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Abstract 

Friction measurements have been carried out to characterize surface damages during 

photodegradation of low-density polyethylene (LDPE). The average and mean deviation of the friction 

coefficients increase with the irradiation time in the early stage of photodegradation processes, indicating 

the increase of the surface roughness, whereas the mechanical properties remain essentially unchanged. In 

the following stage, where the ductile-brittle transition takes place, the mean deviation of the friction 

coefficients shows an appreciable decrease with maintaining almost constant average values, suggesting 

that the surface becomes more homogeneous. Beyond the ductile-brittle transition, both of the average 

and mean deviation of the friction coefficients gradually increase with the irradiation time, indicating 

further enhancement of surface roughness, followed by formation of surface cracks. The soundness of the 

friction measurements is confirmed by comparing with optical measurements of the surface roughness, 

and it is suggested that the present method gives a convenient and sensitive method of detection for 

degradation in polymeric materials.  
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Introduction 

 Polyethylene (PE) has been used ubiquitously in our daily life. Excellent properties of plastics 

including polymer composites [1-5], such as lightweight and high toughness of plastics promote further 

replacement from metal and inorganic materials. However, durability has been one of the major concerns 

of polymeric materials that are prone to be oxidized, resulting in deterioration of appearances and 

properties. Applications of polymeric materials for long-term use, such as vehicles and constructions urge 

development of simple methods for non-invasive diagnostics of degradation of polymer products under 

use.  

Degradation of PE can be induced by various environmental factors, such as sunlight, heat, and 

various dynamic behavior, which result in deterioration of the physical properties, such as the color 

change, gloss, and impact strength. The mechanism of degradation and deterioration in various 

environments has also been discussed [6 –15]. These mechanisms of various PE materials have been 

intensively investigated for films [16-23] and pipes [24-28], and it has been revealed that the degradation 

proceeds in distinctive stages. The strength of pipes or films gradually decreases in the early stage 

(hereafter referred as 1st stage), where the fracture becomes ductile. After the 1st stage, the decline of the 

strength obviously becomes steeper, and the fracture becomes brittle (2nd stage). Then, it is considered 

that a ductile-brittle transition takes place between the 1st and 2nd stages, and the practical lifetime of the 

material is terminated. After the 2nd stage, it was found that the strength of polymeric pipe drops, and the 

brittle fracture occurs at substantially smaller stress (3rd stage). It has been found that chemical 

degradation is accelerated, and the integrity in the material is lost during the 3rd stage [29-32].  

 During degradation in the 2nd stage, surface modification of pipes such as stress corrosion cracking 

and environmental stress cracking is observed [24,33]. It is known that surface roughness measurements 
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are useful to detect such failures [26]. Several methods of measurements for surface friction of polymeric 

materials have been established (e.g. ISO 8295) [34-36], though these techniques are not suitable to detect 

small changes during degradation [37,38]. On the other hands, various techniques have been developed to 

detect subtle changes in human skins for medical and cosmetic purposes. Benchtop and mobile 

apparatuses, as well as a variety of probes for frictions during linear and rotational motions, have been 

developed [39-52]. These techniques developed in skin science have recently applied to various fields, 

such as sensory test for piles [53] and woods [54].  

 In this work, friction measurements under two-dimensional linear motion were applied, and the 

coefficients of friction were determined for photodegraded low-density polyethylene (LDPE) films. The 

ultraviolet (UV) irradiation time dependence of the coefficients of friction was compared with that of the 

surface roughness determined by white light coherence microscopy. Effects of degradation on the surface 

and the bulk properties are described, and detection of the degradation/deterioration processes with the 

friction measurements is discussed.  

