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Two-dimensional structures formed in a binary system of DNA

nanoparticles with a short-range interaction potential

Masahide Sato

Information Media Center, Kanazawa University, Kanazawa 920-1192, Japan

Covering nanoparticles with DNA strands is one of the useful methods of controlling the interaction between

particles because DNA strands can be easily designed according to our specifications. Obtaining an idea from

the two-dimensional structures formed by the nanoparticles covered with DNA strands, which we call DNA

nanoparticles, we carry out Brownian dynamics simulations and study the formation of two-dimensional

structures in a binary system. We assume that the different types of particles attract each other with Morse

potential, which is minimum when their distance is σ′. When the types of particles are the same and their

distance is smaller than σ, the particles are repulsive. The mixture of both square and triangular lattices

is formed when σ′/σ = 1. With decreasing σ′/σ, a square lattice, a honeycomb lattice, and string-shaped

clusters are formed. The coexistence of both square and triangular lattices with large σ′/σ and the formation

of stringlike clusters with small σ′/σ occur because we neglect the attraction between the same types of

particles and use a short-range attraction between different types of particles.

1. Introduction

Covering nanoparticles with DNA strands is one of the useful methods of controlling

the interaction between particles because DNA strands can be easily designed as we

desire. By selecting linkers, the DNA strands covering two types of nanoparticles,1–6)

and the shapes of nanoparticles,7–9) many types of three-dimensional lattice structures

can be formed. These nanoparticles covered with DNA strands are expected to be

potential materials for various applications, for example, medical diagnostics,10) flash

memories,11) and plasmonic materials.12–15)

Recently, a few groups16–18) have succeeded in forming two-dimensional lattice struc-

tures on a lipid layer in solution of a binary system of nanoparticles covered with DNA

strands, which we call DNA nanoparticles. In Ref. 16, the authors observed that the

two-dimensional structure on a lipid interface is changed from a triangular lattice to an

amorphous structure via stringlike clusters when the salt concentration in the solution

increases. Assuming that the decrease in the length of DNA chains with increasing salt
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concentration causes the increase in the connectivity of complementary particles and

induces the spontaneous breaking of symmetric interactions, they carried out Monte

Carlo simulations and showed that the collective behavior of DNA chains and their

flexibility play important roles in the transition in the two-dimensional structure.

In Refs. 17 and 18, the authors showed that both the lattice structure and lattice

constant are changed by adjusting the density of magnesium ions in solution. The

magnesium ions affect DNA structures in solution:19,20) the magnesium ions shrink the

single-stranded DNA21) and thermally stabilize the double-stranded DNA.22,23) Thus,

we expect that the change in the density of magnesium ions affects the interaction

between DNA nanoparticles. In Ref. 18, a triangular lattice changed a square lattice

and the lattice constant decreased with increasing magnesium ion density.

We consider that there are at least two types of approaches to study the structures

formed by DNA nanoparticles in simulation. One is to use a coarse-grained model

formed by particles covered with the chains of beads,24–27) which represent DNA strands.

The other is to consider the effective interaction potential between two particles such as

a soft-core potential,28–30) a square-well potential,31) and a core-corona potential.32–35)

In our previous papers,36,37) we obtained an idea from experiments17,18) and studied the

formation of two-dimensional structures using the Lennard-Jones (LJ) potential as the

interaction potential U(r), where r is the distance between two particles. We assumed

that U(σ) = 0 when the types of two particles are the same and U(σ′) = 0 when

the types of two particles are different. We studied how the two-dimensional structures

formed in a binary system depend on σ′/σ. In our simulation,36) a triangular lattice is

formed when σ′/σ = 1, and a square lattice, a honeycomb lattice, and a rectangular

lattice are formed with decreasing σ′/σ.

The LJ potential is a simple potential but its interaction range is sufficiently long

for particles to interact with the second nearest neighbors when σ′/σ is small. The effect

of the second nearest neighbors on the structures formed in our previous model36) is

unclear. Since the attraction used in that model acts when the types of particles are

not only different but also the same, the role of the attraction between the same type of

particles for the formation of structures is also unclear. Thus, we study the formation

of two–dimensional structures using another interaction potential with a short-range

attraction.

