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INTRODUCTION

Information received in the sensory organs is processed 
and integrated in the insect brain. Behavioral decisions are 
made in response to such information, and the behavioral 
program is transmitted to the thoracic ganglia, the equiva-
lent of the vertebrate spinal cord, through command neu-
rons in the brain. Thoracic ganglia of insects consist of three 
segmental ganglia (prothoracic, mesothoracic, and meta-
thoracic ganglia), and each segmental ganglion regulates 
the legs in each segment. Mesothoracic and metathoracic 
ganglia control fore- and hind-wings, respectively (Kondoh 
and Obara, 1982). Thoracic ganglia are interconnected with 
each other, and the local neural circuits control motor pro-
grams, such as locomotor and wing-flapping patterns, that 
coordinately generate insects’ behavior (von Philipsborn et 
al., 2011). Furthermore, even after decapitation, insects can 
exhibit stereotypic behavior in response to mechanical stim-
ulation, indicating that thoracic neural circuits can function 
as independent regulators of behavior.

Male silkmoth Bombyx mori is an important model insect 
for use in neuroethological studies (Blomquist and Vogt, 
2003; Sakurai et al., 2014). Since adult silkmoths are spe-
cialized for reproduction, they do not exhibit any significant 
behavior other than courtship behavior. Also, courtship 
behavior of male silkmoth is completely dependent on infor-
mation on a single sex pheromone, bombykol (Sakurai et al., 
2011; Sakurai et al., 2015; Hara et al., 2017). Bombykol is a 
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major sex pheromone component emitted from female 
moths and elicits all sequence of courtship behavior of the 
male silkmoth, including orientation, zig-zag turns, circling, 
and abdominal bending (Kaissling, 1978; Obara, 1979). This 
simple relationship between sensory input and behavior 
makes male silkmoth an ideal model for investigating the 
neural circuits that regulate stereotypic courtship behaviors.

Although many studies have been conducted to reveal 
neural mechanisms of courtship behavior of male silkmoths, 
most have focused on the brain, since it plays essential roles 
in sex pheromone recognition, information processing, and 
behavioral decision (Fujita et al., 2013; Namiki et al., 2014; 
Sakurai et al., 2014). Thoracic neural circuits that regulate 
sex pheromone-induced courtship behavior remain elusive, 
despite the strong interest in behavior generation. Thus, in 
the present study, we investigated neural activity pattern of 
thoracic ganglia in response to courtship behavior, focusing 
specifically on the sequential behaviors from pheromone 
stimulation to mating behavior.

Previously, we established novel methods to compre-
hensively map neural activity in the brain of male silkmoths, 
using an immediate early gene (IEG), BmHr38 (Fujita et al., 
2013). IEGs are a group of genes whose expression is regu-
lated by neural activity and can be used as neural activity 
markers. In vertebrates, a variety of IEGs, including c-fos 
and Arc, are known and used for mapping active neurons 
during behavior, since their expression is well correlated 
with neural activity (Flavell and Greenberg, 2008). In insects, 
to date, only three genes (kakusei, Hr38, and Egr) have been 
identified as IEGs which can reliably be used as neural 
activity markers (Kiya et al., 2007; Fujita et al., 2013; Ugajin 
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et al., 2013). BmHr38 belongs to the NR4A1 family of genes, 
is an evolutionally conserved IEG (Fahrbach et al., 2012), 
and is useful as a neural activity marker in insect brains. In 
the present study, we show that BmHr38 can also be used 
as a neural activity marker in the thoracic ganglia and, for 
the first time, reveal comprehensive neural activity pattern of 
sex pheromone-induced courtship behavior.

MATERIALS AND METHODS

Insects and pheromone stimulation
Eggs of a racial hybrid of B. mori, Kinshu ×  Showa, were pur-

chased from a local dealer (Ueda Sanshu, Nagano, Japan). Larvae 
were reared on an artificial diet (Silkmate 2M, Nihon Nosan Kogyo, 
Yokohama, Japan) at 25°C under a 12-h light/12-h dark photoperi-
odic cycle. Adult moths 1–4 days after eclosion were used for 
experiments.

