Characterization of H^1 Sobolev spaces by square functions of Marcinkiewicz type

メタデータ	言語: eng
	出版者:
	公開日: 2019-11-08
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00056036
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

CHARACTERIZATION OF H^1 SOBOLEV SPACES BY SQUARE FUNCTIONS OF MARCINKIEWICZ TYPE

SHUICHI SATO

ABSTRACT. We establish characterization of H^1 Sobolev spaces by certain square functions of Marcinkiewicz type. The square functions are related to the Lusin area integrals. Also, in the one dimensional case, the non-periodic version of the function of Marcinkiewicz is applied to characterize weighted H^1 Sobolev spaces.

1. INTRODUCTION

We recall that a function Φ belongs to \mathcal{M}^{α} , $\alpha > 0$, if Φ is a bounded, compactly supported function on \mathbb{R}^n satisfying $\int_{\mathbb{R}^n} \Phi(x) dx = 1$; if $\alpha \ge 1$, we further require that

$$\int_{\mathbb{R}^n} \Phi(x) x^{\gamma} \, dx = 0 \quad \text{for all } \gamma \text{ with } 1 \le |\gamma| \le [\alpha],$$

where γ is a multi-index, $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_n), |\gamma| = \gamma_1 + \gamma_2 + \dots + \gamma_n, x^{\gamma} = x_1^{\gamma_1} \dots x_n^{\gamma_n}$ and $[\alpha]$ denotes the greatest integer not exceeding α . Let

(1.1)
$$G_{\alpha}(f)(x) = \left(\int_{0}^{\infty} |f(x) - \Phi_{t} * f(x)|^{2} \frac{dt}{t^{1+2\alpha}}\right)^{1/2}, \quad \alpha > 0,$$

where $\Phi \in \mathcal{M}^{\alpha}$ and $\Phi_t(x) = t^{-n} \Phi(t^{-1}x)$.

Let L_w^p , $0 , be the weighted Lebesgue space with the norm <math>||f||_{p,w}$ defined as $||f||_{p,w} = \left(\int_{\mathbb{R}^n} |f(x)|^p w(x) dx\right)^{1/p}$. When w = 1 (the unweighted case), $||f||_{p,w}$ is written simply as $||f||_p$. Let $w \in A_p$, $1 , where <math>A_p$ denotes the weight class of Muckenhoupt (see [7]), and let $\alpha > 0$. The Sobolev space $W_w^{\alpha,p}(\mathbb{R}^n)$ is defined to be the collection of functions $f \in L_w^p(\mathbb{R}^n)$ which can be expressed as $f = J_\alpha(g)$ with $g \in L_w^p(\mathbb{R}^n)$; the norm is given by $||f||_{p,\alpha,w} = ||g||_{p,w}$, where J_α is the Bessel potential operator defined as $J_\alpha(g) = K_\alpha * g$ with

$$\hat{K}_{\alpha}(\xi) = (1 + 4\pi^2 |\xi|^2)^{-\alpha/2}.$$

The Fourier transform is defined as

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i \langle x, \xi \rangle} \, dx, \quad \langle x, \xi \rangle = \sum_{j=1}^n x_j \xi_j.$$

It was proved in [17] that G_{α} can characterize the weighted Sobolev spaces $W_{w}^{\alpha,p}$, 1 .

²⁰¹⁰ Mathematics Subject Classification. Primary 46E35; Secondary 42B25.

Key Words and Phrases. Sobolev space, Littlewood-Paley function, Marcinkiewicz function, Lusin area integral.

The author is partly supported by Grant-in-Aid for Scientific Research (C) No. 16K05195, Japan Society for the Promotion of Science.

Theorem A. Let $1 , <math>0 < \alpha < n$ and $w \in A_p$, $\Phi \in \mathcal{M}^{\alpha}$. Let G_{α} be as in (1.1). Then $f \in W_w^{\alpha,p}(\mathbb{R}^n)$ if and only if $f \in L_w^p$ and $G_{\alpha}(f) \in L_w^p$; furthermore,

$$||f||_{p,\alpha,w} \simeq ||f||_{p,w} + ||G_{\alpha}(f)||_{p,w},$$

that is,

$$c_1 ||f||_{p,\alpha,w} \le ||f||_{p,w} + ||G_\alpha(f)||_{p,w} \le c_2 ||f||_{p,\alpha,w}$$

for positive constants c_1 , c_2 independent of f.

(See [17, Corollary 5.2].) A square function characterization of the Sobolev spaces of this type was established by [1]. It has been developed by [8, 15]. Special cases of Theorem A can be found in [15]. In [16] a square function characterization of $W_w^{\alpha,p}$ different from Theorem A was given when $\alpha = 2$. Also, an alternative proof of a result of [8] using a pointwise relation between a square function of Marcinkiewicz type and one arising from the Bochner-Riesz operators can be found in [18].