In this paper, we use a modified Morse potential and carry out Brownian dynamics

simulations to study two-dimensional structures in a binary system. We assume that
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particles are attractive when their types are different and repulsive when their types

are the same. Comparing our results with Ref. 36, we clarify the role of the attraction

between the same type of particles and the effect of the range of attraction on the

formation of two-dimensional structures. In Sect. 2, we show our model. We assume

that the potential for the different types of particles is minimum when the distance

between the particles is σ and the same types of particles are repulsive when the distance

between them is smaller than σ. In Sect. 3, we show our results. We carry out Brownian

dynamics simulations and study the relationship between two-dimensional structures

and σ′/σ. In Sect. 4, we summarize our results.

2. Model

Fig. 1. (color online) Schematic figures indicating the interactions between two types of particles.

Each particle consists of a hard sphere covered with DNA strands. (a) and (b) When two particles

are of the same type and the distance between them is smaller than σ, the particles are repulsive, and

(c) when the types of two particles are different, the interaction between them is the short-range

attraction given by the Morse potential, which is minimum at σ′.

Obtaining an idea from the particles covered with DNA strands, we consider a two-

dimensional binary system. In our simulation, particles are expressed by circles and the

interactions between them are isotropic. We assume that the particles are attractive

when their types are different (Fig. 1). As the attractive potential between different

types of particles, we use the Morse potential given by

U(r) = ϵ

[
1− exp

(
−r − σ′

a

)]2
, (1)
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where ϵ, σ′, and a represent the interaction strength, the distance giving the potential

minimum, and the interaction range, respectively. r is the distance between two parti-

cles. The particles are repulsive when r < σ′ and attractive when r > σ′. The range of

attraction becomes small when we set a to be small. For the same type of particles, the

interaction potential is given by

U(r) =


ϵ

[
1− exp

(
−r − σ

a

)]2
(r < σ),

0 (r > σ).

(2)

The particles are repulsive when r < σ and do not interact with each other when r > σ.

To focus on the difference between σ and σ′, we assume that ϵ and a are the same in

Eqs. (1) and (2).

Since particles migrate on a lipid bilayer in an experiment,17) the particles probably

receive both thermal noise and friction from the lipid bilayer. Thus, we consider the

particles moving in a two-dimensional system with both thermal noise and friction.

When the friction is large, the velocity of the ith particle is given by

dri
dt

=
1

ζ

(
−
∑
i ̸=j

∇U(rij) + F B
i (t)

)
, (3)

where ζ is the frictional coefficient, ri is the position of the ith particle, and rij =

|ri − rj|. The thermal noise F B
i (t) satisfies the following relations:

⟨F B
i (t)⟩ = 0, (4)

⟨F B
i (t) · F B

j (t
′)⟩ = 4ζkBTδijδ(t− t′), (5)

where kB is the Boltzmann constant and T is temperature. A simple differential equation

of Eq. (3) is given by38)

ri(t+∆t) = ri(t)−
1

ζ

∑
i ̸=j

∇U(rij)∆t+∆rBi (t). (6)

∆rBi is the displacement caused by the thermal noise, which satisfies

⟨∆rB
i (t)⟩ = 0, (7)

⟨∆rB
i (t) ·∆rB

j (t
′)⟩ = 4kBT∆t

ζ
δijδ(t− t′). (8)

In our simulation, we set parameters for the two-dimensional structures to be easily

formed in a short time and to be stable for thermal fluctuation. We set parameters as

σ = 1, a = 0.05, ϵ/ζa = 40, kBT/ζ = 0.1, and ∆t = 10−6. The attractive range is
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sufficiently short because a is much shorter than σ. Since ϵσ/(akBT ) ≫ 1, the thermal

noise is sufficiently small for the particles to be ordered. In our simulation, we investigate

how two-dimensional structures formed by the particles depend on σ′/σ.

3. Results

In our simulation, we set the numbers of two types of particles to be the same. The

total number of particles Na is 1000. Since we want to study the properties of the bulk

structure, we set the area fraction ϕ to be large. When we estimate ϕ, we regard the

particles as the circles whose diameter is σ. Since we set ϕ to 0.6, the system size L is

given by L = (Naπσ
2/4ϕ)1/2 = 36.18. We initially locate the particles at random. To

make the particle density uniform with small fluctuation, we use Eq. (2) as the potential

between particles and move all the particles for a long time. Then, we start simulations

with the potentials given by Eqs (1) and (2).

