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VECTOR VALUED INEQUALITIES AND LITTLEWOOD-PALEY
OPERATORS ON HARDY SPACES

SHUICHI SATO

ABSTRACT. We prove certain vector valued inequalities on R™ related to Littlewood-
Paley theory. They can be used in proving characterization of the Hardy spaces
in terms of Littlewood-Paley operators by methods of real analysis.

1. INTRODUCTION

We consider the Littlewood-Paley function on R™ defined by

3] 1/2
(1) 5@ = ([T eo@rg)
where () =t "p(t1z). We assume that ¢ € L' (R") and
(1.2) /n o(x)dz = 0.

If we further assume that |p(z)| < C(1+ |z|) ™ ¢ for some € > 0, then we have

9o (Dllp < Cpllfllp, 1 <p <00,

where ||f]l, = ||fllz» (see [10], [14] and also [1] for an earlier result). The reverse
inequality also holds if a certain non-degeneracy condition on ¢ is assumed in
addition (see [7, Theorem 3.8] and also [11]). This is the case for go with Q(z) =
[(0/0t)P(z,t)]t=1, where P(x,t) is the Poisson kernel associated with the upper
half space R* x (0,00) defined by

t
(P )

with ¢, = 7~ ("*D/2D((n + 1)/2) (see [16, Chap. I]). Here we recall that Q(€) =
—27|€|e 7€l where the Fourier transform is defined as

fO=90© = | f@e?™ 0 de, (2,6 =wi& 4+ Tuba
Furthermore, it is known that

(1.3) cillfllae <llgo(Hlle < coll fllme

for f € HP(R") (the Hardy space), 0 < p < oo, where ¢, ¢y are positive constants
(see [4] and also [18]). Recall that a tempered distribution f belongs to H?(R™)
if [|[fllge = [|If*]lp < oo, where f*(x) = sup;q|®: * f(x)|. Here ® is in S(R™)
and satisfies [ ®(z)dz = 1, where 8(R") denotes the Schwartz class of rapidly

P(z,t) =
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decreasing smooth functions on R”; it is known that any other choice of such ®
gives an equivalent norm (see [4]).

In this note we are concerned with the first inequality of (1.3) for 0 < p < 1.
A proof of the inequality was given by Uchiyama [18]. The proof is based on real
analysis methods and does not use special properties of the Poisson kernel such as
harmonicity, a semigroup property. Consequently, [18] can also prove

(1.4) 1fllar < cllge(Pllp, 0<p<T,

for ¢ € 8(R™) satisfying (1.2) and a suitable non-degeneracy condition. Also,
a relation between Hardy spaces on homogeneous groups and Littlewood-Paley
functions associated with the heat kernel can be found in [5, Chap. 7].

On the other hand, it is known and would be seen by applying an easier version of
our arguments in the following that the Peetre maximal function Fy'p can be used
along with familiar methods to prove (1.4) when ¢ € §(R") with a non-degeneracy
condition and with the condition supp(¢) C {a1 < [{| < az}, a1,a2 > 0, where
for a function F on R" and positive real numbers N, R, the maximal function is
defined as

* % |F(1‘ - y)|
(1 Rl = 0 T RN
(see [8)]).

The purpose of this note is to prove (1.4) for a class of functions ¢ including
@ and a general ¢ € $(R"), without the restriction on supp(p) above, with (1.2)
and an admissible non-degeneracy condition (Corollary 3.2) as an application of a
vector valued inequality which will be shown by using the maximal function F{*p
(see Proposition 2.3, Theorem 2.10 below). The proof of Proposition 2.3 consists
partly in further developing methods of [17, Chap. V] and it admits some weighted
inequalities. Theorem 2.10 follows from Proposition 2.3. Our proofs of Proposition
2.3 and Corollary 3.2 are fairly straightforward and they will be expected to extend
to some other situations (see [12], [13], [15]).

In Section 2, Proposition 2.3 will be formulated in a general form, while Theorem
2.10 will be stated in a more convenient form for the application to the proof of
Corollary 3.2. In Section 3, we shall apply Theorem 2.10 and an atomic decom-
position for Hardy spaces to prove Corollary 3.2. Finally, in Section 4, we shall
give proofs of Lemmas 2.1 and 2.5 in Section 2 from [17] and [8], respectively, for
completeness; the lemmas will be needed in proving Proposition 2.3.

