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a Liquid Separation Tool and a Mass Spectrometer 

through Sonic Spray lonization 

ソニックスプレーイオン化法を用いた
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ABSTRACT

   The author has developed techniques to couple a liquid separation tool, e.g. a semi-

micro liquid chromatograph (LC), a conventional liquid chromatograph, or capillary

electrophoresis (CE), to a mass spectrometer by using sonic spray ionization (SSI), which

was developed by the author's group, as an interface. The efficiency of negative-ion

formation in sonic spray ionization was increased by adding three percent of ammonia to a

sample solution. In SSI, a sample solution is sprayed from a sample-introduction capillary

with a high-speed gas flow coaxial to the capillary and ions of compounds in the solution

are produced at room temperature and atmospheric pressure. Since various kinds of organic

compounds, e.g. thermolabile, volatile, and nonvolatile compounds, are readily ionizeq

many kinds of compounds in a mixture can be simultaneously analyzed with the SSI

interface. Furthermore, solutions containing phosphate buffers, which are diflicultto use in

other ionization techniques, can be used in SSI because high-conductivity solutions are

stably sprayed using only the gas flow. However, since the solution flow rates in SSI

initially ranged from 10 to 100 #L/min, they did not match the range of solution flow rates

of commonly used separation tools (conventional LC: 1ooO #L/min or higher, semi-micro

LC: 100 to 2oo #L/min, CE: 'vO.1 "L/min). Therefore, it was difficult to use SSI as an

interface between these separation toois and a mass spectrometer. Furthermore, the

production of negative ions through SSI had not been confirmed. In this study, the author

has confirmed that negative ions can be produced by SSI, and has developed techniques to

i
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enable the use of sonic spray ionization to couple a separation tool with a mass

spectrometer.

   The productjon of negatively charged droplets in SSI was previously confirmed by

measuring the ion current of the sprayed gas. However, when the author measured negative

ions with a mass spectrometer under the same solution conditions as for positive ion

analysis, no intense analyte ions were obtained. Therefore, the author sought to determine

what conditions were suitable for negative ion formation in SSI, and found that the

efficiency of negative ion formation was increased by adding three percent of ammonia to

the sample solution. This enabled the analysis of negative ions without discharge

     .occurnng.

   The author has also found that ions were produced in a sprayed gas containing a high

density of gas-phase solvent molecules at the solution-flow rates of semi-micro and

conventional LC. However, these ions associated with solvent molecules and became large

clusters and droplets due to adiabatic expansion when they were introduced into the

vacuum region through the sampling orifice of a mass spectrometer. This reduced the

sensitivity of the mass spectrometer. Therefore, the author has developed a technique to

reduce the density of the gas-phase solvent molecules in the spray which prevents the

association of ions and solvent molecules. For a semi-micro liquid chromatograph 1 mass

spectrometer (LC/MS), the density of solvent molecules in the spray was reduced by

increasing the gas-flow rate used to spray the solution. In this case, a gas fiow rate of 6

Llmin was needed for a solution flowing at 200 "L/min. For conventional LC/MS, in

which the so}ution flow rate is much higher, the author has developed a multi-hole plate,

which does not have a hole coaxial to the sampling orifice but has small holes around the

central region of the plate. The solvent density was reduced by diffusing the sprayed gas

                                   ii
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with the multi-hole plate, then the sprayed gas was introduced into the vacuum region of

the mass spectrometer. Using these techniques, SSI can be used at solution-flow rates

ranging from 10 to 1000 #L/min, and a semi-micro and a conventional LC can be directly

coupled with a mass spectrometer through the SSI interface.

   When SSI was used as an interface for a capillary electrophoresis 1 mass spectrometer

(CE/MS), in which the solution fiow rate is much lower, another problem arose. In SSI, the

pressure around the tip of the sample-introduction capillary is reduced by the high-speed

gas flow nebulizing the solution, so the solution was pumped into the capillary at a fiow

rate of about O.1 #Llmin due to the pressure difference between the two ends of the

capillary. Though this pumping rate did not affect the LC separation, it was excessive for

CE separation because the solution-flow rate in CE is below O.1 #Llmin. Thus, this

pumping was 1ikely to lower the resolution of CE separation. To avoid this, the author

developed a CE/MS interface where a buffer reservoir was added between the sample-

introduction capillary of the interface and the electrophoresis capillary. This prevented the

solution in the electrophoresis capillary being pumped because the solution in the buffer

reservoir was pumped into the sample-introduction capillary by the pressure difference.

The author has also demonstrated CE/MS analysis with a mobile-phase buffer containing

phosphates by fi11ing the buffer reservoir with an acetic-acid solution as a substitute for the

mobile-phase buffer. This increased the ion intensity one-hundred fold. This SSI interface

enabled high-sensitivity analysis even when using a phosphate buffer, whose use has been

generally avoided in CEIMS.

  The techniques developed in this study enable us to analyze various kinds of liquid

mixtures under virtually any normal conditions. Therefore, LCIMS and CE/MS using SSI

are expected to become powerful tools in various fields ofanalysis.
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Chapter 1

1. 1ntroduction

1.1 CouplingofChromatographywithMass

       Spectrometry

   Chromatography is an important analytical method used to separate complex mixtures.

Chromatographic techniques are divided into two types, gas chromatography and liquid

chromatography, in which the mobile-phases are gases and liquids, respectively. There are

several forms of liquid chromatography; e.g., liquid chromatography (LC) in which

packing columns are used, thin layer chromatography, high-speed countercurrent

chromatography, and supercritical fluid chromatography. Another commonly used liquid-

separation method is capillary electrophoresis, in which ionic substances are separated in a

capillary column by electrophoresis. The substances separated by liquid-separation tools

are generally detected by optical detectors, e.g., ultraviolet and fiuorescent

spectrophotometers. However, certain species of substances cannot be identified by these

optical detectors.

   Mass spectrometry is an analytical technique used to identify species of substances by

measuring the mass-to-charge ratio (m/z) of molecular ions. In this method, an electric

1

b

t



                                                                   Chapter 1

field or a magnetic field is applied to the gaseous-molecular ions in a vacuum region to

enable mass separation. Mass spectrometry is a highly sensitive detection technique.

Therefore, the coupling of chromatography and mass spectrometry, i.e. chromatography 1

mass spectrometry, is becoming a powerfu1 analytical technique used to analyze mixtures.

   Liquid chromatography / mass spectrometry (LCIMS) is the most commonly used

technique, because the range of LC applications is the widest in the field of

chromatography. Capillary electrophoresis / mass spectrometry (CE/MS) is also expected

to be widely used, though, because CE has a higher separation resolution than LC [1].

1.2 lnterfaceTechniquesforLiquidChromatography/

       Mass Spectrometry

   A chromatograph / mass spectrometer is divided into three parts, a chromatograph to

separate a mixture, a mass spectrometer to detect sample ions, and an interface to couple

the chromatograph and mass spectrometer. In developing a better chromatograph / mass

spectrometer, the ionization method used as the interface between the chromatograph and

the mass spectrometer is one of the most important techniques. Devclopment of an

interface for a liquid-phase separation tool and a mass spectrometer, such as LC/MS and

CE/MS, is especially difficult, because sample molecules dissolved in a solution have to be

converted into gaseous ions. Various types of interfaces for LCIMS and CEIMS have been

2



Chapter 1

proposed.

   The LC/MS and CE/MS interfaces are roughly divided into two types. In one, ions are

produced in a vacuum region. In the other, ions are produced at atmosphere pressure then

introduced into the vacuum region. In the early stages of the development of LC/MS, the

belt conveyor method were proposed. In this method, samples eluted from the LC were

dropped onto the belt conveyor, heated to evaporate the solvent, then introduced into the

vacuum region. Ions were then produced by electron impact in the vacuum region [2,3].

After that, thermospray [4-6] and continuous flow fast-atom bombardment (CF-FAB [7,8])

interface techniques were developed. In thermospray, ions were produced by spraying the

sample solution into a vacuum region directly by using a heated capillary [4-6]. In CF-FAB,

ions were produced in a vacuum region by applying an atom beam to thc sample solution

eluted from the inlet capillary into the vacuum region [7,8]. The frit-FAB technique (9,10j,

in which a small metallic frit is set at the end of the inlet capillary ofthe FAB interface,

was also developed.

   Recently, atmospheric pressure ionization (API), in which ions are produced at

atmosphere pressure and introduced into a vacuum region, has become important. In API,

the solvent is evaporated in the atmosphere, so the inner walls of the mass spectrometer's

vacuum region are less 1ikely to be contaminated.

3



                                                                   Chapter 1

1.3 AtmosphericPressurelonization

   In atmospheric pressure ionization (API), charged droplets, i.e. sample molecules and

ions enclosed by solvent molecules and charges, are formed from the sample solution.

Then quasi-molecular ions ofthe sample molecules are produced from the charged droplets

by evaporating the solvent. The quasi-molecular ions are molecules combined with cations

or anions, e.g. protons, sodium ions and chlorine ions, and deprotonated molecules. There

are two types of techniques used to produce charged droplets: applying heat to a capillary

in which a solution flows to nebulize the solution, and applying a high voltage to a metallic

capillary to electrostatically nebulize the solution in the capillary. The former produces an

atmospheric pressure spray (APS) [11,12] and atmospheric pressure chemical ionization

(APCI) [13,14]. In APS, ions are produced only when the solution is nebulized by heat. In

APCI, charged droplets are produced with a heat nebulizer, then ions are produced by

applying a corona discharge to the evaporated gaseous sample molecules from the charged

droplets. The corona discharge initiates ion-molecule reactions, e.g. proton transfer, and

ionizes sample molecules:

          M+ AH+ -ÅÄ> (M+H)+ +A (1.1)
          M+ B- -> (M-H)- +B (1.2)

The chemical reaction in equation (1.1) is initiated by applying a positive corona discharge

to the gaseous sample molecule. wnen the proton affmity of sample molecule M is

stronger than that of molecule A, the pesitive sample ion (M+H)' (a protonated molecule)

4
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                                                                 Chapter 1

is produced. Generally, the proton provider AH+ is an H,O+ ion. The other hanq the

chemical reaction in equation (1.2) is initiated by applying a negative corona discharge.