Figure 2 shows the snapshots of the structures appearing in a late stage. The

structure is obscure when σ′/σ = 1 [Fig. 2(a)]. It becomes obvious when σ′/σ = 0.8

[Fig. 2(b)]: a square lattice is formed in the system. The lattice structure changes with

decreasing σ′/σ. A honeycomb structure is formed when σ′/σ = 0.6 [Fig. 2(c)]. No

lattice structure is formed, but short string-shaped clusters appear when σ′/σ = 0.5

[Fig. 2(d)].

To distinguish the structures more qualitatively, we introduce a parameter ψk(l)

defined as

ψk(l) =
1

Nn(l)

∣∣∣∣∣∑
m

eikθlm

∣∣∣∣∣ , (9)

where Nn(l) is the number of the nearest-neighboring particles for the lth particle and

θlm is the angle between rlm and the x-direction. Figure 3 shows the radial distribution

function g(r) for σ′/σ = 0.6. The definition of g(r) is given by

g(r) =

⟨
1

Na

∑
i

ni(r)

2πrδr

⟩
, (10)

where ni(r) is the number of particles whose distance from the ith particle is between

r and r + δr, and ⟨· · · ⟩ represents the ensemble average. The data are averaged over

10 individual runs. We use δr = 10−2 when we calculate g(r). The first peak, which

appears when r is about 0.6, is sufficiently sharp and separated from the second peak

appearing when r is about 1. Since this tendency of the formation of the sharp and

isolated first peak does not depend on σ′/σ, we easily distinguish the nearest neighbors
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Fig. 2. (color online) Snapshots of structures appearing in a late stage. σ′/σ is set to (a) 1, (b) 0.8,

(c) 0.6, and (d) 0.5. Time is (a) 4000, (b) and (c) 1000, and (d) 2000. The types of particles are

distinguished by the difference in colors. To show the lattice structures clearly, we draw a black circle

at the center of each particle.
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Fig. 3. (color online) Radial distribution function g(r) in the case of σ′/σ = 0.6. The data are

averaged over 10 individual runs.
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for all σ′/σ’s.

ψk(l) shows the local k-fold rotational symmetry around the lth particle. We esti-

mate ψk(l) for k = 2, 3, 4, and 6. When the lth particle has the perfect k-fold rotational

order, ψk(l) = 1. ψk(l) decreases with decreasing uality of symmetry, and ψk(l) = 0

when the particles do not have the k-fold rotational symmetry at all. ψk(l) does not

show the symmetry correctly when the number of the nearest neighbors is too small.

Thus, we calculate ψ6(l) when Nn(l) ≥ 4. For ψ4(l), ψ3(l), and ψ2(l), we estimate them

when Nn(l) ≥ 2. Probably, particles do not have the perfect rotational order because of

thermal fluctuation. Thus, we consider that the lth particle has the k-hold rotational

symmetry when ψk(l) > 0.7. We count the number of particles that have the k-hold

rotational symmetry, nk, and define the density of the particles having the k-hold sym-

metry, ρk, as nk/Na.

 0
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Fig. 4. (color online) Dependences of ⟨ρ2⟩, ⟨ρ3⟩, ⟨ρ4⟩, and ⟨ρ6⟩ on σ′/σ. The data are averaged

over 10 individual runs.

Figure 4 shows the dependences of ⟨ρ2⟩, ⟨ρ3⟩, ⟨ρ4⟩, and ⟨ρ6⟩ on σ′/σ. When σ′/σ = 1,

both ⟨ρ6⟩ and ⟨ρ4⟩ are finite, and the other parameters are negligibly small, which

probably shows that a mixture of both triangular and square lattices is formed when

σ′ = σ. Since ⟨ρ6⟩ is larger than ⟨ρ4⟩, the number of the triangular lattice may be larger

than that of the square lattice. In Fig. 2(a), the formation of both square and triangular

lattices is unclear. Thus, we show how the particles satisfying ψ4 > 0.7 and ψ6 > 0.7 are

located in Fig. 5. In the snapshot, the blue and red circles represent the particles that

satisfy ψ4 > 0.7 and ψ6 > 0.7, respectively. Both the clusters formed by the triangular

lattice and those formed by the square lattice are present. The cluster size with the
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Fig. 5. (color online) Snapshot of system with σ′/σ = 1 at t = 4000. The red and blue circles

represent the particles that satisfy ψ4 > 0.7 and ψ6 > 0.7, respectively.

triangular lattice seems to be larger than that with the square lattice.

