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1 Model Equation

In this paper, the hyperbolic free-boundary problem under the volume conservation
condition is treated. The typical phenomenon corresponding to this problem is the motion
of a bubble on water surface. The aim is to realize the motion in numerical simulation.
The bubble moves on water surface with changing its shape and support. The inertia
force of the bubble film or a nonuniform distribution of surface-active agent can be the
driving force of its motion.

We use the graph of scalar function u to describe the shape of the bubble. The zero
level set of u coincides with the water surface. The set where the bubble touches the
water surface is called free-boundary. The bubble is assumed to keep its volume, i.e., the

volume of air surrounded by the film is preserved ( / udzr = V = const.). The film of

Q
bubble is assumed not to go under the water surface (u > 0). Therefore, the problem
becomes a free-boundary problem of degenerate hyperbolic type with volume constraint.
The following equation describes the phenomena well:

" Xus>oUy = Au — R2x'5 (u) + Aexuso (z2€Q,0<t<T), (1.1)

where  is a bounded domain of R™ (m € N\ {0}).

Here, the individual terms of equation (1.1) has the following meaning: The term
uy shows the acceleration of the vertical movement of the film and Awu represents the
force originating in the elastic energy of surface tension of the film. The term x,>¢ is the
characteristic function of the set {u > 0} and x. € C? (R) is a smoothing function of x
satisfying

with interpolating in 0 < s < ¢ in such a way that |x; (s)| < C/e. The term R2x. (u) in
(1.1) describes the adhesive force. It is due to this restriction force that the generation
of the new surface or movement of free-boundary could be disturbed. It is assumed
that the coefficient R does not depend on time and is bounded from below and above
0<Rn<R< Ryr). The above-mentioned three terms represent kinetic effects. The
first feature of this equation lies in the coefficient x>0 on the left-hand side. Because of
this coefficient, non-negativity of the solution is guaranteed.
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Function A, which appears in the last term of (1.1) is a Lagrange multiplier coming
from the volume-preservation condition. The explicit form of the Lagrange multiplier A\,
is obtained as follows:

1
A () = o /Q [ xuso + [Vl + Rux, (u)] de (12)

by formal calculation with volume constraint condition under the assumption that A,
does not depend on space variables. It is the second feature of this equation that such
non-local term appears. The integral representation above makes the problem more
difficult. However, an approximate solution to (1.1) can be calculated by use of a time-
semidiscretized functional which is called discrete Morse flow (DMF) of hyperbolzc type
without explicitly considering the volume constraint.

2 Discrete Morse Flow and Approximate Solution

We introduce an approximate problem to (1.1).' Here, we give the volume constraint
in the admissible space for finding a minimizer of a time-semidiscretized functional cor-
responding to the Lagrangian.

Problem 2.1. Let Q be a bounded domain in R™. Forn = 2,3,..., find minimizer u,
of the following functional:

2
—ou B 1
u) :/ IU zun 1+un 2| Xu>0d$+_/ IvuIZ d$+/R2XE (u) dw, (2'1)
2h2 2Ja Q

in the function set
Ky = {u e WH(Q,R);u =0 on 89, / U Xu>0 dT = V} .
Q

Functions ug,u1 € Ky with uy = ug + hvg are given and the sequence {un} is to be
determined inductively. Moreover, by use of these minimizers, construct a weak solution
to (1.1).

According to the minimality property, we can show the non-negativity and existence
of the minimizer. Furthermore we get the following theorem about the regularity of
minimizer.

Theorem 2.1. For all ) CC Q, there exists a positive constant o independent of n with
0 <a <1, such that minimizers u, belong to C*().

This is indispensable for the application of first variation formula to J,.

In addition, we carry out interpolation in time of minimizers {un} and construct the
approximate weak solutlon to (1.1).

We define u* and " on 0 x (0, 00) by

T (z,t) = un (z), (2.2)
Wy = 0Dy o) Pt ), 2.9
Y (t) = A, (2.4)



for (z,t) € 2 x ((n—1) h,nh], n € N. Here,

1 —2Up_1+ Up—
Ap = V/Q [u Unh; U2 xuso + [Vul? + R2ux. (u)] dz

is a Lagrange multiplier.

We can construct the approximate weak solution to the bubble problem in terms of
—h h
" and u".

Definition 2.1 (Approximate solution). Let {u,} C Ky and let " and u® be defined
as above. If the following conditions

/:/Q (“? () _Z? =Ry varvg + B2 (: () ¢> da dt
— /hT/QX”qbdz Yo e O (Q x [0,T) N {uh > 0}) , (2.5)
0

in Qx (h,T)\ {uh > 0} , (2.6)

uh

il

and the initial conditions u (0) = uo, uP (h) = up + hvg are satisfied, then we call [Tk
and u" approximate solutions to the bubble problem.

3 Numerical Result

Here we present the numerical method and experimental results. We apply a finite
clement method with minimizing algorithm and find minimizer of the approximate func-
tional Jp(u) defined above via steepest descent method for a fixed time step n. The
time step h and diameter of each finite element are chosen small enough related to the
approximation parameter &.

We show the numerical result under the Neumann boundary condition (see Figure
1). We choose the parameters as follows: h =5 X 1073, & = 0.1 and R? = 0.35. The
bubble which has such a initial velocity that it moves in the diagonal direction to the
boundary moves toward the boundary and touches it. The more the bubble leans against
the boundary, the smaller the area of the surface of the bubble becomes. The bubble
moves along the boundary and finally finds the corner of the domain and settles there.

4 Conclusion

A numerical method for solving the hyperbolic free-boundary problem under the
volume conservation constraint was developed. This problem corresponds typically to
the motion of bubble restrained on water surface. The model equation is a degenerate
hyperbolic including a non-local term (Lagrange multiplier) coming from the volume
constraint. We have introduced a variational method called discrete Morse flow to solve
this problem and it gave good numerical results. This model can also be applied to the
motion of oil on the bottom of water or to problems related to the phenomenon of a
water-drop dripping from ceiling. This work has many applications and is significant for
the future studying of hyperbolic free-boundary problems.
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Figure 1: Under the Neumann boundary condition, after touching the boundary, the

bubble moves along the boundary. The bubble stops and keeps the smallest surface
when reaching the corner of . ,
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