When the proton affrmity of sample molecule M is weaker than that of molecule B, the

negative sample ion (M-H)- (a deprotonated molecule) is produced. Generally, B - is an

OH- ion[15].

   When a high voltage is used to nebulize the solution, electrospray ionization (ESI) [16-

18] and ion spray (IS) [19] are produced. The ion spray technique is also called

pneumatically assisted ESI, in which an assisted nebulizing gas flows around the metallic

capillary to enhance evaporation of the charged droplets. In ESI and IS, the solution is

nebulized by applying a high voltage between a metallic capillary in which a solution

fiows and a counter electrode located a few millimeters away from the capillary tip. In this

case, the emerging liquid assumes an equilibrium conical shape (a Taylor cone) with a

sharp tip from which flows a stream of charged droplets ejected by elcctrostatic force. A

partial separation of the positive and negative ions present in the solution occurs near the

capillary tip and the electrosprayed droplets therefore contain excess ions of one charge.

Positively and negatively charged droplets are produced by applying high pesitive and

negative voltages (3-4 kV) to the metallic capillaries, respectively. The charged droplets

are evaporateq then positive and negative ions ((M+H)' and (M-H)') are produced from

the positively and negatively charged droplets, respectively.

   In ESI and IS, there is general agreement that these charged droplets evaporate until the

increased surface charge density confers instability. At this stage (the Rayleigh limit) the

electrical forces due to the surface charge approach equality with those due to surface

tension and a droplet disintegrates into several much smaller charged droplets. The

maximum permissible charge at the Rayleigh limit, q. is given by the equation

                                    5



1

1

1

k

1

b

Chapter 1

qr = (8 7T /e)( y E,)V2 r3i2 (1.3)

where r is the droplet radius, 'y is the surface tension, and Eo is the permittivity of free

space. A succession of such fission processes, yielding smaller and smaller droplets, occurs

as evaporation continues, then gas-phase analyte ions are formed from the charged droplets.

In ESI and IS, analyte ions aiready present in the solution are transferred to the gas-phase;

this occurs either because the analyte is ionic or because it is associated with other ions

present in the solution, e.g. by protonation.

   wnile there is general agreement on the mechanism for the initial stages of charged

droplet subdivision, different ideas have been used to explain the eventual formation of

analyte ions from the liquid phase. According to one mechanism, the division of charged

droplets at the Rayleigh limit is repeated until the droplets finally contain a single analyte

molecule. This analyte molecule would eventually be observed as a gas-phase ion provided

that a charge was retained by the analyte rather than being lost with evaperating solvent

molecules. A more appealing mechanism for the formation of gas-phase ions is field

desorption. According to this mechanism, the electric field at the surface of the charged

droplet increases with the decreasing radius as the solvent evaporates. An analyte molecule

that has accumulated suiificient charge is then able to evaporate or desorb from the charged

droplet, alone or in association with one or more molecules of solvent (15].

   Furthermere, ESI and IS cari produce multiply-charged ions of 1arge molecules with

over three charges. Multiple charging in ESI and IS creates a whole series of molecular ion

peaks each of which represents a different charge state for the same compound. The

molecular weight may be detemined from such a spectrum if it is assumed, as is invariably

6
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the case, that adjacent peaks in the series differ by only one charge. If two adjacent peaks

are selected from this series, then for an ion of measured mass-to-charge ratio (rnlz), mi,

which originates from an analyte with molecular weight MR and carries an unknown

number of charges, i, supplied by proton attachment, mi and MR are related by

               m,=(M.+iM.)/i (1.4)

where MH is the mass of a proton. The mass-to-charge ratio, mi.i, for an ion that canies one

additional proton attached to the same analyte molecule is then given by

             M,., =( M. +( i+ 1•)M. )/( i+1) (1.5)

so that i, the charge state, may be determined from the two m/z values using

        i•---(m,.,-M.)/( m, -• m,.,) l; (m,.,-1)/( m, -• m,.,) (1.6)

Once the charge state has been calculated in this way, each peak in the series can be used to

provide a separate estimate of the molecular weight, MR [15].

   Of the API techniques, APCI, ESI, and IS are the most widely used for LC/MS and

CE/MS, but the proper use of these techniques depends on the type of sample compounds.

Although APCI is useful for analyzing volatile and thermostable compounds, it cannot be

used for nonvolatile and thermolabile compounds. On the other hand, ESI and IS are

available for the analysis of nonvolatile and thermolabile compounds. Furthermore, ESI

and IS can produce multiply-charged ions of large biomolecules such as proteins. Since a

                                     7
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measurement range of the m/z value in most types of mass spectrometer are limited, for

example, the range of the mlz value in a quadrupole and ion trap mass spectrometers

ranges from O to 2000, singly-charged 1arge biomolecules with a molecular weight of over

2000 cannot be measured. Therefore, the production of multiply-charged ions is important,

and these techniques enable the use of mass spectrometry in the field of bioscience.

   However, the sprays of high-conductivity solutions are unstable in ESI and IS, se

solutions containing highly concentrated electrolytic compounds cannot be used with these

techniques. Therefore, the range of solutions that can be used in ESI and IS are limited. For

example, nonvolatile buffers, such as phosphate, which are generally used in CE, are

difficult to use in ESI and IS. Furthermore, when a higher negative voltage is applied to a

metallic capillary used to produce negative ions, undesirable discharges may occur due to

electron emission from the tip of the capillary. These discharges may interfere with the ion

formation in ESI and IS.

   wnich API techniques can be properly used also depends on the solution-flow rates of

the liquid separation tools. LC is divided into three types depending on the solution-flow

rates: conventional LC (1000 "L/min or over), semi-micro LC (100-200 #L/min), and

micro LC (several #L/min). In CE, the solution-flow rates are below O.1 #Llmin. APCI is

used for conventional and semi-micro LC/MS, but cannot be used with low solution-flow

rates, i.e. those of micro LC and CE. ESI and IS are used for the liquid separation tools that

have low solution-flow rates, i.e. semi-micro LC, micro LC, and CE. Though IS can also

be used at high solution-fiow rates (i.e. above 1 mL/min), multiply-charged ions cannot be

produced at such solution-fiow rates.

   Thus, the interface between the liquid-separation tool and mass spectrometer has to be

changed depending on the samples, the solution used and the solution-flow rate. wnen we

8
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want to analyze various samples using different solutions, we need several types of

interface and changing the interface takes a considerable amount of time and effort.

Therefore, an interface that can be used over a wide range of solution-flow rates, samples,

and solutions, would be a significant step forward.
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2. Sonic Spray lonization

2.1 CharacteristicsofSonicSpraylonization

   Recently, the author's group developcd the sonic spray ionization (SSI) technique [1,2].

In this technique, a sample solution is sprayed from a fused-silica sample-pintroduction

capillary by a high-speed nitrogen gas flow that is coaxial to the capillary, and singly and

doubly-charged ions of compounds in the solution as well as charged droplets are produced

at room temperature and atmospheric pressure (Fig. 2.1). In SSI, the ion intensity depends

on the gas velocity as shown in Fig. 2.2. The ion intensity reached a maximum at the gas

fiow rate of3 L/min. At this flow rate, the gas was moving at close to the sonic velocity.

The reason for the maximum ion intensity occurring at senic velocity is 1ikely to be as

follows. Generally, the ionization efficiency of API depends on the initial size of the

charged droplets. The ionization efficiency increases as the initial size of charged droplets

decreases because fine droplets evaporate more quickly. In SSI, the size of the charged

droplets decreases as the gas velocity increases. Thus, the ionization efficiency of SSI

increases as the gas velocity increases. However, since shock waves are generated in the

sprayed gas in the supersonic region, the fine droplets become associated with each other
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Figure 2.1 Schematic diagram of sonic spray ionization.
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and form large droplets. Therefore, the ion intensity in SSI decreases within the supersonic

region as shown in Fig. 2.2.

   In SSI, the origin of the charged species is ascribed to the non-uniformity of the ion

concentrations at the surface of the droplets. Figure 2.3 is a schematic diagram of the ion

formation in SSI. Since the solution in the capillary is held at ground potential, droplets

produced with a high-speed gas flow are electrically neutral in total. An electrical double

layer is then formed on the surface of the droplet by the phase boundary potential between

the gas and the solution; for example, when the solution is made from pure water, a

negatively charged species gathers on the surface and a positively charged species gathers

under the layer of the negative charged species. The depth of the double layer is of the

order of 10 nm, although this depends on the ion concentration {3]. wnen such a surface is

disrupted by a shear strcss due to the sonic gas flow, charge separation occurs and charged

droplets are produced. Since the amounts of positively and negatively charged species in

the sprayed gas are the same, the sprayed gas of SSI is electrically neutral. The size of the

charged droplets is decreased by fission due to the Rayleigh disintegration and positive and

negative ions are produced from the fine charged droplets through the evaporation of

solvents or the desorption of analyte ions; this is the same mechanism as in ESI and IS

[section 1.3]. However, although the formation of positive ions was earlier confirmed by

mass spectrometry, the formation of negative ions had not been confirmed at this point.