When σ′/σ < 0.95, one parameter is large and the other parameters are negligibly

small. The result shows that one structure occupies the system and the structure changes

with decreasing σ′/σ. From Fig. 4, we think that the structure formed in the system is

the square lattice when 0.65 < σ′/σ < 0.95, the honey-comb lattice when 0.55 < σ′/σ <

0.65, and the string-shaped clusters whose direction is not in order when σ′/σ < 0.55,

which is consistent with the snapshots in Fig. 2.

The appearance of the mixture of both triangular and square lattices in the case

of large σ′/σ and the formation of clusters in the case of small σ′/σ are different from

our previous study.36) Since we suspect that the formation of the mixture of the two

structures in the case of a large σ′/σ is because the system has not yet reached equi-

librium, we investigate the time evolution of both ⟨ρ4⟩ and ⟨ρ6⟩ (Fig. 6). The particles

having the four-fold symmetry appear mainly in an early stage. Then, when large clus-

ters are formed, the particles in the clusters have the six-fold symmetry. ⟨ρ6⟩ increases
rapidly and becomes larger than ⟨ρ4⟩. Although ⟨ρ6⟩ is saturated more slowly than ⟨ρ4⟩,
both ⟨ρ4⟩ and ⟨ρ6⟩ are finally saturated. Thus, the mixture of the two lattices is in the

equilibrium state. In our simulation, ⟨ρ6⟩ is larger than ⟨ρ4⟩ in the last stage when

ϕ = 0.6 [Fig. 6(a)]. However, ⟨ρ4⟩ is always larger than ⟨ρ6⟩ although the simulation

time is longer than that in Fig. 6(a) when ϕ decreases and is given by 0.2 [Fig. 6(b)].
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Fig. 6. (color online) Time evolution of ⟨ρ4⟩ and ⟨ρ6⟩ in the case of σ′/σ = 1. The red squares and

blue triangles represent ⟨ρ4⟩ and ⟨ρ6⟩, respectively. The data are averaged over 10 individual runs. ϕ

is (a) 0.6, (b) 0.2, and (c) 0.1.

The difference between ⟨ρ4⟩ and ⟨ρ6⟩ becomes large when ϕ = 0.1 [Fig. 6(c)]. Thus,

the saturated values of ⟨ρ6⟩ and ⟨ρ4⟩ depend on ϕ. The formation of large clusters is

difficult when ϕ is small, which probably makes ⟨ρ6⟩ smaller than ⟨ρ4⟩.
Since we set the temperature to be much smaller than ϵ, the reason why both square

and triangular lattices coexist in the case of a large σ′/σ is understood qualitatively

when we consider the energy gains by forming these lattices. In our model, a particle

interacts with its nearest neighbor when their types are different. Thus, the energy gain
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Fig. 7. (color online) Interactions in (a) a triangular lattice, (b) a square lattice, (c) a rectangular

lattice in our previous study,36) and (d) string-shaped clusters. In Figs. 7(a), 7(b), and 7(d), the solid

lines connecting the centers of the two particles represent the attraction between the nearest

neighbors. In Fig. 7(c), the attraction between the second nearest neighbors is shown as dotted lines.

The interaction between the third nearest neighbors, which is as large as that between the nearest

neighbors, is also drawn by a solid line.

by forming the square lattice [Fig 7(b)] is the same as that by forming the triangular

lattice [Fig 7(a)]. The particles are initially located randomly in the system. Since the

packing ratio of the triangular lattice is larger than that of the square lattice, the square

lattice is formed more easily than the triangular lattice. Thus, it is mainly the square

lattice that is formed in the initial stage. Then, the formation of the triangular lattice

starts. In our previous study,36) the square lattice is not formed when σ′/σ = 1. Since

particles are attractive when their types are the same, the energy gain by forming the

triangular lattice is larger than that by forming the square lattice in that study.36) Here,

we assume that a long-range attraction is present only between the different types of

particles. For example, we use the LJ potential for the different types of particles and

the Weeks–Chandler–Anderson (WCA) potential,39) which is the potential formed by

the repulsive part of LJ potential, for the same types of particles. The energy gain by

forming a triangular lattice is larger than that by forming a square lattice because of

the effect of the second nearest interaction when σ′/σ = 1.

