pattern matching method using the
Maharanobis generalized distance is denoted as MGD, and the Maximum entropy
method is denoted as MEM, respectively.

From this table, the MLNN method can provide higher performance than the
LSP methods. The classification rates of using the signals with 20 samples are better

than those of the signals with 10 samples. In the LSP methods, the classification

111



rates are higher for 20 samples’ signals than that of 10 samples’. Therefore, non-

linearity is notable for 10 samples’ signals and is not notable for 20 samples’.

Classification rate of IIR filter for 20 sample signals is worse than that of FIR
filter. The main reason of this difference comes from a recurrent structure of IIR
filter. If the computation is limited, the output samples in the transient state become

dominant in the output power, and accuracy is decreased.

Table 6.3: Probability of exact signal classification in percentage when computation

is limited.

Methods N=10 N=20

NFS NS | NFS NS

MLNN | 97.6 854 | 974 90.6
FIR1 4.7 3.7 | 100 87.5
FIR2 100 50.3 | 100 51.3
IIR 0.0 0.0 |49.0 49.0

Fourier | 56.1 53.6 | 77.9 6.7

Euclid | 49.6 52.1| 59.4 62.0

MGD | - - | - -

MEM | 60.8 56.8 | 87.7 87.3

N : Number of samples

NFS : Noise Free Signal, NS :Noisy Signal
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For noise free signals, the FIR2 method provides higher classification rate than
the MLNN, however, it is not a case for noisy signal. Because, the FIR2 designed to
suppress specified frequency components, however, additive noise is the randomly
generated, then the noise spectrum becomes very broad. So, this noise cannot be
suppressed.

In the case of the computation being not limited, the classification rates arc
shown in Table 6.4. The number of the parameters is increased; the number of the
hidden units is increased for the MLNN, the number of output samples is increased
for FIR1 and IIR, the observation frequency is increased for Fourier and the MEM,
and the number of the templates is increased for the Euclidean and the MGD,
respectively.

The classification rates of the LSP methods can be improved. They are almost
the same in all methods.

For the MLNN method uses the valley shape activation function [25] instead of

the sigmoid function in the hidden layer.

6.5.2 Relation Between Computational Complexity and

Classification Rates

The relation between the classification rate and the computational complexity is
investigated based on NCC. About NCC, refer to Sec.6.4.
Figure 6.4 shows the classification rates of each method with respect to the NCC.

This figure obtained by increasing the number of parameters of each method, and
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Table 6.4: Probability of exact signal classification in percentage when computation

is not limited.

Methods N=10 N=20

NFS NS | NFS NS
MLNN | 100 90.6 | 100 99.3
FIR1 100 90.5| 100 99.8

FIR2 - - - -
ITIR 95.4 86.5| 100 99.8
Fourier | 70.6 65.7 | 100 94.8
Euclid | 86.0 79.5| 100 99.5
MGD 100 90.2 | 100 99.7
MEM | 629 63.7| 97.3 95.4

N : Number of samples

NFS : Noise Free Signal, NS : Noisy Signal

tlien examined the classification rate. The parameter of cach method is explained in
Sec.6.4. The noisy signals are used in this investigation. From the figure, for higher
NCC, the performances of all the methods are almost the same. However, as the
NCC decreases, the LSP methods drastically decrease the classification rates while
tie MLNXN method can still keep relatively high classification rates. Therefore, for

all NCC, the MLNN can provide good classification performance.
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From above investigations, the multi-frequency signal with 10 to 20 samples in-
cludes enough information for the classification by LSP methods if they use enough
computations. Because, their classification rates are sufficiently high when the com-
putation is not limited. However, this information is not enough when LSP’s com-
putations are limited, then the classification rates are drastically decreased. The
MLNN keeps a high degree of freedom to form a class region in an N-dimensional
space when the circuit scale is small, and this realizes a robustness to the computa-

tions.