   The charged droplets initially produced in SSI are very smalL i.e. about 1 Am in

diameter [4]. This is smaller than the droplets produced by other API techniques, e.g. about

10 #m in ESI [5]. Thus, the ionization efficiency of SSI is higher than that of the other

techniques. The higher ionization efficiency can be seen, for example, in the analysis of

catecholamines (2]. Figure 2.4(a) and (b) show mass spectra obtained from a 10-nM
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dopamine solution by SSI and a 1-"M dopamine solution by IS, respectively. Though the

protonated dopamine molecules (m/z = 154) were observed in both spectra, the ion

intensity of the dopamine analyzed by SSI was one-hundred times as high as that by IS.

Also, thermolabile compounds are readily analyzed with SSI, because heat does not have

to be applied to the interface to produce ions. Both volatile and nonvolatile compounds can

be analyzed by SSI. Furthermore, SSI can be used with a wide range of buffer solutions

regardless of the conductivity of the solutions, because the SSI sprays are generated only

by gas flow.

2.2 Formation

1onization

of Multiply Chargedlons by Sonic Spray

   When a voltage is applied to a metallic source housing set around the fused-silica

capillary, an electric field is applied to the solution in the capillary, and non-uniformity of

the charge density arises at the solution surface in the capillary. (The solution was isolated

from the source housing by the capillary.) In this case, species with a charge opposite to

that of the applied voltage were gathered at the solution surface due to the electric field

caused by the voltage, as shown in Fig. 2.5. Since the solution was grounded, charged

species with the same polarity as the voltage fiowed out through the earth electrode as

current. Thus, the charge density of the droplets increases and the sprayed gas is charged.
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The charge of the sprayed gas can be measured as an ion current by detecting the sprayed

gas with an electrode. Figure 2.6 shows the dependence of the ion current on the voltage

(V) to be applied to the source housing set around the fused-silica capillary. Nl charged

species in the spray were detected with a 155-mm-long stainless steel tube with an inner

diameter of 35 mm, where the exit end of the tube was covered with a Cu mesh. The

current between the stainless steel tube and ground was measured with an ammeter. This

ion current was obtained from a 5% acetic acid solution (waterlmethanoYacetic acid =

47.5/47.5/5%, v/v/v) under the condition of a sonic gas flow. The ion current at V = O was

zero, and an ion current with polarity opposite to that of the voltage was detected. It was

almost fu11y saturated above 1.2 kV or below -1.2 kV. At such voltages, the concentrations

of ions with the same polarity are likely to be saturated at the solution surface. Therefore,

high-charge-density droplets with a charge opposite to the voltage were produced by

applying the voltages above 1.2 kV or below -1.2 kV. Note that although the sprayed gas

might not be charged at V = O, almost the same amounts of positively and negatively

charged droplets were formed.

   Thus, since the charge density of the droplets can be increased, the ionization

efficiency from the charged droplets is increased. Also, multiply-charged ions with over

three charges are produced by this method. Typical mass spectra of multiply-charged ions

of proteins are shown in Figs. 2.7 and 2.8. These were obtained from 1-#M solutions of

cytochrome-C (Fig. 2.7) and insulin (Fig. 2.8) containing 59to acetic acid

(waterlmethanoYacetic acid = 47.5147.5/5qe, v/v/v) by applying a voltage of -1.2 kV at a

solution-fiow rate of 30-uL/min and a gas flow rate of 3 Llmin. In Fig. 2.7, multiply-

charged ions whose charge distribution ranged from 13+ to 19+ were observed. In Fig. 2.8,

multiply-charged ions with 5+ and 6+ charges were also observed. Using {his methoa
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large molecule such as proteins, whose molecular weight are above 10,ooO, can be

analyzed using SSI as with ESI and IS.

2.3 ResearchStrategyforLiquidSeparationTechniques/

      Mass Spectrometry Using Sonic Spray lonization

   The requirements for an ideal interface for LC/MS and CE/MS are as follows:

(1)it must be capable of analyzing a wide range of analyzable compounds, whether

  volatile, nonvolatile, or thermolabile compounds, and large molecules, such as proteins,

  can be analyzed; furthermore, it must be able to produce both positive and negative

   ions.

(2) a wide range of solution-flow rates is needed; an interface for LC/MS must be used at

   solution-flow rates ranging from 10 to 1000 #L/min, and an interface for CE/MS must

  ' be used at under O.1 AL/min.

(3) there must be no limitation on the choice of buffer solution; nonvolatile buffers, such as

   phosphate, which are widely used as a mobile-phase buffer for CE, should be usable.

Although ESI can be used for the analysis of proteins since it can produce multiply-

charged ions, it cannot be used at high solution-flow rates. APCI, which can be used at

high solution-fiow rates, cannot be used for protein analysis. Though IS can also be used at

high solution-fiow rates, multiply-charged ions cannot be produced at such solution-flow
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rates. Therefore, neither interface technique satisfies both requirements (1) and (2). Also,

LC/MS is often used to analyze the pesticide content in local bodies of water or drinking

water. However, it is difliricult to simultaneously analyze all pesticides whose

concentrations in drinking water are regulated, because some thermolabile pesticides

cannot be analyzed by the same technique as used for thermostable pesticides. Furthermore,

the use of nonvolatile buffers, such as phosphate, which are generally used in CE, is

generally avoided in CE/MS.

   SSI, as described above, was an attractive potential interface for LCIMS and CE/MS,

since it satisfied requirements (1) and (3), although the negative-ion formation had not yet

been confi med. However, since the solution flow rates in SSI ranged from 10 to 100

#L/min, it could not be directly coupled with LC or CE. One way to enable coupling was

to control the solution-flow rates by using a splitter or a sheath liquid which would supply

compensating liquid. However, such a configuration would be more diff"icult to operate,

and the ion intensity of sample ions would be decreased because sample solutions would

be lost or diluted by the splitter or sheath liquid.

   Therefore, the purposes of this research was to confirm negative-ion formation in SSI

and expand the range of solution-flow rates to enable coupling the SSI interface with a

conventional LC, a semi-micro LC, or CE directly without use ofa splitter or sheath liquid.

The negative-ion formation is described in chapter 3. Direct coupling to semi-micro LC

and MS, the improvement of SSI to enable high solution-flow rates with which

conventional LC can be performed, and the coupling of CE and MS by using SSI are

described in chapters 4, 5, and 6, respectively. The author has stated the goal whose

achievement is described in each chapter: the goal in chapter 4 is to demonstrate the

practicability of SSI by analyzing a mixture containing themolabile and themostable
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pesticides simultaneously by semi-micro nc/MS, the goal in chapter 5 is to produce

multiply-charged ions of a protein at a high solution-flow rate above 1 mUmin, and the

goal in chapter 6 is to demonstrate analysis using a high-concentration phosphate buffcr

(above 10 mM) as the mobile-phase in CE/MS.
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3. Negative-ion Formation in
Sonic Spray lonization

   The author has confirmed that negative-ion formation occurs in sonic spray ionization

(SSI) and has identified a solution composition that increases the efficiency of negative-ion

formation. The production of negatively charged droplets in SSI had atready been

confirmed by measuring the ion current of the sprayed gas. Furthermore, the negatively

charged sprayed gas in SSI was stable and there was no risk of discharge which would

interfere with ion formation as sometimes happens with the electrospray ionization (ESI)

and ion spray (IS) techniques. However, the formation of negative ions had not been

confirmed by mass spectrometry. In this research, the author also found that the efficiency

of negative-ion formation in SSI was increased by adding three percent of ammonia to the

sample solution. With this sample solution, the negative ions of nucleotides were analyzed

by SSI.
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3el 1ntroduction

   Liquid chromatography / mass spectrometry (LCIMS) and capillary electrophoresis 1

mass spectrometry (CE/MS) are powerful tools for analyzing mixtures, e.g. pesticides,

proteins, or neurotransmitters, in various fields of science. To combine a liquid-phase

separation tool such as an LC or CE with a mass spectrometer, the spray ionization

technique used to provide an interface between the liquid-phase separation tool and the

mass spectrometer is an important consideration. Spray ionization techniques such as

atmospheric pressure chemical ionization (APCI) [1], electrospray ionization (ESI) I2, 3],

ion spray (IS) [4], and atmospheric pressure spray (APS) [5] have been developed for

                              `LC/MS and CE/MS. Since some biological compounds, e.g. nucleotides, DNA, and

neurotransmitters, are negatively charged, the analysis of negative ions is important, and of

these techniques, only APCI, ESI, and IS can be used to produce negative ions. However,

thermolabile compounds such as biological compounds cannot be analyzed by APCI, since

the solution is nebulized by heat, These compounds can be analyzed by ESI or IS, but a

high negative voltage must then be applied to the metallic capillary of the interface in

which the sample solution flows to produce negative ions, and a discharge may oecur due

to electron emission from the tip of the capillary [6]. Such a discharge may interfere with

by the ion formation.

   In SSI, both volatile and nonvolatile compounds can be ionized. Since heat is not

needed to produce ions, thermolabile compounds are especially readily analyzed.

Furthermore, to apply an electric field to the solution in the sample-introduction capillary

by applying a voltage to the source housing set around the capillary, the charge density of
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the charged droplets can be increased, so that multiply-charged ions with over three

charges were produced [9, section 2.2].

   In SSI, a voltage of 1-2 kV, which is lower than that needed for ion formation in ESI

and IS, is applied to the source housing set around the capillary. The production of

negatively charged droplets, but not of negative ions, had already been confirmed by

measuring the ion current of the sprayed gas [9, section 2.2]. Therefore, the author

confirmed the production of negative ions with a quadrupole mass spectrometer, and

changed the composition of the sample solution to increase the ionization efficiency of

negative ions.