The attraction from the second nearest neighbors also affects the formation of struc-
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ture when σ′/σ ≤ 0.6. In our previous study,36) a rectangular lattice, whose two sides

are about σ and σ′, is formed when 0.475 < σ′/σ < 0.625. The nearest neighbors and

the second nearest neighbors are the different types of particles and the third nearest

neighbors are the same types of particles. In that model, the interaction potential is

given by the LJ potential. Although the distances giving the potential minimum are

given by 21/6σ for the same type of particles and 21/6σ′ for the different types of parti-

cles, the interaction strength does not depend on the particle type. Thus, the attraction

from the third nearest neighbors is as large as that from the nearest neighbors. These

attractions are the main effects on the formation of the rectangular lattice. In addition

to these attractions, the attraction from the second nearest neighbors also supports the

formation of the rectangular lattice [Fig. 7(c)]. Here, on the other hand, we neglect

the attraction between the same type of particles. Thus, the attractions from the third

nearest neighbors in Fig. 7(c) are eliminated. Since the interaction between the different

types of particles is short-range, the support from the second nearest neighbors is also

absent. Since the particles interact with only the nearest neighbors, the string-shaped

clusters [Fig. 7(d)] are formed as shown in Fig. 2(d).

4. Summary

In this paper, obtaining an idea from the two-dimensional structures formed by DNA

nanoparticles,17,18) we carried out Brownian dynamics simulations and studied the two-

dimensional structures formed in a binary system. We assumed that the different types

of particles are attractive with the Morse potential, which is minimum when their

distance is σ′, and the same type of particles are repulsive when their distance is smaller

than σ. We investigated how the structures formed by the two types of particles depend

on σ′/σ. When the difference between σ′ and σ is sufficiently small, both square and

triangular lattices coexist. The structure changes with decreasing σ′/σ: the square and

honeycomb lattices are formed when 0.65 < σ′/σ < 0.95 and 0.55 < σ′/σ < 0.65,

respectively. When σ′/σ < 0.55, the string-shaped clusters are formed.

Comparison of the results with our previous study,36) shows that the coexistence of

the two lattices in the case of large σ′/σ and the formation of string-shaped clusters

in the case of small σ′/σ are different: in the previous study, the triangular lattice is

formed in the case of large σ′/σ and the rectangular lattice is formed in the case of small

σ′/σ. The differences between the model in this study and the previous model36) are

the absence of the attraction between the same types of particles and the short range
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interaction. Both differences are important for the coexistence of these two lattices in

the case of large σ′/σ and string-shaped clusters in the case of small σ′/σ. On the other

hand, although the range of σ′/σ is slightly different from that in Ref. 36, both square

and honeycomb lattices are formed, which shows that the formation of these structures

mainly depends on the nearest neighbors’ number determined by σ′.

In an experiment,17) the lattice structure is changed from a triangular lattice to

a square lattice by controlling the magnesium ion density. It is unclear how the ef-

fect of the magnesium ion should be expressed in our potential. In our simulation, a

honeycomb lattice is formed when σ′/σ = 0.6 [Fig. 2(c)]. In this case, the lattice con-

stant a is given by a = σ′/σ = 0.6 as shown in Fig. 3. Since the square lattice is

formed when 0.65 < σ′/σ < 0.95, the lattice constant of the square lattice is given

by 0.65 < σ′/σ < 0.95. Thus, the lattice distance in the triangular lattice, which is

obtained in the case of σ′/σ > 0.95, is larger than that in the square lattice, which

agrees with the experiment.17) However, the coexistence of the two structures was not

observed in the experiment.17) Thus, the interaction in the experiment17) is probably

closer to that used in our previous study36) than in this paper: the attraction may be

short-range, but the attraction from the same types of particles is probably negligible.
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