Male silkmoths were stimulated with 100 ng bombykol 
[(E,Z)-10,12-hexadecadien-1-ol] (synthesized by local dealer; 
Sumika Techno Service, Kobe, Japan) for 30 min, as previously 
reported, and rested in clean air for 30 min, to maximize the level of 
BmHr38 expression (Fujita et al., 2013). One hundred ng bombykol 
dissolved in water (100 ng/μl) was put on a filter paper that was laid 
in the bottom of a closed plastic cup (ϕ = 70 mm) housing a male 
silkmoth. After 30 min, the plastic cup was opened and the filter 
paper was replaced to a new filter paper. After another 30 min, silk-
moth was sacrificed for experiment. Samples without pheromone 
stimulation were used as control. Moths were dipped in 100% etha-
nol, anesthetized in ice-cold water, and kept on ice until dissection. 
Brains, thoracic ganglia, and antennae were dissected in 

phosphate-buffered saline (PBS; Takara Bio, Japan) and 
immediately frozen in plastic tube put on dry-ice. Samples were 
kept − 80°C until use.

Quantitative RT-polymerase chain reaction (QRT-PCR)
QRT-PCR was conducted as described previously (Fujita et 

al., 2013). Tissues from three male silkmoths were used for each 
sample. Expression levels of BmHr38 were divided by that of rpl3, 
and relative values to control are indicated. Data are presented as 
mean ± standard error.

In situ hybridization
In situ hybridization was performed as described previously 

(Fujita et al., 2013). Thoracic ganglia dissected in PBS were embed-
ded and frozen in OTC compound (Sakura Finetek Japan, Tokyo, 
Japan). Serial frozen sections of 10 μm thickness were made using 
a cryostat. Number of BmHr38-positive cells was counted as 
described previously. Total number of cells were counted utilizing 
background staining. Data are presented as mean ±  standard 
error.

RESULTS

Levels of BmHr38 expression in the thoracic ganglia 
correlate with those in the brain

To investigate whether BmHr38 can be used as a neural 
activity marker in the thoracic ganglia in male silkmoths, we 
determined levels of BmHr38 expression in the thoracic 
ganglia with or without bombykol stimulation by QRT-PCR 
analyses. In addition, to compare the relationship of BmHr38 

Fig. 1.  QRT-PCR analysis of BmHr38 expression in response to sex pheromone stimulation in the antennae, brains, and thoracic ganglia. 
(A–C) Relative expression levels of BmHr38 in the antennae (A), brains (B), and thoracic ganglia (C) of control (no stimulation) or 
bombykol-stimulated male silkmoths. n = 3 (brains) or 4 (antennae and thoracic ganglia), each. *: P < 0.05, U-test. (D–F) Regression analysis 
of BmHr38 expression levels between tissues. Open squares and filled circles indicate control and bombykol-stimulated samples, respectively.
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expression levels among tissues, we collected the antennae 
and brains from the same silkmoths. As reported previously 
(Fujita et al., 2013), levels of BmHr38 expression signifi-
cantly increased in response to bombykol stimulation in the 
antennae and brains (Fig. 1A and B). A significant increase 
in BmHr38 expression was also observed in the thoracic 
ganglia (Fig. 1C). These results indicate that BmHr38 is 
expressed in a stimulus-induced manner in the thoracic gan-
glia, as well as in the antennae and brain. Levels of BmHr38 
expression in the brains or thoracic ganglia did not correlate 
with that in the antennae, due to highly variable levels of 
up-regulation in BmHr38 expression in the antennae (Fig. 
1D and E). In contrast, expression levels in the brains and 
thoracic ganglia showed significant correlation (Fig. 1F). 
Since amount of neural activity is reflected in the levels of 
BmHr38 expression (Fujita et al., 2013), the levels of neural 
activity of these tissues are tightly correlated.

Localization of BmHr38 expression in the thoracic gan-
glia by in situ hybridization

To visualize the expression pattern of BmHr38, we per-
formed in situ hybridization using serial sections of thoracic 
ganglia prepared from bombykol-stimulated or control male 
silkmoths. As expected from the results of QRT-PCR analy-
ses, BmHr38-expressing cells were detected in a bombykol 
stimulation-dependent manner (Fig. 2A–F). We counted the 
number of BmHr38-expressing cells and found that 20–30% 
of thoracic ganglion cells are BmHr38-positive in response 
to stimulation (Fig. 2G–I). The percentage of BmHr38-
expressing cells was slightly higher in mesothoracic and 
metathoracic ganglia than in prothoracic ganglion, probably 
due to additional neural activity by wing-flapping in these 
ganglia.