2. VECTOR VALUED INEQUALITIES
Let ), j =1,2,..., M, be functions in L'(R™) satisfying the non-degeneracy
condition

M
2.1 inf su F)(tE)] > ¢
(21) el 30 D))

for some positive constant c. We write ¢ = (1), ... ™M) ¢ = (F(pW),..., F(p?D))).

Lemma 2.1. Let o), j = 1,2,..., M, be functions in L'(R™) satisfying (2.1).
Then, there exist by € (0,1) and positive numbers ri,re with 11 < ro such that if
b€ [bo, 1), we can find n = (nV,...,nM)) which satisfies the following:

(1) n € C®(R™), where n € C*(U) means n\9) € C*(U) for all 1 < j < M,
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(2) supp I (D) C {r1 < [€] <72}, 1< j < M;
(3) each F(n\9)) is continuous, 1 < j < M;
(4) o7 (), Ay =1 for & € R \{0}, where (z,w) = S, 2w,
z,w € CM (the Cartesian product of M copies of the set of complex numbers).
Further, if € C*(R™ \ {0}), then i) € C*(R").

See [17, Chap. V] and also [2].

We assume that M = 1 for simplicity. Suppose that 1) € L!(R") and there exist
© € C°(R™) and A > 1 such that
(2.2) D(€) = p()OE) on {Ig] <A™}
Suppose that b € [by,1) and let n be as in Lemma 2.1 with M = 1. For J > 0,
define (; by
(2.3) () =1=>" ¢MOnbe).

Jibi<J

We note that supp((s) C {|¢| < r2J '}, & = 1in {]¢] < rJ '} By (2.2) it
follows that

= Y e (V7€) + Ca()(9)
Jibi<A

= Y eMOF@)WE) + p(€)B(E),
jibi<A

~

where a”) (z) = - * n(x) and (€) = (4(£)O(E).
Let E(¢, f)(z,t) = f = (x), f € S(R™) (a similar notation will be used). Then

we have
(2.4) B, )(z,t)] < Y |E@®) x o, f)(@,b7t)] + | BB+ ¢, f)(z,1)].
jibi<A

Also, let Ey(z,t) = E(¢, f)(x,t), when f is fixed (there will be a similar notation).
Define

(2.5) Co(th,t, L,x) = (1 + |z|)*

/ PEREe S dg |, > 0,L>0.
Consequently,

) (@)] = Co(w, ¥, La/s)s™" (1 + [e] /)™
for j € Z (the set of integers). Likewise, we have

|85 ()] = D(©, A, L,z /s)s™" (1 + |z|/s) ",

[G©e@e d.

Here (; is as in (2.3). We also write C'(¢, 4, L,x) = Co(p,¥/,L,z), j € Z. Let

2.7) C’(g[},j,L):/RnC(z/;,j,L,x)dx, iez,

where

(2.6) D(O,J,L,z) = (1 +|z|)*

(2.8) D(©,J,L)= | D(®,J,L,x)dx.
R’n
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We also write C(¢,j,L) = C,(¥,j,L), D(©,J,L) = D,(0,J,L) to indicate that
these quantities are based on ¢. See Lemma 2.8 below for a sufficient condition
which implies C(¢, j, L) < 00, D(©, J, L) < co.

The maximal function in (1.5) is used in the following result.

Lemma 2.2. Let p,¢) € L'(R"). Suppose that ¢ satisfies (2.1). Let b € [bo,1).
We assume that ¢ and ¢ are related by (2.2) with © € C>°(R") and A > 1. Let
N > 0. Then for f € 8(R™), we have

(2.9) |E@, )@ )] <C D Ch,d, N)E(p, ) VN iy (@)

jibi<A

+ CD(®7 A)N)E((p: f)('vt)*l(\f*,t—l(m);

(210) B, 051 <C 3 iy NIV Elip, ), B3 501 (2)
<A
+ CD(G) A: N)E((p) f)() t)}k\);,t—l (Z’)
Proof. Using (2.4), we see that

|Ey(2,1)]

<c Y [IEw) (1+' - ') O, N, (= — 1)/ (BF0) (471) ™ dy

Jibi<A

N
+c [ |B..0) (1 ¥ ';ty') D(O, 4, N, (= — y)/t)t ™ dy.