We now state an application of Theorem A. Let B(x,t) be the ball centered at x with radius t: $B(x,t) = \{y \in \mathbb{R}^n : |x-y| < t\}$ and $B_0 = B(0,1)$. Put $\chi_0 = |B_0|^{-1}\chi_{B_0}$, where $|B_0|$ denotes the Lebesgue measure of B_0 and χ_{B_0} is the characteristic function of B_0 . Then $\chi_0 \in \mathcal{M}^{\alpha}$ for $\alpha \in (0,2)$. If $\Phi = \chi_0$ in (1.1), $G_{\alpha}(f)$ can be expressed as

$$\left(\int_0^\infty \left|f(x) - \oint_{B(x,t)} f(y) \, dy\right|^2 \frac{dt}{t^{1+2\alpha}}\right)^{1/2}$$

,

where $\int_{B(x,t)} f(y) dy = |B(x,t)|^{-1} \int_{B(x,t)} f(y) dy$. Theorem A applies to this square function for $0 < \alpha < \min(n, 2)$, as shown in [1] in the unweighted case.

In this note we consider characterization of H^1 Sobolev spaces by square functions of Marcinkiewicz type. Let $S(\mathbb{R}^n)$ be the Schwartz class of rapidly decreasing smooth functions. We choose $\varphi \in S(\mathbb{R}^n)$ satisfying $\int_{\mathbb{R}^n} \varphi \, dx = 1$, $\varphi \geq 0$ and $\operatorname{supp}(\varphi) \subset B(0,1)$. The function φ will be fixed in what follows. Let $H^p(\mathbb{R}^n)$, $0 , be the Hardy space of tempered distributions on <math>\mathbb{R}^n$ such that $f^* \in L^p(\mathbb{R}^n)$, where $f^*(x) = \sup_{t>0} |\varphi_t * f(x)|$. The norm of f in $H^p(\mathbb{R}^n)$ is defined to be $||f||_{H^p} = ||f^*||_p$. It is known that a different choice of such φ gives an equivalent norm. The space H^p coincides with L^p when $1 and <math>H^1$ is contained in L^1 . We denote by $S_0(\mathbb{R}^n)$ a dense subspace of $H^p(\mathbb{R}^n)$ consisting of those functions f in $S(\mathbb{R}^n)$ such that $\hat{f} = 0$ outside a compact set not containing the origin (see [26, Chapters V and VII]).

Let $f \in L^1_{loc}$ and

(1.2)
$$\nu(f)(x) = \left(\int_0^\infty |f(x+t) + f(x-t) - 2f(x)|^2 \frac{dt}{t^3}\right)^{1/2}$$

Put $\mu(f) = \nu(\mathfrak{I}(f))$, where $\mathfrak{I}(f)(x) = \int_0^x f(y) \, dy$. Then $\mu(f)$ is the function of Marcinkiewicz and we have

$$\|\mu(f)\|_p \simeq \|f\|_{H^p}$$

for $f \in S_0(\mathbb{R})$ when 2/3 (see [14, Theorem 4]). It follows that

(1.3)
$$\|\nu(f)\|_p \simeq \|f'\|_{H^1}$$

if $f \in S_0(\mathbb{R})$ when 2/3 .

Let g_{ψ} be the Littlewood-Paley function on \mathbb{R}^n defined as

$$g_{\psi}(f)(x) = \left(\int_{0}^{\infty} |f * \psi_{t}(x)|^{2} \frac{dt}{t}\right)^{1/2},$$

with $\psi \in L^1(\mathbb{R}^n)$ satisfying $\int_{\mathbb{R}^n} \psi(x) dx = 0$. The Marcinkiewicz function μ was introduced by the author in 1938 (see [11]) in the setting of periodic functions. The non-periodic version $\mu(f)$ can be realized as a Littlewood-Paley function $g_{\psi}(f)$ on \mathbb{R} with $\psi(x) = \chi_{[0,1]}(x) - \chi_{[-1,0]}(x)$.