 

Materials and methods 

 LDPE (Prime Polymer Co., Ltd.) with a density of 0.92 g/cm3 and a melt-flow index of 4 g/10 min 

was used. We have confirmed that the LDPE contained 0.2 wt% of dibutylhydroxytoluene as the 

antioxidant. To simulate the rotational molding process, LDPE sheets with a thickness of 0.5 mm were 

prepared as follows. The LDPE powder was preheated in a hot press at 150°C for 3 min and then 

degassed at 150°C for 2 min. The sample was pressurized at 10 MPa for 1 min. The sample was then 

heated to 200°C in 8 min and gradually cooled to 180°C in 8 min, followed by quenching to room 

temperature. 
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  The photodegraded LDPE sheets were prepared with a Xenon Weather Meter (SX2-75, Suga Test 

Instruments, Tokyo, Japan). A Xenon fade lamp was used as the light source. The LDPE sheets were 

irradiated at 60 W/m2 in a wavelength range 300–400 nm at a black panel temperature of 89°C under the 

no rain condition. Note that the present condition has recently been employed for interior components of 

automobiles, in accordance with increasing demands for harsh conditions such as in the desert area. The 

irradiation time was set at 120–1200 h. The surface of the photodegraded LDPE specimens was observed 

with an optical microscope (Digital Microscope VHX-1000, Keyence, Osaka, Japan). The yellowness 

index of the LDPE specimens was measured with a spectrocolorimeter (SC-T(P), Suga Test Instruments, 

Tokyo, Japan) in a range of wavelength from 380 to 780 nm. The gloss value of the LDPE specimens was 

measured with a gloss meter (VG-2000, Nippon denshoku industries, Tokyo, Japan) at an angle of 60°. 

High-temperature gel permeation chromatography (HT-GPC) was performed at 140 °C using a Viscotek 

Triple Detector HT-GPC (Model- SG system, Malvern Instruments Ltd., Worcestershire, UK). The 

samples were dissolved into o-dichlorobenzene at 140 °C to obtain a concentration of 1.0 mg/ml. A 

polystyrene standard sample was used for column calibration. The DSC measurements were performed 

with a PerkinElmer Diamond differential scanning calorimeter from 25 to 230 °C at a rate of 20 °C/ min 

in a nitrogen atmosphere. Dynamic mechanical analysis (DMA) was carried out by using a dynamic 

mechanical analyzer (DVE-4, UBM, Kyoto, Japan) with a rectangular specimen (5 mm ´30 mm). The 

LDPE samples were sputter-coated with Au-Pt alloy in vacuum, and the surface of the samples was 

observed by scanning electron microscope (S-4500, Hitachi, Tokyo, Japan) at a voltage of 2.0 kV.  

 Surface friction of the LDPE sheets was measured with a friction evaluation meter (TL-201Ts, 

Trinity Lab, Tokyo, Japan). The LDPE specimen was fixed on a horizontal stage. A hemispherical metal 

probe with a diameter of 8.0 mm was pressed onto the surface of the LDPE specimen at a constant load of 
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2.9 N as the normal force N. The horizontal stage was swept at a rate of 0.1 mm/s for 20 mm, and the 

frictional force F was monitored in a time resolution of 10 ms. The measurements were repeated for three 

times. The friction coefficient xi (i=1, 2, ... , n) at each point was determined by the Amontons-Coulomb 

friction law 

               (1) 

The average value  and mean deviation  of the friction coefficients were calculated by 

               (2) 

and 

   ,             (3) 

respectively.  

 Surface height profile was measured with a white light interferometric microscope (BW-S506, 

Nikon, Tokyo, Japan) [55-57]. The surface of the sample in 1 mm length within ±20 µm height was 

scanned at every 20 nm for three times. The average roughness Ra was determined from the surface 

profile f(x) as 

   ,            (4) 

where f0 is the average height and L =1 mm is the scanned length.  

 

Results and discussion 

 Optical microscopic images of the photodegraded LDPE are shown in Fig. 1(a). The surface of the 

LDPE specimens is smooth before irradiation but the surface cracks have propagated over the entire 

surface after the UV irradiation for 1080 h. The initiation of the crack formation was observed at 840 and 
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960 h, as denoted by the circles. The formation of surface cracks along with enhancement of surface 

roughness are also observed by the SEM images in Fig. 1(b).  