If we multiply both sides of the inequality by (1 + |z — z|/t)~" and observe that

Pt 1 S PO et A NP O et A
bit t < Canb bit

for all z,y,z € R® and t > 0 under the condition ¥’ < A, then we see that
By (2, )|(1+ |2 — 2| /1)~

-N
<o ¥ v [ig ol (1+ 550)  cwan e - i own iy

Jibi<A

—N
w0 [1E,00l (1+551) Do, 4, - o ay,
and hence

| By (2,0)(1+ | — 2|/t)~F

<C Y BB (P05 (@) [ C N, = )/ G0) 60 dy

jibi<A

OB ()5, )/D(@,A,N, (2 — y) /0" dy

<C Y Oy, NN E, (VDN (i1 () + CD(O, A, N)E, (- D) -1 (o).

Jibi<A
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The estimate (2.10) follows by taking the supremum in z over R™. The proof of
(2.9) is easier; putting z = x and arguing as above, we get (2.9). O

Let p» € L'(R™). Suppose that ¢ satisfies (2.1). Let L > 0. We consider the
following conditions.
(2.11) p e CHR™), OrpeL'R"), 1<k<m
(2.12) |p(&)| < C|¢l° for some € > 0;
(2.13) sgg C,(Ve,j, L)b™91=9 < 0o for some € > 0, together with (2.11);
i>

(2.14) Dy(L) < 0o, with (2.11),

where we write Vo = (01¢,...,0n9), Or = 04, = 0/0zi, and C,(Vy,j,L) =
Yhey Co(Orp, J, L); also we define Dy, (L) = Y";_, D,(Ex,1, L) by taking O(¢§) =
Er(§) = 2mi&, and J =1 in (2.8). We note that (2.11) implies the following (with
e=1):

(2.15) |p(&)| < Cl€|~°  for some € > 0.

Let ¢ € L'(R™). We assume that 1 is related to ¢ as in (2.2) with © € C~(R")
and A > 1. We also consider the conditions:

(2.16) sup C, (1,4, L)b™ < 0o for some € > 0;
jibi<A

(2.17) D,(0,4,L) < >
Let M be the Hardy-Littlewood maximal operator
M(P)a) = sup B [ 17,
zEB

where the supremum is taken over all balls B in R™ such that z € B and |B| denotes
the Lebesgue measure of B. Let 1 < p < co. We recall that a weight function w
belongs to the weight class A, of Muckenhoupt on R™ if

la, =sup (181" [ wwyas) (181 [ w(m)l/wdx)pl < oo,

where the supremum is taken over all balls B in R™. Also, we recall that a weight
function w is in the class Ay if M (w) < Cw almost everywhere. The infimum of all
such C is denoted by [w] 4,

For a weight w, the weighted L? norm is defined as

o= ([ 1Py an) "

We have the following vector valued inequality.

Proposition 2.3. Let ¢ € LY(R"). We assume that ¢ satisfies (2.1) with M = 1.
Let N > 0,n/N <p,q< oo andw € Apn/,. Suppose that o satisfies (2.11), (2.12)
and (2.13), (2.14) with L = N. Let 1) € L*(R™). Suppose that ¢ is related to ¢ as
n (2.2) with ® € C*°(R"), A > 1 and (2.16), (2.17) hold with L = N. Then

oo d 1/q oo d 1/q
([ ort)] el ([ oo
p p

for f € 8(R™) with a positive constant C independent of f.

<C
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We need the next result to show Proposition 2.3.

Lemma 2.4. Suppose that 0 < ¢ < oo, N > 0 and that ¢ € L'(R") satisfies (2.1),
(2.11), (2.12) and (2.13), (2.14) with L = N. Then

d e d
/ E(p, f) Nt 1 (x )q?tfc/o M(|f *oe|") (z )q/T tt, r=n/N.

We need the following in proving Lemma 2.4.
Lemma 2.5 (see [8]). If F € C'(R") and R >0, r > 0, then
Fiale) < O6N M(F|")(@)V/" + COR™VFI3 pl2)
for all § € (0,1], where N =n/r and the constant C is independent of § and R.