6.5.3 Learning Ability of Multilayer Neural Network

As discussed in Sec.2.4, when a large number of hidden units are used, it is difficult
to converge to the best solution. The initial connection weights should be care-
fully selected. When random numbers are used as the initial connection weights,
the MLNN could not achieve good classification rates as the filters. However, the
coefficients of the FIR filter are used as the initial connection weights, the MLNN
achieved the same classification rates as the filters’. In this case, the valley shape
function is used in the hidden unit. The valley shape function rectifies unit input
and it can detect the signal amplitude. Although, this function can be realized by

using two sigmoid functions, the former can make fast convergence possible.
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Figure 6.4: Classification rates of signal classification by the MLNN method and the

linear signal processing methods for (a)10 samples and (b)20 samples noisy signal.
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6.5.4 Signal Detection Regions Formed by Multilayer Neu-

ral Networks

The signal detection regions formed by the MLXNN are investigated based on the
hidden layer outputs and the connection weights from the input layer and the hidden
layer. From the computer simulation results, the difference of the classification
rates between the MLNNs and the LSP methods is clear for ten samples signals’
classification. Then training signals of ten samples noisy signals are used in this

analysis. The number of the signals is 400 for two classcs.

The connection weights values are listed in Table 6.5. In this table, the 1st and
the 2nd output units respond to the signal class one and two, respectively. The
connection weights from 1st, 2nd and 3rd hidden units and the bias unit to the 1st
output unit are -18.95, 18.27, 11.63 and -2.0, respectively. The connection weights to
the 2nd output unit are the opposite polarity to those of the 1st one. This symmetry
of the connection weights polarity induced by the symmetry of the target signals

(1,0) and (0,1).

From these connection weights, the following four patterns are possible to acti-
vate the 1st output unit. (Hidden units: 1st, 2nd, 3rd)=(L,H,H), (L,H,L),(H,H,H)

and (L,L,H). Where H and L mean high and low level output, respectively.

On the other hand, the following three patterns are available to activate the
2nd output unit, (Hidden unit: 1st, 2nd, 3rd)=(H,L,L), (H,H,L) and (H,L,H). This

analysis is farther compared to the actual output patterns.

117



Table 6.5: Connection weights of hidden layer and output layer

Output

Hidden 1st 2nd

1st -18.95 18.95
2nd 18.27 -18.27

3rd 11.63 -11.63

Bias -2.0 2.0

Table 6.6 shows the actual hidden layer outputs distribution for the input signals.
From this table, for the class one signals, two patterns are obtained out of four
patterns given by the analysis above. For class two, all the patterns are obtained.
From this results, it is confirmed that the MLNN has higher degree of freedom of
forming the signal detection regions, and effectively classifies the multi-frequency

signals.

6.5.5 Robustness of MLNN to Noise Level Changes

Robustness for noise level changes is guaranteed by the filters. However, this kind
of robustness is not always guaranteed by the MLNN. Then, the robustness of the

MLNXNN for noise level changes is further investigated.
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Table 6.6: Hidden unit output distribution.

Class 1 Class 2
Hidden unit | NS | Hidden unit | NS
Ist 2nd 3rd Ist 2nd 3rd
H H H|112|H H H| O
H H L |0 | H H L |32
H L H ;0| H L H|I109
H L L]0 |H L L |39
L. H H|O0|]L H H|O
L H L |O0|L H L 0
L L H |8 )|L L H|O
L L L J|0|L L L |0

NS: number of signals

Analysis of connection weight

By comparing the Eqs.(2.1) and (2.3), the connection weights between a hidden unit
and input layer correspond to the filter coefficients h,(n — k). Then the connection
weights between the input layer and hidden layer are analyzed by using Fourier
transform. Figures 6.5 and 6.6 are the amplitude responses of the connection weights
trained noisy and noise free signals. The numbers of the input units and the hidden

units are ten and three, respectively.
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Figure 6.5: Fourier transform of sets of connection weights trained with noise free

signals.

Form above two figures, the amplitude response of the connection weights sup-
pressing other class frequencies. When the MLNN is trained using noise free signals,
there are two types of amplitude response; one is suppressing class 1 frequencies and
the other is suppressing class 2 frequencies. However, when noise signals are used
to train the MLNN, only one type of the amplitude response is obtained. From this

result, the training by noisy signals is harder than that case noise free signals.

The next figure shows the amplitude responses of Figs.6.5 and 6.6 in the same
graph. The connection weights of the input layer and the 3rd hidden unit are
used. From this figure, when the MLNN trained by noisy signals, the amplitude
response slightly changed into flatter than that of trained using noise free signals.
So, the MLNN adapted to the noisy signals by changing its connection weight to
have insensitive amplitude response. The FIR filter has a sharp amplitude response

and can sufficiently suppresses non-interest frequencies. The MLNN, it does not
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Figure 6.6: Fourier transform of sets of connection weights trained with noisy signals.

have such a sharp amplitude response.
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Figure 6.7: Fourier transform of two sets of connection weights trained with noise

free and noisy signals.