 As shown in Fig. 2(a), the yellowness index gradually decreases with the UV irradiation time, 

followed by a rise after 480 h. The molecular weight of LDPE shows obvious decrease at 600 h as shown 

in Fig. 2(b). Considering that the molecular weight shows appreciable decrease after 600 h, the increase 

of the yellowness index is likely to be caused by the increase of conjugated double bonds owing to the 

chain scission.  

 The profiles of the friction coefficient for the photodegraded LDPE at various UV irradiation times 

are shown in Fig. 3. While the fluctuation of the friction coefficient is small before the UV irradiation, the 

fluctuation becomes enhanced with increasing the irradiation time. In the early stage from 120 to 360 h, 

fluctuation of the friction coefficient is observed locally. Then, the small fluctuation appears to spread in 

the whole range from 480 to 720 h. Finally, the fluctuation becomes markedly large after 960 h. The 

average and mean deviation of the friction coefficient calculated by Eqns. (2) and (3) are plotted against 

the irradiation time in Fig. 4. The average value  gradually increases with increasing the irradiation 

time up to about 360 h, followed by a plateau at 360-600 h. After 600 h,  resumes increasing up to 

960 h again, followed by an appreciable drop at 1080 h. The mean deviation  also shows similar 

irradiation time dependence;  gradually increases with the irradiation time in the initial stage, and 

shows a maximum around 360 h. After 600 h,  also increases with the irradiation time. Then, the 

degradation process seems to be divided into three regions. In the 1st (0-360 h) and 2nd (600-960 h) 

stages, both of  and  gradually increases with the irradiation time, suggesting monotonous 

increase of the surface roughness. In the transition stage (360-600 h), shows a plateau, whereas  

shows appreciable decrease, suggesting that the surface becomes more homogeneous. It is noteworthy 
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that the error bar at 360 h is substantially large, suggesting that the inhomogeneity in the surface 

roughness shows a maximum at the beginning of the transition stage. Since the early stage of oxidation in 

sold polymer is somewhat localized [6], it is suggested that the present measurement is sensitive to 

inhomogeneity on the surface during photodegradation by detecting as the standard deviation of the 

friction coefficient. In the 3rd stage (>960 h),  shows appreciable drops, while  remains high. 

Then, the surface roughness is highly enhanced. The large fluctuation in the friction data is explained by 

the slippage of the probe tips owing to highly-enhanced rough surface accompanied by macroscopic 

cracks (see Fig. 1).  

 The surface height profiles f(x) of the photodegraded LDPE specimens are shown in Fig. 5. While 

the profile is practically flat before irradiation, the fluctuation in the surface profile increases with the 

irradiation time. The temporal changes of the surface profiles are consistent with the friction 

measurements; formation of local fluctuation at 120-360 h is followed by homogeneous fluctuation at 

480-720 h and enhanced roughening after 840 h. The average roughness Ra calculated by Eq. (4) is shown 

in Fig. 6. The value of Ra linearly increases with the irradiation time, and shows a plateau at 360-600 h, 

followed by gradual increase after 720 h. The correlation between Ra and  is shown in Fig. 7. These 

quantities show excellent linear correlation from 240 to 960 h, indicating that the present friction 

measurements successfully probe the surface roughness of the photodegraded LDPE specimens. The 

initial deviation before 240 h results from that the surface roughness is too small to detect the present 

probe. The lower deviation of after 1080 h is considered to be caused by the slip of the probe tip 

owing to the macroscopic surface crack.  

 Dynamic mechanical spectra of photodegraded LDPE after the UV exposure tests are shown in Fig. 

8(a). It is noteworthy that the photodegraded specimens with irradiation time longer than 720 h are too 

x xD

x
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brittle to perform the mechanical test. The b relaxation peak at around -20°C is assigned to the glass 

transition. The peak position of the b relaxation obviously shifts toward higher temperature after 480 h, 

indicating a rise in the glass transition temperature Tg as shown in Fig. 8(b). The higher temperature shift 

of the glass transition is explained as the stiffening of amorphous chains [58], reminding us of rigid 

amorphous chains. The DMA results indicate that the mechanical properties of bulk LDPE are 

appreciably deteriorated in the 2nd stage, because the degradation due to the reduction of molecular 

weight and/or yellowing spread over the entire body of the specimen. In fact, we have confirmed the 

overall crystallinity of the LDPE specimens sharply increases at around 600 h. Then, it is reasonable that 

surface characterization by the friction measurement can detect subtle changes in the earlier stage, before 

the bulk mechanical properties are deteriorated. The DSC traces of the photodegraded LDPE are shown in 