Proof of Lemma 2.4. By Lemma 2.5 we have

(2.18) E(p, ) (-, ) -1 (@) < CENM(|f % 1| ") (@) + C8|f % (V)i -1 (),
where f*x (V) = (f*(010)t,- -, fx(Onp)t), r = n/N. We apply (2.10) of Lemma
2.2 with ¢ = Oy, O() = 2mi&k, A =1 in (2.2). Then

|f % (V)il N, -1 (2)
<COY CoVe, j NIVIVE(p, )V ON 51)-2 (@) +CDR(N)Ep, ) (-, )71 ()

320

Using this in (2.18) and applying Holder’s inequality when ¢ > 1, we see that

(219)  E(p, £)( D3 (@)7 < CNIM(|f 5 1] ") (2)7/"
007 Co(Vip, 4, NYTb TN "5 B, £)(, D) (-1 (2)"
j>0

+ O Do (N)'E(p, ), t) N -1 (2)7,

where 7 > 0,¢, =1ifg>1land ¢, =0if 0 < g < 1.

If we integrate both sides of the inequality (2.19) over (0, co) with respect to the
measure dt/t and if we apply termwise integration on the right hand side, then we
have

dt dt
220) [ B 0K a0 ] < caw/ M(f ol
[ - —JjNqp—Tcqj dt
+C,04 LZ%(W,J,N)% INap=Tead 4 D ( E (@ NG ON = (@)
>0

The condition (2.13) with L = N implies that the sum in j on the right hand side
of (2.20) is finite if 7 is small enough. We can see that the last integral on the right
hand side of (2.20) is finite for f € §(R™) by (2.12) and (2.15). Further, we have
(2.14) for L = N. Altogether, it follows that the second term on the right hand
side of (2.20) is finite. Thus, we can get the conclusion if we choose § sufficiently
small. O
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Proof of Proposition 2.3. By (2.9) we have

|E(’¢J,f)(aj,t)|q ch Z C(¢7j7N)qb_chjE(¢7f)(':bjt)}(\;,(bjt)*l(m)q

jibi <A
+CD(0, A, N)'E(p, f) (-, 1) o1 ()7,

where 7 > 0 and ¢, is as in (2.19). Integrating with the measure dt/t over (0, c0),
we have

(2.21) / T \E@, (e 2

< C, Z C(,j,N)1b~"%I + D(O, A, N)1 / E(p, ), )Nt 1(55)‘1%.

jibi<A

The sum in j on the right hand side of (2.21) is finite by (2.16) with L = N if 7
is small enough; also we have assumed D(0, A, N) < oo ((2.17) with L = N). Let
r=n/N <q,pand w € A,n/,. By (2.21) and Lemma 2.4 we see that

e ([ ([ Ewnwor f)p/qw(mdm)l/p

<0H ([ mas i@ 5
@)

(/ M( |f*<Pt e )
<c (/ ([ 1560600 %) wte dw> ,

where the last inequality follows from the following lemma, which is a version of the
vector valued inequality for the Hardy-Littlewood maximal functions of Fefferman-
Stein [3] (see [9] for a proof of the ¢#-valued case, which may be available also in
the present situation).

pyw
1/r

> 1/q
r/q
ofr dt>

Lemma 2.6. Suppose that 1 < p,v < oo and w € A,. Then for appropriate
functions E(z,t) on R™ x (0,00) we have

([ e )

where E'(x) = E(z,t).

1/v

<c (/ ([ B0 %)"/Hw@ dm> ,

This completes the proof of Proposition 2.3. O

v,w

We have an analogous result for general ¢ = (o1, ... o)) although Propo-
sition 2.3 is stated only for the case M = 1.

It is obvious that @, Q({) = —2r|¢le?7lél ) satisfies all the requirements on ¢ in
Lemma 2.4 for all N > 0. To state results with more directly verifiable assumptions
on ¢ and v, we introduce a class of functions.
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Definition 2.7. Let ¢ € L'(R"). Let [ be a non-negative integer and 7 a non-
negative real number. We say ¢ € BL if ¢» € C!/(R™ \ {0}) and

|8g1/3(§)| < ¢, €77~ outside a neighborhood of the origin

for every v satistying |y| < | with a constant C,, where v = (y1,...,7,) is a
multi-index, v; € Z,v; > 0, |[y| =7 + -+ + 7, and 9] =9/ ... 0.".