When the number of hidden units is increased from three to 100, the amplitude
response of the connection weights is changed as shown in Fig.6.8. In this case, the
amplitude response is similar to that of the FIR filter.

From above analysis, the MLNN achieved amplitude response that can classify

the signals. However, the amplitude response of the connection weights is changed
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Figure 6.8: Fourier transform of a set of connection weights trained with noise free

signals. Number of hidden units is 100.

due to number of hidden units. So, the MLNN can make a suitable amplitude

response due to given number of hidden units.

Robustness to white noise

For filter methods, robustness to the noise level change is guaranteed. So, when the
noise level is reduced, classification rate will be better. The MLNN is trained with
20 samples including 0.5 additive random noise. When the noise level is decrease
to 0, the classification rate is reduced from 90.6% to 89.7%. In this case, 200 data
for each class is used for training. So, gencralization for smaller noise signals is not
achieved. However, by increasing the number of the training signals from 200 to 400
. the network provides the classification rates of 91.7% for £0.2 additive noise, and
91.3% for the noise free signals, respectively. Thus, the robustness for noise level

change can be guaranteed by training the network with a larger number of the noisy
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signals.

6.6 Dial-Tone Recognition

Dial-tone recognition is used to specify a depressed button of the telephone by its
tone signal. Dial-tone signal[58] is used in the push button telephone to generate the
signals that correspond to the numerical and function buttons. Dial-tone recognition
1s an application of the multi-frequency signal classification. Two sets of high and
low frequencies are used. The low frequency set includes 0.697, 0.770, 0.852 and
0.941 Hz. The high frequency set includes 1.209, 1.366, 1.477 and 1.633Hz. The
sampling frequency is 4 Hz. These frequencies are normalized by the sampling

frequency as the same as the multi-frequency signal classification.

Sixteen kinds of signal classes are generated by combining the low and high
frequencies. One signal class corresponds to one dial-tone of one of the buttons.
Table 6.7 shows the combination of the frequencies. From this table, a frequency
is included in four dial-tones. Thus, the same frequency is included in the different
signal classes. This causes difficulty of signal classification considered the previous
subsection. The signal is generated by Eq. (4.2), and the amplitude and phase of the
sinusoidal signal are distributed in the same range as the multi-frequency signals.

The number of signal samples is 10 or 20.
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Table 6.7: Relation between combinations of frequencies in Hz and dial tone classes

#1 ~ #16. Frequencies are normalized.

1.209 1.366 1.477 1.633

0.697 | #1 #2  #3 4
0.770 | #5  #6  #T  #8
0.852 | #9  #10 #11  #I12

0.041 | #13 #14 #15  #16

Table 6.8: Classification rates in percentage of dial tone recognition using MLNN

method.

Signal Sample | Class. Rate

10 90.6

(1}
=1

20 95.

6.6.1 Classification by Mulitlayer Neural Network

Table 6.8 shows classification rates. Fifty hidden units, whose activation function is
the sigmoid function, are used. The classification rates using 20 samples are better
than that using 10 samples. In both cases, the classification rates are high. From
the results, this complex problem can be solved successively by the MLNN method

with a small number of computations.
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6.6.2 Classification by FIR Filter

As a uscful LSP method, the FIR1 is used to classify the dial-tone signals. Eight
kinds of 1000th-order FIR1 filters are designed to extract cach frequency component
of Table 6.7. A signal FIR1 filter extracts only one frequency component. The FIR1
output powers are calculated, and two of them are added to extract one of the 16
combinations. With computation is limited, the classification rates are compared
with those the MLNN method under the same computational complexity. For this
purpose, 14 and 10 of the output samples are used to calculate the output power to
classify the 10 and 20 samples’ signals, respectively. For the case of computation is
not limited, two hundreds of the output samples are used to calculate the output

samples for the 10 and 20 samples’ signals, respectively.

Table 6.9 shows classification rates of the dial-tone recognition. From the table,
the classification rates are lower than that of the MLNN method of all the cases.
In the case of computation is not limited and using the 20 samples’ signals, the
performance of the LSP methods is still lower than that of the MLNN method.
This result shows that even if using the 20 samples’ signals, the frequency resolution
is not high enough to achieve the dial-tone classification. From the result of that
the MLNN method achieved good classification rates, it can be estimated that non-

linearity of this problem is high.