                               '

3.2 ExperimentalSection

   Figure 3.1 is a cross-sectional view of the sonic spray interface. A fused-silica sample-

introduction capillary (O.1-mm i.d., O.2-mm o.d, GL Science, Tokyo) was fixed in a

stainless-steel capillary (O.25-mm i.d., 1.7-mm o.d.) to enable it to be accurately pesitioned

in the duralumin source housing, since the fused-silica capillary was flexible. A solution

was pumped into the capillary at a flow rate of 30 #L/min. The end of the capillary

extended O.2 mm beyond a duralumin orifice (O.4-mm i.d,), and the center axes of the

fused-silica capillary and the orifice were aligned. Nitrogen gas was used to pressurize the

source housing, causing a gas fiow from the orifice to the atmosphere. The flow rate of the

so
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nitrogen gas in the standard state, as determined with a mass-flow controller (5850E,

Brooks Instrument, Tokyo), was 3 Llmin. A spray was thereby generated in which droplets

and free ions were produced. A voltage of 2 kV was applied to the orifice and the source

housing, which were isolated from the solution by the capillary, to increase the charge

density of droplcts produced by the gas flow [9, section 2.2]. The electrical potential of the

solution in the capillary was held at ground potential through a stainless steel joint. The

sampling orifice (O.25-mm i.d., 25 mm long) ofthe mass spectrometer was heated with a

ceramic heater (30 W) to about 120eC and covered with a stainless steel plate with a 2-mm

aperture to avoid cooling of the sampling orifice due to gas flow and droplet evaporation.

The distance between the fused-silica capillary tip of the interface and the stainless steel

plate was about 4.5 mm. -

   Ions produced at atmospheric pressure passed into the first intermediate-pressure

region through the sampling orifice. The ions then passed into the second intermediate-

pressure region through a O.5-mm aperture in the first electrode. Finally, the ions passed

into the mass analyzing region through a O.2-mm aperture in the second electrode. (The

details of the mass spectrometer have been described elsewhere [10].) An electrostatic ion

guide [11] was set in front ofa quadrupele mass analyzer in the mass analyzing region.

The original setup was optimized for positive ion analysis, so the same absolute voltages

with pelarity opposite to the original setup were applied to the first and second electrodes,

the einzel lens, the electrostatic ion guide, the quadrupele mass analyzer, the deflector, and

the post-acceleration dynode. A drift voltage of -62 V was applied between the sampling

orifice and the second electrode, and voltages of 8 and 2 kV were applied to the post-

aeceleration dynode and the electron multiplier, respectively.
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3.3 ResultsandDiscussion

Solution Conditions for Negative Ion Formation

   A mass spectrum obtained from a glutamic-acid solution is shown in Fig. 3.2(a). The

glutamic-acid solution was a 50:50 methanoVwater solution, which was the same solution

used for the previous singly and doubly charged positive-ion analysis, at a concentration of

100 ptM. The deprotonated glutamic acid molecules were detected at mlz = 146. Generally,

negative ions are unstable and their lifetime is shorter than that of positive ions because

electrons associate with molecules due to the weak electron aff7mity of the molecules. Even

so, this ion intensity was too low. Therefore, the author tried to increase the ionization

efficiency of the glutamic acid by adding a volatile electrolyte to the sample solution; a

volatile compound enhances solvent evaporation from the charged droplets, because the

volatile compound desorbs from the droplets together with solvent molecules. Acetic acid

was added to the sample solution at first because this increased the ionization efficiency of

positive ions. However, although cluster ions of acetic acid molecules were strongly

detected, the ion intensity of the analyte did not increase (Fig. 3.2(b)). Since acetic acid

molecules are negatively charged, they would have taken charges away from the sample

ions. Thus, adding volatile compounds that would not be detected as negative ions to the

solution would increase the ionization ecaciency of negative ions. Therefore, the author

added ammonia to the glutamic-acid solution.

   Figure 3.3 shows the dependence of the ion intensity of the glutamic acid on the

concentration of ammonia added to the sample solution. The concentration of glutamic

acid was 1oo #M. The ion intensity reached a maximum at 3% of ammonia. This result
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Figure 3.2 Mass spectra of glutamic acid obtained from
(a) a 50:50 methanol/water solution and (b) a 47.5/47.5/5
methanol/water/acetic acid solution at a solution flow rate
of 30 ptL/min. The solution concentration was 1OO "M.
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was explained as follows.

   In SSI, when an electric t'i'eld is applied to the solution in the capillary by applying a

voltage to the source housing and the orifice, species with a charge opposite to the applied

electric field gather at the solution surface. Thus, since the charge density opposite to the

electric field increases at the solution surface, the charge density of droplets with a charge

opposite to the electric field increases [9 and chapter 2.2]. In the same way, ions ofa

electrolyte added to the solution would also gather at the solution surface due to the

electric field, so the charge density at the solution surface would be further increased by

adding the electrolyte. Furthermore, when a volatile electrolyte such as acetic acid

evaporates together with the solvent, charges are left in the charged droplets. This increases

the charge density of the charged droplets and the ionization efficiency of the analyte. For

positive-ion formation, adding 5% of acetic acid to the solution provided the greatest

empirical increase in the ionization efficiency since the concentration of charges would be

saturated at the surface of the solution and droplets at this concentration. Nso, the

concentration of charges would be reflected in the conductivity of the solution. Therefore,

the author measured the solution conductivity of various solutions. Table 3.1 shows the

conductivity of ammonia, acetic-acia and sodium-hydroxide solutions. As shown in table

3.1, the conductivity of a 59o acetic-acid solution was about 2.5 mS/m, aimost the same as

the conductivity of a 39e ammonia solution, which was the most effective for increasing

the ion intemsity of glutamic acid. Therefore, solutions whose conductivity is about 2.5

mS/m appear to be the most suitable for ionization in SSI. However, though the

conductivity of the 3-mM sodium-hydroxide solution was also about 2.5 mS/m, the ion

intensity was low (data is not shown). Because sodium hydroxide is nonvolatile, it cannot

enhance the evaporation of solvent from the droplets.
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Table 3.1

Ammonia
Concentration(O/o) o O.OO03 O.O03 O.03 O.3 3 15

Conductivity(mSlm) O.Ol O.02 O.06 O.26 O.85 2.63 2.11

Acetic Acid

Concentration(O/o) o O.Ol O.1 1 5 20

Conductivity(mS/m) O.06 O.1O O.22 1.14 2.34 3.22

Sodium Hydroxide
Concentration(mM) o O.1 O.3 1 1.5 3 10

ConductMty(mSlm) O.07 O.07 O.16 O.73 1.20 2.78 9.00
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   A typical mass spectrum obtained from a 100-ptM glutamic-acid solution

(water/methanoYammonia = 49/50/le/e, v/v/v) is shown in Fig. 3.4. Here, the effect of 1%

of ammonia was almost the same as that of3% of ammonia. The negative ion of glutamic

acid was clearly detected at m/z = 146.

Mass Spectra of Nucleotides

   Using the 1% ammonia solution described above, the author then analyzed nucleotides.

Figure 3.5 shows mass spectra of adenosin-5Lmono-phosphate (AMP). The spcctra of Figs.

3.5(a) and (b) were obtained from AMP, free acid and AMP, disodiumsalt, respectively.

The solutions were 49:50:1 water/methanoYammonia at a concentration of 100 #M. In Fig,

3.5(a), a singly charged AMP ion ((M-H)-), a dimer of the AMP ion (M(M-H)-), and a

trimer of the AMP ion (MM(M-H)-) were observed at m/z = 346, 693, and 1040,

respectively. In Fig 3.5(b), though a singly charged AMP ion ((M-H)'-) and a sodiated

AMP ion ((M-2H+Na)') were observed at m/z = 346 and 378, respectively, the dimer and

trimer ofthe AMP ion were not observed.

   Figure 3.6 shows mass spectra of adenosin-5Ldiphosphate (ADP) and adenosin-5'-

triphosphate (A[rP). These were obtained from disodiumsalt chemicals. The solutions were

49:50:1 water/methanoYammonia at a concentration of 100 "M. Singly and doubly

charged ADP ions ((M-H)- and (M-2H)2-) were observed at m/z = 426 and 215,

respectively. Also, singly and doubly charged sodiated ions of ADP ( (M-2H+Na)' and
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(M-3H+Na)2-) and the AMP ion, which would be contaminated in the standard sample,

were detected at m/z = 447, 224, and 346, respectively. In Fig. 3.6(b), singly and doubly

charged ATP ions ((M-H)- and (M-2H)2-) were observed at m/z = 506 and 253,

respectively. Doubly charged sodiated ions ofA I"P ((M-3H+Na)2- and (M-4H+2Na)2'), the

ADP ion, and the sodiated ADP ion, which would also be contaminated in the standard

sample, were detected at m/z = 264, 280, 426, and 448, respectively.