Clearly, @ € B. for any I, 7. This is also the case for 1) € $(R™).
Lemma 2.8. Suppose that ¢ € L'(R") and ¢ satisfies the condition (2.1). Let
7>0,J >0 and let L be a non-negative integer.
(1) Suppose that v € BEFIIHY gnd ¢ e CLH/2+1(R \ {0}), where [a]

denotes the largest integer not exceeding a. Then we have

sup Cép(l/Jaj)L)bijT < o0,
jibi <J

where Cy, (v, j,L) = C(¢,4,L) is as in (2.7).
(2) Suppose that © € C=(R™) and ¢ € CTHP/2+H1(R™ \ {0}). Then
D,(0,J,L) < oo,
where D,(0,J,L) = D(©, J,L) is as in (2.8).
(3) Let ) € LY(R") and F(pM)(€) = 2mi&p(€), 1 < k < n. If o €

Bfﬂr_j_/f]ﬂ, then we have

sup Co(p® 4 Lb™E7IT < 00, Dy,(Z,1,L) < o0
J:br <

for each k, where Z¢(§) = 2mi&, as above.

Proof. Part (3) follows from part (1) and part (2) since *) € Bfi[rnmﬂ and

¢ € CLHI2H R\ {0}) if p € Béiﬁ/f]ﬂ. To prove part (1), we note that

(1 + |m|)[n/2]+100(¢’ t7 L7 m)

<C ‘ / ()7 (€)e ) d£‘+0 sup

|v|=L+[n/2]+1

[ ez i o@] e ag|

where Cy (¢, t, L, z) is as in (2.5). We note that /) € CL+*/2+1(R") by Lemma 2.1,
since ¢ € CLH/2H1(R™ \ {0}). The assumption ¢ € pLrin/2+t implies

o [be'0n©)| < cwtr, o<t <,
for any M > 0, if |y| = L+ [n/2] + 1 or v = 0. It follows that
Co(ih,t, L,x) < C(1+ |z|)~"/A-1G(x)

with some G € L? such that ||G||a < Ct™. Thus, since [n/2] + 1 > n/2, by the
Schwarz inequality we have

(2.23) Co(Y,t, Lyx)de < Ct7.
R’n

The conclusion of part (1) follows from (2.23) with ¢ = b7.
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Likewise, we have
D(©,J,L,z)dx < oo
Rn
under the assumptions of part (2), where D(©, J, L, ) is as in (2.6), which proves
part (2). O

By Lemma 2.8 and Proposition 2.3 we have the following.

Theorem 2.9. Let ¢ € L'(R") satisfy (2.1) with M = 1. Suppose that ) € L*(R™)
and (&) = ¢(£)O(&) in a neighborhood of the origin with some © € C>*(R™). Let

0 < p,g < 0o and let N be a positive integer such that N > max(n/p,n/q). Let

w € Ayn/n. Suppose that o belongs to Bﬁﬂrjr/f]ﬂ for some € > 0 and satisfies

(2.11) and (2.12). Also, suppose that 1) € pNtn/aA+ for some € > 0. Then we

have
00 dt 1/q ) dt 1/q
‘(/ |f o pe|? 7) (/ |f* @e]? 7)
0 0
p p

for f € 8(R™), where C is a positive constant independent of f.

<c

Proof. If we have (2.11) and if ¢ € By 1"/2*") then (2.13) and (2.14) hold with

L = N by part (3) of Lemma 2.8 with J =1, 7 =¢, L = N. Since 1) € BN T/21+1
and € NI R\ {0}), if $(€) = HE)O(E) on (€] < r2A 1}, A > 1,
we have (2.16) and (2.17) with L = N by part (1) of Lemma 2.8 with J = A,
7 =¢, L = N and part (2) of Lemma 2.8 with J = A, L = N, respectively. Thus
Proposition 2.3 implies the conclusion. g

This immediately implies the following.

Theorem 2.10. Let ¢ € L*(R") satisfy (2.1) with M =1, (2.11) and (2.12). We
assume that 0 < p,q < oo and N is a positive integer satisfying N > max(n/p,n/q).

Let w € Apnypn- Suppose that ¢ € Bjj\\,rili/f]ﬂ for some € > 0. Then, if ¢ € $(R™)

and 1/; vanishes in a neighborhood of the origin, the inequality

0o th 1/q o th 1/q
H(/ e ) ([T1reard)

holds with a positive constant C independent of f.