To gain insights into the neural mechanisms that gener-
ate courtship behavior, we comprehensively visualized 
BmHr38 expression pattern in the thoracic ganglia (Fig. 3). 
BmHr38-expressing cells were detected across the entire 

Fig. 2.  Expression pattern of BmHr38 in the thoracic ganglia revealed by in situ hybridization. (A–F) Expression pattern of BmHr38 in the 
prothoracic (A, D), mesothoracic (B, E), and metathoracic (C, F) ganglia with (A–C) or without (D–F) bombykol-stimulation. White circles 
indicate BmHr38-expressiong cells. Scale bars, 50 μm. (G–I) Proportion of BmHr38-positive cells in each ganglion. n =  4–7, each.
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area of thoracic ganglia, rather than specific areas, suggest-
ing that a large population of thoracic ganglion neurons is 
active during courtship behavior in male silkmoths.

DISCUSSION

In the present study, we showed that BmHr38 can be 
used as a neural activity marker in the thoracic ganglia of 
male silkmoths, and mapped neural activity during courtship 
behavior in the entire thoracic ganglia. To our knowledge, 
this is the first comprehensive visualization of neural activity 
in the thoracic ganglia of a free-moving insect. We revealed 
that neurons across the entire range of thoracic ganglia, not 
specific neural circuits, are active during courtship behavior. 
Since a variety of neurons are expected to be active during 
courtship behavior, these neurons may include not only 
motor neurons that directly control courtship behavior, but 
also sensory neurons and interneurons that transmit sen-
sory information perceived during behavior.

IEGs take time to be expressed in the cells (>  30 min) 
but behavior occurs immediately upon sensory inputs 
(Guzowski et al., 2001; Fujita et al., 2013). This difference in 
time course sometimes makes it difficult to interpret the 
results of IEG expression analysis. Advantageously, male 
silkmoths do not show any other behavior than courtship 

behavior, and thus we can conclude that BmHr38 expres-
sion observed in sex pheromone-stimulated male is related 
to courtship behavior. Since the thoracic ganglia reside in 
the ventral side of thorax, it is impossible to record neural 
activity from free-moving and intact insects using conven-
tional techniques, such as electrophysiology and Ca2+ 
imaging. From IEG expression analysis, the present study 
provides important insights into the neural mechanisms of 
how thoracic ganglia regulate stereotypic behavior.

In the vinegar fly Drosophila melanogaster, thermoge-
netic and optogenetic studies have revealed that neural cir-
cuits in the thoracic ganglia expressing sex-determining 
genes fruitless and doublesex regulate wing extension, a 
motor pattern specific to courtship behavior (von Philipsborn 
et al., 2011; Shirangi et al., 2016). In the present study, we 
could not isolate active neurons to specific neural population 
with specific functional characters, as many cells were 
labeled by BmHr38 in response to courtship behavior. Our 
methods can detect active cells during behavior, but are not 
capable of elucidating the specific functional importance of 
neurons. Thus, further analyses to reveal functions of 
labeled neurons on courtship behavior is needed in the 
future studies. In addition, neural activity mapping using IEG 
expression is compatible to double labeling with other 

Fig. 3.  Schematic drawings of BmHr38 expression pattern in the thoracic ganglia of male moths stimulated with bombykol. Schematic sum-
maries of expression pattern of BmHr38 in two representative thoracic ganglia (A and B) of bombykol-stimulated silkmoths. The sections 
(A1–11 and B1–10) are numbered and placed from dorsal to ventral. Signals and neuropilar area are shown in black and gray, respectively.
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marker genes by double in situ hybridization or immunos-
taining. Co-localization analyses to sex-determining genes 
and/or neurotransmitters in the future studies will be promis-
ing to characterize functions of these neurons. We expect 
that these analyses will collectively clarify neural mecha-
nisms that generate complex behavior.
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