   With this solution, SSI can clearly be used for negative ion analysis. Furthermore, there

is no discharge in SSI because the voltage needed for ionization is lower than that in ESI

and IS. Therefore, SSI allows us to analyze a wide range of analyzable compounds that

contain negatively charged species.
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   4. Di rect Coupling of a Semi-

micro Liquid Chromatograph and
            a Mass Spectrometer

    Using Sonic Spray lonization

                  '
   Direct coupling of semi-micro liquid chromatography and sonic spray ionization mass

spectrometry is demonstrated and shown to be a very powerfu1 technique for pesticide

analysis. Direct coupling was achieved by using a high flow rate of nitrogen gas in sonic

spray ionization and a high operating temperature in the sampling orit'i'ce of the

atmospheric--ionization mass spectrometer. The detection limit for simazine was about 300

fmol based on quantitative analysis in the range between 1 pmol and 1 nmol. A mixture of

three pesticides was successfully analyzed using semi-micro liquid chromatography 1 mass

spectrometry.
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4e1 lntroduction

   The analysis of environmental-polluting compounds in solutions is becoming more

important in analytical science. For example, the concentrations of pesticides in drinking

water have recently come under stricter regulation in Japan. With the rapidly growing

number of items that must be monitored, highly sensitive tools that can analyze mixtures

are becoming more important. Liquid chromatography / mass spectromctry (LC/MS) has

become one such tool for analyzing mixtures in a solution. The interface to combine the

liquid•-phase separation technique with mass spectrometry is vcry important, and the

standard LC/MS interface is atmospheric pressure ionization (API) I1-7].

   In the sonic spray ionization (SSI) interface for LC/MS l8,9], compounds are ionized

by nebulizing sample solutions using only a high-speed gas fiow at room temperature, but

the solution flow rate (under 100 #L/min) was too low for semi-micro LC. One way to

achieve compatibility would have been to use a splitter to control the rate of flow into the

interface, but a better approach was direct coupling because it made the system easier to

operate and enabled higher separation efficiency.

   This chapter describes how the SSI operating conditions were modified to enable the

direct coupling of semi-micro LC with SSI-MS, and examines the results from a pesticide-

mixture analysis using semi-micro LC/SSI-MS.
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4.2 Com parison of SSI and APCI in Pesticide Analysis

   One of the merits of SSI is its high ionization efficiency. The author began by

comparing SSI in its original configuration (8,9], where the solution-fiow rate was 30

#L/min, to a common ionization technique, e.g. atmospheric pressure chemical ionization

(APCI) [1], which is a form of API. A commercial APCI interface taken from a

conventional LC/MS system (M-1000, Hitachi, Tokyo) was used at a typical solution-flow

rate of 1000 #L/min. Simazine and thiobencarb, which are regulated pesticides in Japan,

were used as samples for the comparison. However, thiuram, which is also regulated and a

typical thermolabile pesticide, was not used as a sample because it is difficult to analyze by

APCI. The resolution of SSI and APCI is compared in Figs. 4.1 and 4.2. Figure 4.1 shows

the mass spectra obtained from the 1-ptM simazine solution (methanoYwater = 50/50%,

v/v), and Fig. 4.2 shows the mass spectra obtained from the 1-#M thiobencarb solution

(methanoYwater = 50/509o, v/v). Protonated molecules of simazine and thiobencarb were

detected at m/z = 202 and 258, respectively. Protonated water molecules, protonated

methanol molecules, two types of water and methanol clusters, dimers of methanol, and

trimers of methanol were also detected at m/z = 19, 33, 51 and 115, 65, and 97,

respectively. Though the intensities of ions and clusters created from solvent molecules

were almost the same as the intensities ofthe sample ions with SSI (Figs. 4.1(a) and 4.2(a)),

these intensities were much higher than the intensities of the sample ions with APCI (Figs.

4.1(b) and 4.2(b)). Furthermore, the signal-to-noise ratio (S/N) of the simazine ion with

SSI and with APCI was 335 and 96, respectively, and the S/N of the thiobencarb ion with

SSI and with APCI was 579 and 180, respectively. These results clearly show that the
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Figure 4.1 Mass spectra obtained from the simazine solution
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at solution flow rates of (a) 30 ptL/min and (b) 1000 ptL/min.
The solution concentration was 1 pM.
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for these types of

4.3 ExperimentalSection

   Figure 4.3 is a cross-sectional view of the sonic spray interface which is similar to the

interface described in section 3.2 of the previous chapter. (The details have been described

elsewhere[8,9].) For spectra measurements, a solution was pumped into the fused-silica

capillary at a flow rate ranging from 100 to 200 #L/min. The potential of the source

housing was set to the ground level. In this case, the fiow rate of thc nitrogen gas in the

standard state was 6 L/min.

   For the LC/MS measurements, the sample mixture was separated with a semi-micro

LC column (TSK-GEL PTH PAK, TOSOH, Tokyo Japan). The mobile phase was pumped

by a Hitachi L-6200 LC pump into the fused-silica capillary at a flow rate of 200 "Umin.

The mobile phase was water/methanol (60/40%, v/v) for the frrst ten minutes, then a linear

gradient from 60% water/40% methanol to 1oo% methanol over ten minutes was used for

the separation.

   The distance between the fused-silica capillary tip of the interface and the sampling

orifice of the mass spectrometer was 3 mm. The sampling orifice of the mass spectrometer

was heated with a 50-W ceramic heater to 120-1300C. As in the previous configuration,
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Figure 4.3 Cross-sectional view of the sonlc spray interface.

50



                                                                   Chapter 4

ions produced at atmospheric pressure passed into the first intermediate-pressure region

through the sampling orifice, then passed into the second intermediate-pressure region

through a O.5-mm aperture in the first electrode before passing into the mass analyzing

region through a O.2-mm aperture in the second electrode. In this case, though, a drift

voltage of 10 V was applied between the sampling orifice and the first electrode, and

another drift voltage of 30 V was applied between the first and second electrodes.

4.4 ResultsandDiscuSsion

   Under the initial operating conditions [9], intense analyte ions were obtained by the

mass spectrometer at a solution-flow rate of around 30 #L/min; however, at s()lution-flow

rates ranging from 100 to 200 #L/min, intense ions could not be obtained. Therefore direct

coupling of semi-micro LC and SSI-MS could not be achieved. At a solution-fiow rate of

around 30 "L/min, charged droplets were produced by spraying a solution, and ions were

produced from the charged droplets by evaporation of the charged droplets in the

atmosphere. At a solution-flow rate of over 100 "L/min, ions as well as charged droplets

were apparently produced in the sprayed gas when using a nitrogen-gas fiow rate of 3

L/min, because the size of the charged droplets produced by the sonic gas flow (about 3

L/min) was very small, i.e. about 1 #m [10], and these droplets would quickly evaporate in

the atmosphere. However, the density of the gas-phase solvent molecules in the sprayed
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gas at 3 Llmin was quite high, so ions were likely associated with solvent molecules and

probably formed large clusters and charged droplets as they cooled due to the adiabatic

expansion when they were introduced into the vacuum region through the sampling orifice

of the mass spectrometer [11]. The tendency to associate was also enhanced by the cooling

ofthe sampling orifice due to the evaporation of droplets from the solution being delivered

at a high solution-fiow rate. Therefore, the author investigated the operating conditions that

affect the sampling orifice temperature and the nitrogen gas-flow rate that will enable

direct coupling of semi-micro LC with SSI-MS.

   The temperature needed in the 25-mm-long sampling orifice to prevent the association

of ions and solvent molecules was empirically determined as about 1200C [8j. However,

the sampling orifice is quickly cooled in SSI due to the evaporation of droplets from the

solution and the high-speed gas flow. Thus, the author measured the temperature change in

the sampling orifice at a 200-"L/min solution flow rate. As shown in Fig. 4.4, 40 rninutes

after the solution flow startea the temperature of the sampling orifice when heated with

30- and 50-W ceramic heaters was below 800C and 1200C, respectively. Thus, the

sampling orifice had to be heated with at least a 50-W ceramic heater to maintain the

required temperature of 1200C for semi-micro LC.

   Nso, the increased gas flow rate used to spray the solution caused dilution and a

decrease in the density of solvent molecule in the sprayed gas. Figure 4.5 shows the

relationship between the ion intensity of a protonated simazine molecule (m!z = 202) and

the gas flow rate at a solution-flow rate of 2oo #Llmin. In this experiment, the solution

concentration was 1 #M (waterlmethanol = 50/50%, vlv) and the sampling orifice was

heated with a 50-W ceramic heater. The ion intensity reached a maximum at a gas fiow

rate of about 5-6 Umin. In SSI, the ionization efficiency reaches a maximum at the senic
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gas velocity, i.e., a gas flow rate of 3 L/min. However, since the density of solvent

molecules in the sprayed gas was too high at 3 Llmin, the ion intensity decreased due to

association with solvent molecules in the mass spectrometer. At a gas flow rate of 6 L/min,

the density of solvent molecules in the sprayed gas was sufficiently decreased by the

higher flow rate of the gas, though the ionization efficiency was not the highest. Therefore,

a gas fiow rate of about 6 L/min was suitable for performing experiments at the flow rate

needed for semi-micro LC/SSI-MS.

   Thiuram was used as a model compound because it is a typical thermolabile compound

and is difficult to analyze by using gas chromatography (GC) or GC/MS. A typical mass

spectrum of thiuram obtained by SSI-MS is shown in Fig. 4.6. The thiuram solution was

50:50 methanoYwater at a concentration of 10 #M; the gas flow rate was 6 L/min and the

solution flow rate was 100 ptL/min. Protonated and sodiated molecules of thiuram were

detected at m/z = 241 and 263, respectively. The random noise in the spectrum was caused

by detecting charged droplets whose m/z values were too high to be affected by the electric

field of the quadrupole mass spectrometer.

   The dynamic range of quantitative analysis using SSI-MS was then analyzed under

these new operating conditions. The calibration curve for simazine is shown in Fig. 4.7.