<C

,  fesR),

Proof. We see that ¢)(¢) = $(£)O(€) in a neighborhood of the origin with © being

identically 0. Obviously, ¢ € B{V /241 g4 all the requirements for ¢ and v
in the hypotheses of Theorem 2.9 are satisfied. Thus the conclusion follows from
Theorem 2.9. This completes the proof. a

We note that @ fulfills all the requirements on ¢ in the hypotheses of Theorem
2.10 for every N. Thus, the inequality of the conclusion of Theorem 2.10 with @ in
place of ¢ is valid for all p,q € (0,00) and w € A = Up>14,. The same is true
of po € §(R™) satisfying (2.1) (with M = 1) and (1.2).
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3. LITTLEWOOD-PALEY OPERATORS AND HARDY SPACES

Let H denote the Hilbert space of functions u(t) on (0,00) such that ||u|lsc =

(fo7 lu(t)? dt/t)l/2 < oo. We first recall Hardy spaces of functions on R" with
values in H, which will be used to prove (1.4) by Theorem 2.10 (see Corollary 3.2
below).

The Lebesgue space L (R™) consists of functions h(y,t) with the norm

1/q
||h||q,f}c=</R ||hy||3fdy) |

where h¥(t) = h(y,t). For 0 < p < 1, we consider the Hardy space HE (R™) of
functions on R™ with values in . We take ¢ € §(R™) with [ ¢(z)dx = 1. Let
h e L5 (R"). We recall that h € Hy (R") if ||hl|gz_ = ||h*||» < 00, where

o 1/2
h*(z) = sup (/ |<ps*ht(£l?)|2 %) ,
0

s>0
with ht(z) = h(z,1t).
If a is a (p,00) atom in HY (R™), we have
i) (5 la(z, b)) dt/t)l/2 < |Q|~'/?, where @ is a cube in R* with sides parallel
to the coordinate axes;
(if) supp(a(-,t)) C @ uniformly in ¢ > 0, where @ is the same as in (i);
(iii) [gn a(,t)zY dz =0 for all £ > 0 and 7 such that |y| < [n(1/p — 1)], where
v=(71,---,7) is @ multi-index and z7 = z]" ... z]".
We apply the following atomic decomposition.
Lemma 3.1. Let h € L3, (R"). If h € HY (R"), then there exist a sequence {ay}
of (p,00) atoms in HY.(R™) and a sequence {\;} of positive numbers such that
Yore1 Ay < ClIbl% with a constant C independent of h and h = Y72, Apay in
FH
HY (R™) and in L3 (R™).
A proof of the atomic decomposition for H?(R") can be found in [6] and [17].

Similar methods apply to the vector valued case.
In this section, we prove the following result as an application of Theorem 2.10.

Corollary 3.2. Let 0 < p < 1, N > n/p. Suppose that p € L'(R™) satisfies (2.1)
with M =1, (2.11), (2.12) and suppose that p € Bjj\\,rﬁi/f]ﬂ for some € > 0. Then
we have

1 Fll e < Cpllge (H)llp
for f € HP(R™) N S(R™), where C), is a positive constant independent of f.

This can be generalized to an arbitrary f € HP(R™) if ¢ = Q or if ¢ is a function
in §(R™) satisfying (2.1) and (1.2) (see [18]).

In proving Corollary 3.2, we need the following.
Lemma 3.3. Suppose that n € S(R™), supp(n) C {1/2 < |¢] < 4}, 7(§) =1 on
{1 < |¢] <2} and that ® € $(R") satisfies [,, ®(z)de = 1. Let ¢ € §(R™) and
supp ¥ C {1 < |¢| £ 2}. Then, for p,q >0 and f € S(R™) we have

oo dt 1/‘1 o dt 1/‘1
(/ sup|<1>swt*f|q—) (/ Int*flq—>
0 s>0 t ) 0 t )

<c
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Proof. We note that ®(s&)e)(t€) = ®(s€)e(t€)n(¢€). Thus we have
| @5 # e f(2)] < (f *m)y -1 (@) /R (@ * e (w)|(1+ ¢ Hw )Y dw

()R @) [ [ s w1+ o)

< Cn(f* nt)}(\{ﬁl (z)
for any V > 0, with a positive constant Cx independent of s,¢. The last inequality
follows from the observation that ®,/ x 1, s,t > 0, belongs to a bounded subset
of the topological vector space $(R™), since F(®, % 1)(€) = S(ué)P(€), u > 0, and
(€) is supported on {1 < |¢] < 2}. Therefore, we have

S d 1/q oo d 1/q
a0 ([ spiecvs@r®) <o ([T E)

s>0

Thus (3.1) and Lemma 2.4 with 5 in place of ¢ imply
* A 0 di\ /9
</ SUP|‘I>S*1/Jt*f(m)|q—> gC(/ M(|f *ne|") (@) (z) /" _) :
0 0

>0 t t
with N =n/r. By this and Lemma 2.6, the conclusion follows as in (2.22). O

We also use the following to prove Corollary 3.2.