Table 6.9: Classification rates in percentage of dial tone recognition using FIR1

method.

Signal Samples Output Samples Class. Rate

10 LT 14 23.3
NLT 200 41.2
20 LT 10 79.4
NLT 200 83.6

LT: Computation is limited

NLT: Computation is not limited

6.7 Summary

In this chapter, the classification performance of the MLNNs and the LSP methods
have compared based on their classification rates, the number of samples of the
signal and computations. From computer simulation results for the multi-frequency
signal classification, in the case of the computation is not limited, the MLNNs and
the LSP methods are the same classification performance. The short observation
period affects the classification performance of the LSP methods. This effect is
remarkable when the computation is limited.

Therefore, the analytical results of the chapter 2 and 5 are supported by the
results of this chapter. The MLNN has a superior to the LSP methods on the clas-

sification performance. Especially, the superiority of the classification performance
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of the MLXNN is remarkable in the dial-tone recognition. For this kind of the com-
plex problem, the MLNN can achieve good classification performance with small

computation.
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Chapter 7

CONCLUSIONS

In this thesis, the multilayer neural networks (MLNN) applied to frequency selective
classification problem has been studied.

First, the classification mechanism of the MLNN is introduced, and its classifi-
cation performance is discussed theoretically based on a degree of freedom to divide
the pattern space due to the signal class distribution. To verify the degree of free-
dom, the number of the connection weights which achieve linear separable regions
at the input of the output unit is counted out. From the result, the MLNN has had
high degree of freedom to form the class region. On the other hand, the MLNN
has required training using a set of input and desired outputs. When the degree of
freedom of the network parameter is smaller than that required by the problem, the
accuracy for trained patterns is low, however, the convergence is fast. In the casc
of the degree of freedom of the network parameter is large, the accuracy for trained

patterns is high, however, the convergence is slow.
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Second, minimum number of training data selection methods for generalization
and on-line training has been proposed. It has been pointed out that the general-
ization performance is important subject when the NLNN is applied to the signal
processing field, because, the generalization performance of the linear filter methods
is alwavs guaranteed, however, it is not guaranteed for the MLNN. One is pairing
method and is used Euclidean distance to select the nearest data from other class.
The other is pairing and training method, and is select data near the class boundary
by using semi-optimal network’s connection weights. Two classification problems of
two-dimensional are used to verify two methods. From the computer simulation re-
sults, the pairing and training method can provide better accuracy than the pa,iring

methods. These can be applied to on-line training.

Third, the classification performance of the linear signal processing (LSP) meth-
ods are investigated as a pattern classification. The classification by the LSP meth-
ods is analyzed based on the distance from the LSP coefficients to the input signal
vectors. In this case, the number of samples of the signal and the computational com-
plexity of the LSP methods has been considered when classification performances of
the LSP are investigated. When many samples are used, the signals can be classi-
fied with small number of samples of the filter outputs. In this case, signals include
frequency component to be extracted by LSP methods are located in narrow space
far from the coefficients. However, small number of samples are used, the f1'eduellc}'
resolution becomes lower, and more accurate analysis is needed for the classification.

Therefore, many output samples are required. The signals locate wide area in the
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signal space and some of them are ncar from the cocfficients. In both cases. the
classification accuracy can be improved by increasing the number of samples. This
1s corresponded to increasing the number of hidden units in the MLNN. However,
the degree of freedom to sclect coefficients of the LSP has very small, because, the
coefficients are designed to extract specified frequency components.

Finally, the classification performance of the MLNN and the LSP methods are
compared in the light of computer simulations results. The frequency selective clas-
sification is used for this purpose. The signals are classified based on its frequency
components. The comparison is curried out based on classification accuracy, num-
ber of signal samples and computational complexity. From computer simulation
results for the multi-frequency signal classification, in the case of the computation
is not limited, the MLNNs and the LSP mcthods are the same classification perfor-
mance. The short observation period affects the classification performance of the
LSP methods. This effect is remarkable when the computation is limited. There-
fore, the analytical results of above two are supported by the computer simulation
results. The MLNN has a superior to the LSP methods on the classification perfor-
mance. Especially, the superiority of the classification performance of the MLNN
1s remarkable in the dial-tone recognition. For this kind of complex problem, the

MLNN can achieve good classification performance with small computation.
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