The author repeatedly injected 10-#L sample solutions with different concentrations

without a column, and the protonated molecules (m/z = 202) were detected by using the

selected ion monitoring (SIM) mode. The flow rate of the mobile phase (waterlmethanol,

50%/50%) was set at 1oo pL/min. Good linearity was obtained in the range between 1

pmol and 1 nmol. Based on this result, the estimated detection limit, with a S/N ratio of 2,

for simazine was about 3oo fmol. This SSI method was thus sensitive enough to detect

simazine.
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   Figure 4.8 shows the analysis result for a mixture of pesticides when semi-micro

LCISSI-MS with the multiple ion detection (MID) mode was used. Simazine, thiuram, and

thiobencarb were used in this measurement and each injected compenent was 50 pmol. To

separate these compounds, the mobile phase was 60% water140% methanol for the first ten

minutes, then a linear gradient from 609o water140% methanol to 1oo% methanol over ten

minutes was used. The flow rate of the mobile phase was sct at 200 "Llmin. Since intense

protonated molecules can be obtained for these compounds, the ions were monjtored at an

m/z of 202, 241, and 258 for simazine, thiuram, and thiobencarb, respectively. Peaks for

each m/z were clearly observed at 15, 14, and 37 min, respectively. A smaller peak

corresponding to protonated molecules of thiuram combined with water molecules was

observed at 14 minutes (m/z = 258). '

   These results demonstrate that semi-micro LC/SSI-MS is a very powerfu1 tool for

pesticide analysis.
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Chapter 5

     5.

Spray
lmprovement of the Sonic
1nterface for High-flow Rates

   The author improved the sonic spray interface to enable the analysis of multiply-

charged ions of protein from a solutiQn at a flow rate of 1 mLlmin using a conventional

liquid chromatograph / mass spectrometer (LCIMS). This was done by adding a multi-hole

plate in front of the sampling orifice of the mass spectrometer. The plate did not have a

hole coaxial to the sampling orifice, but had small holes around the central region of the

plate. This plate reduced the density ofthe solvent molecules in the sprayed gas introduced

into the vacuum region through the sampling orifice from the atmosphere, and prevented

the ions from being solvated and becorning charged droplets due to the cooling that follows

adiabatic expansion of the sprayed gas. With this improvement, multiply-charged ions

whose charge distribution ranged from 11+ to 16+ were analyzed from a 1-#M

cytochrome-c solution at a high solution-flow rate of 1 mLlmin without using a splitter.
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5.1 lntroduction

   Liquid chromatography / mass spectrometry (LC/MS) is a powerfu1 tool for analyzing

mixtures in a solution in various fields of science. Spray ionization techniques such as

atmospheric pressure chemical ionization (APCI) [1,2], electrospray ionization (ESI) [3-5],

ion spray (IS) [6], and atmospheric pressure spray (APS) [7,8] have been developed to

provide an LC/MS interface. Of these techniques, only ESI and IS can produce multiply-

charged ions of 1arge biomolecules such as proteins, ESI without an assistant nebulizing

gas is most effective at solution-flow rates below 15 #L/min [9]. However, the size of

droplets produced by ESI increases with an increasing solution-flow rate. For example, the

mean diameter of water droplets produced at fiow rates ranging from 3 to 39.4 "Llmin is

1.4 to 10 #m [10]. In the IS technique, use of solution-flow rates ranging from a few

microliters per minute to 2 mL/min is enabled by a liquid shield [11]. Since the electric

field of each droplet is not high enough to desorb ions at a high solution-fiow rate, the

liquid shield reduces the droplet size through impact to aid desolvation. Nevertheless,

when the solution flow rate is about 1 mL/min, the detection of multiply-charged ions with

over 10 charges, without use ofa splitter, has not been not reported.

   In the sonic spray ionization (SSI) interface for LCNS I12-15], the range of selution

flow rates is under O.2 mL/min, making SSI a useful interface for semi-micro LCIMS [15].

However, it is difficult to use SSI as an interface for conventional LCIMS, in which the

solution-flow rate is much higher, i.e., above 1 mLlmin.

   In SSI, the droplets produced by the high-speed gas flow are very small, i.e. about

1 #m in diameter and the size is almost independent of the solution-flow rate {16]. Thus,
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they evaporate quickly. Also, the ions produced in a sprayed gas containing a high density

of solvent molecules at high-solution tlow rates in the atmosphere associate with gas-phase

solvent molecules, forming large clusters and charged droplets due to adiabatic expansion

when they are introduced into the vacuum region through the sampling orifice of the mass

spectrometer. Since multiply-charged ions tend to be more solvated than singly-charged

ions, the intensity of multiply-charged ions is considerably reduced. The author modified

the SSI interface to reduce thc density of solvent molecules in the sprayed gas before they

are introduced into the vacuum region, and this has made it possible to analyze a solution

--  without using a splitter -- over a wide range of solution-fiow rates, inc}uding the higher

solution-flow rates used in conventional LC/MS.

5.2 ExperimentaISection

   The experimental setup was almost the same as the previous interface [12-15,17],

except that the author added a multi-hole plate. Figure 5.1 shows cross-sectional views of

the improved SSI interface and the multi-hole plate. The flow rate of the nitrogen gas in

the standard state was 3-4 L/min. (Only for semi-micro LC/MS without the multi-hole

plate is the higher flow rate previously used necessary.) A voltage of -1.2 kV was applied

to the orifice and the source housing to increase the charge density of droplets produced by

the gas flow, thus increasing the ethciency ofpositive-ion formation [13, section 2.2].
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Figure 5.1 Cross-sectional views of the improved sonic
spray interface and the multi-hole plate.
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   In the previous interface, the stainless-steel plate to prevent cooling of the sampling

orifice due to gas flow and droplet evaporation was set in front of the sampling orifice 3

mm from the capillary tip, and the plate had a 2-mm-diameter hole coaxial to the sampling

orifice in the center of the plate [13, 15, section 3.2]. In the improved interface, the multi-

hole plate did not have a hole coaxial to the sampling orifice of the mass spectrometer, but

had small O.8-mm-diameter holes around the central region ofthe plate. It also has exhaust

vents to prevent a build-up of pressure, and thus an increased density of solvent molecules,

between the plate and the sampling orifice. The diagonal distance between the small holes

was about 4 mm. The central axis of the capillary was aligned with that of the sampling

orifice but not with that of the small holes, so the sprayed gas struck the central region of

the plate and was ditifused -- especially, the center of the spray corn where the density of

solvent molecules is highest. The ions and charged droplets produced in the atmosphere

passed through the small holes in the plate, then were introduced into the vacuum region of

the mass spectrometer. (The details of the mass spectrometer have been described

elsewhere [15,17],) An electrostatic ion guide [18] was set in front of a quadrupole mass

analyzer in the mass analyzing region.
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5.3 ResultsandDiscussion

   To determine a suitable diagonal distance between the small holes of the multi-hole

plate, the author measured the .ion intensity of lysine and gramicidin-S using multi-hole

plates with a diagonal distance of 2, 3, 4, or 5 mm. The dependehce of the ion intensity of

the protonated lysine molecule (m/z = 147) and the doubly-protonated gramicidin-S

molecule (m/z= 571) on the diagonal distance at solution-flow rates of 1, O.2, and O.03

mL/min is shown in Fig. 5.2. The lysine and gramicidin-S solutions were 50:50

methanoYwater solutions with a concentration of 1 "M. Since the ion intensity at solution-

flow rates of 1 and O,2 mL/min for the lysine ion (Fig. 5.2(a)) and O.2 and O.03 mL/min for

the gramicidin-S ion (Fig. 5.2(b)) reached a maximum at a diagonal distance of4 mm, this

distance was used as the standard distance for the multi-hole plate.

   wnen using the multi-hole plate, a high gas flow with a velocity above the sonic

velocity was not needed to obtain intense ions even though the solution-flow rate was over

O.1 mL/min. Figure 5.3 shows the dependence of the ion intensity of doubly-protonated

gramicidin-S (as was used in the chapter 2 experiment) on the gas flow rate with the multi-

hole plate at a solution-flow rate of 1 mLlmin. The ion intensity reached a maximum at

about 3 L/min, which was almost the same at low solution-flow rates, i.e., O.03 mUmin,

since the density of solvent molecules in the sprayed gas was adequately decreased by

diffusion of the sprayed gas due to the multi-hole plate.

   Mass spectra obtained from a lysine solution at a solution-fiow rate of 1 mLlmin using

the previous interface and when using the multi-hole plate are shown in Fig. 5.4. The

lysine solution was a 5e:50 methanoYwater setution at a concentration of 1 #M. The
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protonated molecules of lysine were detected at m/z = 147 with the previous interface, but

clusters of methanol and water molecules were also detected. Furthermore, a lot of random

noise was observed over the entire spectrum. This noise was caused by detecting charged

droplets whose m/z values were too high to be affected by the electric field of the

quadrupole mass spectrometer. Due to the high noise level of this spectrum, the signal-to-

noise ratio was about seven.

   With the multi-hole plate, the protonated molecules of lysine were still detected at

m/z = 147, but at a higher intensity. Clusters of methanol and water molecules (such as

H' (H20)(CH30H) and H'(CH,OH),) were observed, but only under mlz = 100. Also, the

noise level was lower than with the previous interface; the signal-to-noise ratio of the

improved interface was about twenty-seven -- almost four times that of the previous

interface. Therefore, the multi-hole plate enables SSI at high solution-flow rates of up to

1 mL/min or higher.