Lemma 3.4. Let ¢ € S(R™) be a radial function supported on {1 < |¢] < 2} such
that

/0 | (t6)? % =1 forall € #0.

Let f € HP(R*)NS(R™), 0 < p < 1, and put E(y,t) = f *¢(y). Then E is in
HY.(R™) and we have

I llze < ClE] -

Let 9 be a function in L'(R™) satisfying (1.2). Suppose that h € LZ.. Let
hiey(y,t) = h(y,t)X(c,e-1)(t), 0 < € < 1, where x5 denotes the characteristic func-
tion of a set S. Put

e dt
Fw@ = [ [ - nhowoa T
0 JRn
To prove Lemma 3.4 we apply the following.

Lemma 3.5. Let 0 < p < 1. Suppose that ¢ € S(R"™) and supp ¢ C {1 < ¢ <2}
Then
sup [|F(h)|lee < Cllhl gz, -
e€(0,1)

Proof. Let a be a (p,00) atom in HJ (R™) with support in the cube @ of the
definition of the atom. We denote by yo the center of Q). Let Q be a concentric
enlargement of @ such that 2|y — yo| < |z —yo| f y € @ and z € R \Q Let
® be a non-negative C'* function on R™ supported on {|z| < 1} which satisfies
J®(x)dr = 1. Let ¥, = ®, x4y, s,t > 0. Then ¥,; = (P, 1)), and P, * 1),
u > 0, belongs to a bounded subset of the topological vector space $(R™), as in the
proof of Lemma 3.3.
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Let P, (y,yo0) be the Taylor polynomial in y of order M = [n(1/p — 1)] at yo for

@,/ xp(x —y). Then, if |z — yo| > 2|y — yol, we see that
1@,/ x(z —y) — Pe(y,50)| < Cly —yo™ ™ (1 + |z — yo|) %,

where L > n + M + 1 and the constant C' is independent of s, ¢, z,y, yo, and hence

(W i(z —y) =t "Poyy/tyo/t)] < CE™ My — yo M (1 + |2 — ol /t)F
Therefore, by the properties of an atom and the Schwarz inequality, for x € R™ \@
we have

dt

@, % Fi(a) ()| = ‘ I oo (=) =Pyt o

< [ ([ 1este = =Pt ([ a0 )

> 2 dt 1/2
<cQr [ ([ -0 =mppwmwml T)
0

<CIQI [y = w0l e — ol dy
Q
S C|Q|_1/p+1+(M+1)/n|fL' _ y0|—n—M—1.

We note that p > n/(n+ M +1). Thus
(3.2) / sup |<I> * Fj(a) |p dx
R™\G >0

< C|Q|71+p+p(1\4+1)/n/R = |z — yo| P MY gy < C,

Since ;| (t€)[2 dt/t < C, by duality we have
SFP ) 1E5 (M2 < Cllhllzz,,  h € Li(R™).

ec(0,

Thus, applying Holder’s inequality, by the properties (i), (ii) of a we see that

33) [ sup|x o)) e < Clop " (/ - ))(m)mm)”/z

Q s>0
P/2
< C|Q|1 p/2 </ / y, |2 _dy>

The estimates (3.2) and (3.3) imply
(3.4) / sup |®, * Fy(a)(z)|” dz < C.
Rn s>0
Using Lemma 3.1 and (3.4), we have
/ sup | @, « F(h)(@)|" dz < ClIhE,
Rn s>0 H

This completes the proof. a
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Proof of Lemma 3.4. The fact that E € HJ.(R") can be proved similarly to the
proof of Lemma 3.5 by applying the atomic decomposition for H?(R™) (see [18,
Lemma 3.6]).

We write

EE@=[ [ wiwie-0aT= [ 106-50a

where 1) denotes the complex conjugate, g(z) = g(—z) and

W@ = [ [ i

€

We note that

W© = [ i = [ P

From this and Lemma 3.5 we have
» < C'limi FE(E) || ge < Ellge .
| fllee < Chf 151f|| ¢( Nae <Ol ||HH
O

Proof of Corollary 3.2. We take a function n as in Lemma 3.3. Then by Lemma
3.3 with ¢ = 2 and Lemma 3.4, it follows that

1 fllze < Cllgn (I,

for f € HP(R™) N S§(R™). If we use this and Theorem 2.10 with ¢ = 2, w = 1 and
with 7 in place of ¥, we can reach the conclusion of Corollary 3.2. O

We can also prove discrete parameter versions of Proposition 2.3 and Corollary
3.2 by analogous methods.