Fig. 9. A hump at 90-110°C is observed during heating of LDPE after the UV exposure tests. These 

humps which disappear in the second run are explained by the thermal history during the UV exposure 

tests. Then, the slight lower shift of Tg at 120 h is explained by the softening of the amorphous chains 

owing to the annealing effect. Slight shift of the crystallization peak toward higher temperature along 

with evolution of another peak at higher temperature after 600 h is consistent with the drop of the 

molecular weight, leading to promotion of crystallization due to shorter chains formed by the chain 

scission.  

 The present results of the friction measurements are consistent with the changes in the gloss values. 

The irradiation time dependence of the gloss is shown in Fig. 10. The gloss gradually decreases with the 

irradiation time, followed by a steeper slope after 360 h. Considering that the surface roughness shows a 

plateau at 360-600 h in Fig. 4 and 6, the accelerated loss of gloss may be caused by microstructural 

changes in the bulk LDPE specimen owing to penetration of degradation reaction. In fact, the increase of 
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the glass transition temperature is obvious after 360 h.  

 

Conclusion 

 The friction measurements have successfully applied to detect three distinctive stages during 

photodegradation of LDPE. In the 1st stage, surface roughness gradually increases with the UV 

irradiation time, while conventional methods such as the yellowness index and the gloss are not sensitive 

to the subtle changes. Moreover, the mechanical properties of the specimens are also essentially 

unchanged. It was found that the surface of the specimen becomes more homogeneous during 

ductile-brittle transition. The glass transition temperature of the amorphous region shows appreciable 

increase, resulting in the stiffening of the material. In the 2nd stage, the various degradation phenomena 

are observed, such as a rapid increase in yellowing index and a sharp drop in gloss value. In the following 

3rd stage, formation of surface cracks leads to loss of integrity and fragmentation into small pieces (e.g. 

microplastics [59]). It was demonstrated that the friction measurement is sufficiently sensitive to detect 

subtle changes in the surface roughness. Because handheld apparatus is available for friction 

measurements, the present method makes it possible to provide a facile and non-destructive method for 

charactering the degradation in polymeric materials under use. 
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(A) 

 

(B) 

 

Figure 1 (A) Optical microscopic and (B) SEM images of LDPE specimens after UV irradiation. The UV 

irradiation times are shown in the figure. 

 



 19 

(A) 

 

(B) 

 

Figure 2 (A) Yellowness index plotted against the UV irradiation time. (B) GPC traces photodegraded 

LDPE. The UV exposure times are shown in the figure.  
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Figure 3 Profiles of friction coefficient for the photodegraded LDPE specimens. The UV irradiation times 

are shown in the figure. Each profile is vertically shifted by 0.2.  
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Figure 4 The average value  and mean deviation  of the friction coefficient plotted against the 

UV irradiation time.  
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Figure 5 Height profiles of the photodegraded LDPE specimens. Each profile is vertically shifted by 2 µm, 

and the UV irradiation time is attached.  
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Figure 6 The average roughness Ra as a function of the UV irradiation time.  
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Figure 7 Correlation between surface roughness (Ra) and the average of the friction coefficient ( ). The 

numbers attached to the markers denote the UV irradiation time in hour. The solid line represents the 

fitting curve to data from 240 to 960 h.  
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Figure 8 (A) Dynamical mechanical spectra of LDPE specimens at various irradiation times and (B) 

irradiation time dependence of the glass transition temperature (Tg).  



 26 
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Figure 9 The DSC traces of photodegraded LDPE during (A) heating and (B) cooling. The UV exposure 

times are shown in the figures.  
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Figure 10 Irradiation time dependence of the gloss of photodegraded LDPE specimens.  

 