   When the sprayed gas is introduced into the vacuum region of the mass spectrometer

through the sampling orifice, solvent molecules in the sprayed gas are cooled by adiabatic

expansion and tend to associate with each other to form clusters and droplets. This

significantly reduces the sensitivity of the instrument. At high solution-flow rates, the

sprayed gas contains a high density of solvent molecules, so this tendency is particularly

noticeable. Sample ions in the sprayed gas are also cooled and tend to associate with the

solvent molecules to form clusters and charged droplets in the mass spectrometer, reducing

the ion intensity at high solution-fiow rates. Multiply-charged ions are more 1ikely to

become charged droplets than singly-charged ions, because the Gibbs energy for solvation

increases with an increasing charge number of positive analyte ion. To prevent reduced ion

intensity and increased noise, the density of solvent molecules in the sprayed gas must be
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reduced before the molecules pass into the vacuum region through the sampling orifice. In

the improved SSI interface, the density of solvent molecules is diluted by diffusion of the

sprayed gas when it strikes the multi-hole plate. Then the sprayed gas passes into the small

space between the plate and the sampling orifice through the small holes in the plate, and

the density of solvent molecules is further reduced. Therefore, a sprayed gas that contains a

suitable density of solvent molecules, in which the tendency towards association is

inhibited, is introduced into the vacuum region through the sampling orifice.

   Typical mass spectra of gramicidin-S measured using the improved interface are shown

in Fig. 5.5. The gramicidin-S solution was a 50:50 methanoYwater solution at a

concentration of 1 #M. The spectra were obtained at flow rates of 1, O.2, and O.03 mLlmin.

In these spectra, singly- and doubly- protonated molecules of gramicidin-S, respectively,

were detected at m/z = 1141 and 571. The ion intensities of the doubly-protonated

gramicidin-S molecules (m/z = 571) were almost at the same level with good sensitivity at

all solution flow rates.

   Furthermore, the author has demonstrated that multiply-charged ions can be analyzed

with the improved SSI interface from a 1-ptM cytochrome-c (from a sheep heart) solution

in water/methanoVacetic acid (47.5/47.5/5%, v/v/v) at 1 mL/min (Fig. 5.6). The charge

distribution ranged from 11+ to 16+ while the base peak at mlz = 947 corresponded to

(M+13H)'3+. The ion intensity of cytochrome-c at 1 mL/min was comparable to that

detected at O.03 mL/min using the original SSI interface (data is shown in chapter 2),

though there was a two- or three-charge reduction compared to the ions produced at O.03

mLlmin. This can be ascribed to gas-phase proton transfer reactions between the multiply-

charged ions and solvent molecules.
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   With this improvement, SSI can be used over a wide range of so!ution-flow rates. This

enables the analysis of highly-charged ions of proteins at various solution-flow rates using

simple systems without a splitter.
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6. A Sonic Spray lnte rface for

Capi1lary Electrophoresis / Mass
                   Spectrometry

   The author has also developed a sonic spray ionization interface that enables coupling

of capillary electrophoresis (CE) and mass spectrometry (MS). In sonic spray ionization,

the sample solution can be sprayed at any typically used solution-flow rate from the

sample-introduction capillary with a high-speed gas flow. Therefore, SSI can be used with

a wide range of buffer solutions regardless of the conductivity of the solutions. However,

the pressure around the tip of the sample-introduction capillary is reduced by the high-

speed gas flow, so the solution is pumped into the capillary at a flow rate above O.1 #Llmin

due to the difference of pressure between the two ends of the capillary. Since the solution-

flow rate in CE is much lower than this pumping rate, the resolution of CE separation is

1ikely to be decreased by the pumping effect when an electrophoresis capillary is connected

directly with the sample-introduction capillary. To avoid this in the CEIMS interface, the

author added a buffer reservoir between the sample-introduction capillary of the interface

and the electrophoresis capillary, and confumed that this prevented pumping of the

solution in the electrophoresis capillary due to the pressure difference. The author also
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demonstrated CEIMS analysis with a mobile-phase buffer containing 15 mM of phosphate

by filling the buffer reservoir with an acetic-acid solution as a substitute for the mobile-

phase buffer, This increased the ion intensity one-hundred fold by enhancing the

evaporation ofcharged droplets produced by the spray.

6.1 1ntroduction

   Capillary electrophoresis (CE) is an extremely effricient tool for separating mixtures

because of its high-resolution separation capability. However, the ability to identify

chemical species with only CE plus a single-parameter detector such as ultraviolet

absorption is limited because the migration time is apt to shift, so use of a mass

spectrometer as a CE detector is usefu1. Together, capillary electrophoresis and mass

spectrometry (CE/MS) [1] will be an important tool in various fields of science. The

coupling of CE and MS by electrospray ionization (ESI) [1-5], ion spray (IS) technique t6],

and a continuous-flow fast-atom bombardment (CF-FAB) technique [7,8], have been

described. In the ESI techniques, coupling of CE and MS through use of a liquid sheath

[2,3], a sheathless interface [1,4], and a microdialysis junction f5], have been reported. The

liquid junction [6] is used to deliver a make-up flow when coupling by IS, and also in the

CF-FAB interface technique l8]. However, CEIMS analysis has had to be performed using

a limited selection of mobile-phase buffers, because the use of nonvolatile buffers is
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generally avoided. Although phosphates are widely used as a mobile-phase buffer for

capillary electrophoresis, their usable concentrations in CE/MS are limited because sprays

ofhigh-conductivity solutions such as phosphate butifers are unstable in ESI and IS.

   The SSI interface developed by the author for use in semi-micro and conventional

LC/MS [12,13] produces sprays that are stable under all typically used solution-flow rates

and buffer conditions, because sprays are generated only by gas flow. However the

pressure around the tip of the sample-introduction capillary is reduced by the high-speed

gas flow, so the solution is pumped into the capillary due to the difi'erence of pressure

between the two ends of the capillary. Since the pumping rate exceeds the CE solution-

flow rate, the resolution of CE separation is likely to be decreased, even though ions are

readily formed at any solution-flow rate. To prevent the solution in the electrophoresis

capillary being pumped, the author has developed an SSI interface specifically for CEIMS.

6.2 EstimationofPumpingRates

   The author began by estimating pumping rates into the capillary due to the difference

of pressure between the two ends of the capillary caused by the high-speed gas flow.

Generally, the pumping rate of a solution (Q) due to a pressure difference between two

ends of a capillary is described by the Hargen-Poiseuille equation:
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Q = Ap zr`/(8#L) (6.1)

In Eq. (6.1), Ap is the pressure difference between the two ends of the capillary, r is the

capillary radius, # is the solution viscosity, and L is the capillary length. The pumping rates

for any capillary radii can be estimated ifAp is determined when the solution is pumped by

a high-speed gas flow around the capillary tip. The author obtained thevalue of Ap, when

using 60-cm-long capillaries with a radius of 25, 35.5, or 50 #m, by measuring the

pumping rates of a 50% methanol solution in water in these capillaries at a sonic-velocity

gas-flow rate. The " value of the 50% methanol solution in water at room temperature was

approximately 2Å~10'3 Pa/s [14]; accordingly Ap was about O.2Å~ 105 Pa. Using this value,

the dependence of the pumping rate on the inner diameter of a 60-cm-long capillary was

estimated ( Fig. 6.1). The pumping rate decreased with a decreasing inner diameter, and the

pumping rates of capillaries with an inner diameter of less than 10 #m were lower than the

flow rates due to electroosmosis (which range from 1 nLlmin to O.1 #Llmin). On the other

hand, capillaries with an inner diameter of over 50 pm are the most practical to use because

it is difficult to inject a sample into a capillary with a smaller inner diameter. Therefore, the

author used a 50-#m-inner-diameter capillary, in which the pumping rate is significant.
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6.3 Experimenta1 Section

   Figure 6.2 is a cross-sectional view of the SSI interface for CE/MS. One end of the

fused-silica sample-introduction capillary (50-#m i.d., 150-"m o.d., 10 cm long, GL

Science, Tokyo) was inserted into the orifice (O.28-mm i.d.) in the duralumin source

housing. The flow rate of the nitrogen gas at the standard state was 2 L/min, which was

lower than in the previous experiments since the orifice was smaller in this experiment. A

voltage of -1.2 kV was applied to the orifice and the source housing. (The details ofthe

mass spectrometer are described in chapter 3 and elsewhere [12,15].)

   The other end of the sample-introduction capillary was inserted into a Teflon tube that

passed through the buffer reservoir. The buffer reservoir was fi11ed with a buffer solution

so that the pinhole (whose diameter was about O.1 mm) in the Tefion tube was submerged

and the buffer solution flowed through the pinhole into the sample-introduction capillary

by the pumping effect. The electrical potential of the buffer solution in the buffer reservoir

was held at ground potential through a platinum electrode. A fused-silica capillary for

electrophoresis (50-#m i.d., 150-#m o.d., GL Science, Tokyo) was inserted into the Teflon

tube from the opposite end. The capillaries were set opposite to each other near the pinhole

in the Teflon tube. The other end ofthe electrophoresis capillary was put in a mobile-phase

reservoir fi11ed with the buffer solution. A high voltage was applied between thc buffer

reservoir and the mobile-phase reservoir to generate the electrophoresis. The sample

solution separated by the electrophoresis was mixed with the buffer solution in the area

beneath the pinhole in the Tefion tube, and pumped into the sample-introduction capillary.

Since the pumping rate of the 10-cm-long capillary was about 1 "L/min, as estimated from
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Eq. (6.1), the solution from the buffer reservoir was pumped into the sample-introduction

capillary at a flow rate more than ten times as high as the electroosmosis flow rate.

Therefore, the sample solution did not diffuse into the bufi'er reservoir. The sample solution

was then sprayed from the sample-introduction capillary by the sonic gas flow.