Proposition 3.6. Let N >0, n/N < p,q < co. Suppose that w € Apn/,, and that
© and ¢ fulfill the hypotheses of Proposition 2.3 with N. Then, for f € $(R™) we
have
1/q - 1/q
D0 Uf <O D 1 xeul
j=—oo j=—oo
p,w p,w
Corollary 3.7. Let 0 < p <1 and N > n/p. Suppose that ¢ fulfills the hypotheses
of Corollary 3.2 with N. Then, for f € HP(R*) N 8(R™) we have

1/2
(o)

1Al <C{ D 1F*ewl

j=—o0
P

Also, from Proposition 3.6 we have discrete parameter analogues of Theorems
2.9 and 2.10.
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4. PROOFS OF LEMMAS 2.1 AND 2.5
In this section we give proofs of Lemmas 2.1 and 2.5 for completeness.

Proof of Lemma 2.1. There exist a finite family {Ij}le of compact intervals in
(0,00) and a positive constant ¢ such that

M
. . (2) 2 >
Eelsr*lnf—l 1%%XL tléllfj Z; FeH)EN 2 e,

where S"~! = {¢: |¢| = 1}. This follows from a compactness argument, since each
F(p9) is continuous.

Let by = maxi<n<r(an/bn), where I, = [ap,bn]. Then by € (0,1) and if b €
[bo,1),t>0and 1 <h < L, h € Z, we have bt € I, for some j € Z.

Let [m, H] be an interval in (0,00) such that Uf_, I; C [m, H]. We take a non-
negative function # € C§°(R) such that # = 1 on [m, H], suppf C [m/2,2H].
Then

o) M
> AWIED D IT@ WO = w(€) 2 >0 for £ #0.

j=—o00
We have U(bk¢) = ¥(¢) for k € Z. Define
T () = 0(ENTF (D) ()T ™" for £ #0
and F(n()(0) = 0. Then, n has all the properties required in the lemma. Also,

from the construction, we can see that 3 € C*(R") if p € C*(R™ \ {0}). This
completes the proof. O

Proof of Lemma 2.5. Let fB(w 9 fly)dy = |B(z,t)|! fB(w 9 f(y) dy, where B(z,t)
denotes a ball in R™ with center x and radius ¢. Then, for u,7 > 0 and =,z € R”,

1/r
- 2)| = (ﬁ P (G2 Fa)I dy>

1/r 1/r
<c, (f Pyl dy> e (f Fla—2) - F)l dy> ,
B(x—z,u) B(x—z,u)

where C, = 1if r > 1 and C, = 277 if 0 < r < 1. Therefore

l/r
(41)  |F@-2)|<C, (f( )|F(y>|’"dy> +C s u[VF()
B(z—z,u

yile—z—y|<u
If |t — 2z —y| <u, |z —y| <u+ |z|. Thus we have
vrwl < L)
<|VFIY pz)(1+6 + R|zDY
<2V|VFIY p(2)(1+ RI2))Y
if we choose u = §/R. Consequently,
(42) sup  ulVF(y)| < 2VulVFIF pe) (1 + RJz)Y

yilze—z—y|<u

with v = §/R.

(14 R(u+|2))N
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Also, if u = §/R,
1/r 1/r

(4.3) ][ Fo)dy) < u*”(u+|z|>"][ F)I" dy
B(x—z,u) B(z,u+]|z])

<u (w2 TM(F]) (@)

=6 "8+ Rz M F|") (@)

< 67/"(1 + R|zl)™ M(F]) @)
From (4.1), (4.2) and (4.3), we see that

|F(z —2)| < C.6 ™" (1+ Rl2)™"M(|F|")(2)"/" + 2N Cou| V|3 g(z)(1 + R|2|)N.
If N =n/r, it follows that
|F(z — 2)|
(1+ RJz|)N
Thus we have the conclusion of the lemma by taking the supremum in z over R*. O

< C 0 NM(|IFI) ()" + 2N CLORTYVF|Y g (2).
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