   In this interface, since both capillaries are set opposite to each other in the Teflon tube,

alignment of the capillaries is very easy. Furthermore, the electrophoresis capillary can be

easily changed and the inner diameter of the sample-introduction capillary can differ from

that of the electrophoresis capillary.

6.4 ResultsandDiscussion

A Sonic Spray Interface for CE/MS

   wnen no voltage was applied between the two ends ofthe electrophoresis capillary,

ions of the sample introduced into the electrophoresis capillary could not be observed (Fig.

6.3). In this experiment, the electrophoresis capillary and the mobile-phase reservoir were

filled with the sample solution (1-ptM gramicidin-S and 15-mM ammonium acetate in a

50:50 water/methanol solution, pH 6.3), and the buffer reservoir was fi11ed with the buffer

solution (15-mM ammonium acetate in a 50:50 waterlmethanol solution, pH 6.3). wnen 5

kV of voltage was applied between the buffer reservoir and the mobile-phase reservoir

(denoted by arrow A in Fig. 6.3), the sample solution flowed by electroosmosis and sample
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Figure 6.3 Electrophoretogram of gramicidin-S. The
electrophoresis capillary and the mobile-phase reservoir
were filled with the sample solution (1-ptM gramicidin-S
and 15-mM ammonium acetate in a 50:50 water/methanol
solution, pH 6.3), and the buffer reservoir was filled with
the buffer solution (15 mM ammonium acetate in a 50:50
water/methanol solution, pH 6.3). When a voltage was
applied between the buffer reservoir and the mobile-phase
reservoir (A), the sample ions were detected. When the
voltage was turned off (B), the ions were not detected,
even though gas was flowing around the capillary tip.
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ions were detected. When the voltage was turned off (point B), ions were not detected,

even though gas continued to flow around the capi}lary tip. Therefore, the solution in the

electrophoresis capillary was not being pumped by the gas flow. Thus, this interface can be

used for CE/MS without any loss of resolution.

   Figure 6.4 is an electrophoretogram of a dopamine and GABA mixture obtained using

this interface. Both reservoirs were fi11ed with a 15-mM ammonium acetate buffer (pH 6.3)

in water/methano! (501509o, v!v), and 12 and 15 pmol of dopamine and GABA,

respectively, were injected into the electrophoresis capillary (40 cm long) by the gravity

method. A voltage of 5 kV was applied between the two reservoirs. The ion intensity

monitored at mlz = 104 and 154. After 13 and 18 minutes, respectively, peaks

corresponding to the dopamine and GABA ions were observed in the electrophoretogram.

The GABA and dopamine were clearly separated and detected. Separation efficiencies for

the GABA and dopamine were about 10000 and 30000 theoretical plates, respectively.

CE/MS analysis using a phosphate buffer

   With SSI, any kind of solution are sprayed steadily, because the solutions are sprayed

only by the high-speed gas flow. However, the ion intensity of a sample solution

containing phosphate is lower than that of a non-phosphate sample solution because

phosphates are nonvolatile. Therefore, the solvent molecules are less likely to evaporate

and the ionization ecaciency is low. In this case, adding a volatile substance such as acetic
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Figure 6.4 Electrophoretogram of dopamine and GABA.
Both reservoirs were filied with a 15-mM ammonium acetate
buffer (pH 6.3) in water/methanol (50/500/o, v/v), and the
injected samples were 12 and 15 pmol of dopamine and
GABA, respectively. The electrophoresis capillary was 40 cm
long and 5 kV was applied between the two reservoirs.
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acid increases the ion intensity. Figure 6.5 shows electrophoretograms of gramicidin-S,

where 2 pmol of gramicidin-S was introduced into the electrophoresis capillary (40 cm

long) by the gravity method. The buffer reservoir and the mobile-phase reservoir were

filled with either a 15-mM phosphate buffer (pH 6.3) in waterlmethanol (50/50%, vlv) (Fig.

6.5(a)), or a 15•-mM phosphate buffer and an acetic-acid solution (42150/8%

water/methanoYacetic acid, pH 1.4) (Fig. 6.5(b)). The signal-to-noise ratio of the

Gramicidin-S peak in Fig. 6.5(b) was about one-hundred times as high as in Fig. 6.5(a)

because of the accelerated solvent evaporation due to the volatile substance added to the

solution. Although a volatile buffer can also be added with the ESI interface by using a

liquid sheath [2, 3], it is probably difficult to ensure sufficient mixing because ofthe short

residence time in the cone [2]. Since-the residence time of this interface is much longer

than that with the liquid sheath, the ionization eflriciency is significantly increased. This

result indicates that high-concentration phosphate buffers of above 15 mM can be used in

this interface.

   Figure 6.6 is an electrophoretogram of the dopamine and GABA mixture. In this case,

the mobile-phase reservoir was filled with a 15-mM phosphate buffer (pH 6.3) in

water/methanol (50/50%, v/v), and the buffer reservoir was filled with an acetic-acid

solution (42/50/89o water/methanoVacetic acid, pH 1.4). The author injected 12 pmol of

dopamine and 15 pmol of GABA and 5 kV was applied between the two reservoirs then

monitored the intensities at mlz = 104 and 154. After 17 and 20 minutes, respectively,

peaks corresponding to the dopamine and GABA ions were observed. The signal-to-noise

ratios ofthe GABA and dopamine peaks in Fig. 6.6 roughly two to four times as high as

those in Fig. 6.4. Also, the peak width for GABA was much smaller than that for dopamine
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Figure 6.5 EIectrophoretograms of Gramicidin-S. The buffer
reservoir and the mobile-phase reservoir were filled with
(a) a 15-mM phosphate buffer (pH 6.3) in water/methanol
(50/500/o, v/v), or (b) a 15-mM phosphate buffer and an
acetic-acid solution (42/50/80/o water/methanol/acetic acid,
pH 1 .4). The injected sample was 2 pmol. The electrophoresis
capillary was 40 cm long and 5 kV was applied between the
two reservoirs.
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Figure 6.6 Electrophoretogram of dopamine and GABA.
The buffer reservoir and the mobile-phase reservoir were
filled with a 15-mM phosphate buffer (pH 6.3) in
water/methanol (50/500/o, v/v) and an acetic-acid solution
(42/50/80/o water/methanol/acetic acid, pH 1 .4). The injected

samples were 12 and 15 pmol of dopamine and GABA,
respectively. The electrophoresis capillary was 40 cm long
and 5 kV was applied between the two reservoirs.
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in Fig. 6.6. This suggests that GABA, whose isoelectric pH was about 4, was concentrated

by the pH gradient ranging from 1.4 to 6.3 in the electrophoresis capillary.

   In conclusion, the SSI interface enables CE/MS analysis under virtually any conditions

of separation. Furthermore, since any kind of solution can be used in the buffer reservoir,

CE/SSI-MS provides a powerfu1 tool for analysis.
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CONCLUSION

   In this study, the author has developed techniques to couple a separation tool, e.g. a

semi-micro liquid chromatograph (LC), a conventional liquid chromatograph, or capillary

electrophoresis (CE), with a mass spectrometer (MS) using sonic spray ionization (SSI) as

an interface. The ethciency of negative-ion formation in sonic spray ionization was

increased by adding three percent of ammonia to the sample solution.

   Coupling of semi-micro LC and MS was achieved by increasing the gas-flow rate used

to spray the solution to 6 Llmin to reduce the density of solvent molecules in the spray.

Using this methoa a mixture of pesticides, i.e. simazine, thiuram, and thiobencarb, whose

concentrations in drinking water are regulated in Japan, were simultaneously analyzed by

semi-micro LCIMS. Although thiuram, which is especially thermolabile, generally has to

be avoided when simultaneously analyzing other pesticides, it could be analyzed together

with others when using SSI.

   Coupling with a conventional LC was achieved by setting a multi-hole plate in front of

the sampling orifice of the mass spectrometer to reduce the density of solvent molecules in

the spray. Using this method for the first time multiply-charged ions whose charge

distribution ranged from 11+ to 16+ could be analyzed from a 1-"M cytochrome-c solution

at a high solution-flow rate of 1 mUmin without using a splitter.

   Coupling of CE and MS was achieved by adding a buffer reservoir between the

sample-introduction capillary of the SSI interface and the electrophoresis capillary to

94



prevent the solution in the electrophoresis capillary being pumped by the pressure

difference between the two ends of the capillary. Using this methoq the author has

demonstrated CEAV[S analysis with a mobile-phase buffer containing 15 mM of phosphate,

whose use has been generally avoided in CE/MS, by fi11ing the buffer reservoir with an

acetic-acid solution as a substitute for the mobile-phase buffer. This increased the ion

intensity one-hundred fold by enhancing the evaporation of the charged droplets.

   As described above, since SSI can be used to analyze many kinds of organic

compounds, it enables the simultaneous analysis of complex mixtures. Also, SSI can be

used with virtually any solution, unlike other interface techniques; for example, ESI and IS

can only be used under a limited range of buffer conditions that depend on the solution

conductivity. Thus, SSI enables coupling of a liquid separation tool and a mass

spectrometer without lowering the separation ability of the liquid separation tool.

Therefore, LC/MS and CE/MS using SSI are valuable analytical tools for liquid samples.

These techniques are especially usefu1 for the analysis of mixtures containing many

contaminants. The author believes the SSI technique can make a valuable contribution to

the evolution ofvarious fields of science; for example, medical, environmental, and brain

science. In addition, some techniques developed in this research have been incorporated in

Hitachi's M-8000 liquid chromatograph,/ three-dimensional quadrupole mass spectrometer,

which was commercially launched in August, 1997.
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