We define the H^1 Sobolev space by

$$W_{H^1}^{\alpha}(\mathbb{R}^n) = \{ f \in H^1(\mathbb{R}^n) : f = J_{\alpha}(h) \text{ for some } h \in H^1(\mathbb{R}^n) \}.$$

For $f \in W_{H^1}^{\alpha}$, define $||f||_{W_{H^1}^{\alpha}} = ||h||_{H^1}$ with $f = J_{\alpha}(h)$. This is well-defined since J_{α} is an injection from H^1 to H^1 . To see that J_{α} is injective on H^1 , suppose that $J_{\alpha}(f) = J_{\alpha}(g)$ for $f, g \in H^1$. Then by part (2) of Lemma 2.5 below, we have

$$\int (K_{\alpha} * h)(y) f(y) dy = \int (K_{\alpha} * f)(y) h(y) dy$$
$$= \int (K_{\alpha} * g)(y) h(y) dy = \int (K_{\alpha} * h)(y) g(y) dy$$

for all $h \in S(\mathbb{R}^n)$, which implies that f = g, since J_{α} is a surjection from $S(\mathbb{R}^n)$ to $S(\mathbb{R}^n)$.

The estimates (1.3) indicates that the square function ν can characterize $W^1_{H^1}(\mathbb{R})$. Indeed, we have Theorem 1.2 below. In general dimensions, we can give a characterization of the space $W^{\alpha}_{H^1}(\mathbb{R}^n)$ in terms of Lusin area integral functions of Marcinkiewicz type. Let I_{α} be the Riesz potential operator defined by

$$\widehat{I_{\alpha}(f)}(\xi) = (2\pi|\xi|)^{-\alpha}\widehat{f}(\xi), \quad f \in \mathbb{S}(\mathbb{R}^n).$$

If $L_{\alpha}(x) = \tau(\alpha)|x|^{\alpha-n}$, then $\widehat{L}_{\alpha}(\xi) = (2\pi|\xi|)^{-\alpha}$, $0 < \alpha < n$, where $\Gamma(n/2 - \alpha/2)$

$$\tau(\alpha) = \frac{\Gamma(n/2 - \alpha/2)}{\pi^{n/2} 2^{\alpha} \Gamma(\alpha/2)}$$

(see [23, Chapter V.1]). Let

(1.4)
$$\psi^{(\alpha)}(x) = L_{\alpha}(x) - L_{\alpha} * \Phi(x)$$

where $\Phi \in \mathcal{M}^{\alpha}$, $0 < \alpha < n$. We note that $\psi^{(\alpha)} \in L^1(\mathbb{R}^n)$ (see [17, p. 37]). Define

$$S_{\psi^{(\alpha)}}(f)(x) = \left(\int_0^\infty \int_{B_0} |\psi_t^{(\alpha)} * f(x - tz)|^2 dz \frac{dt}{t}\right)^{1/2}$$
$$= \left(\int_0^\infty \int_{B(x,t)} |\psi_t^{(\alpha)} * f(z)|^2 dz t^{-n} \frac{dt}{t}\right)^{1/2}$$

Then, by homogeneity of the Riesz potential,

$$S_{\psi^{(\alpha)}}(f)(x) = \left(\int_0^\infty \int_{B_0} |I_\alpha f(x-tz) - \Phi_t * I_\alpha f(x-tz)|^2 dz t^{-2\alpha} \frac{dt}{t}\right)^{1/2} \\ = \left(\int_0^\infty \int_{B(x,t)} |I_\alpha f(z) - \Phi_t * I_\alpha f(z)|^2 dz t^{-2\alpha-n} \frac{dt}{t}\right)^{1/2}.$$

Also, let

(1.5)
$$U_{\alpha}(f)(x) = \left(\int_{0}^{\infty} \int_{B_{0}} |f(x-tz) - \Phi_{t} * f(x-tz)|^{2} dz t^{-2\alpha} \frac{dt}{t}\right)^{1/2}$$
$$= \left(\int_{0}^{\infty} \int_{B(x,t)} |f(z) - \Phi_{t} * f(z)|^{2} dz t^{-2\alpha-n} \frac{dt}{t}\right)^{1/2}.$$

Then U_{α} is available to characterize the Sobolev space $W_{H^1}^{\alpha}(\mathbb{R}^n)$.

Theorem 1.1. Let U_{α} be as in (1.5). Suppose that $n/2 < \alpha < n$, $\Phi \in \mathcal{M}^{\alpha}$ and that there exists $\beta > 0$ such that

$$|\hat{\Phi}(\xi)| \le C(1+|\xi|)^{-\beta}, \quad \alpha+\beta > n$$

Then the following two statements are equivalent:

(1) $f \in W^{\alpha}_{H^1}(\mathbb{R}^n),$

(2) $f \in H^{\overline{1}}(\mathbb{R}^n)$ and $U_{\alpha}(f) \in L^1(\mathbb{R}^n)$.

Further, we have $||f||_{W^{\alpha}_{H^1}} \simeq ||f||_{H^1} + ||U_{\alpha}(f)||_1$.

We refer to [25] for a related previous work.

We note that

$$\hat{\chi_0}(\xi) \leq C(1+|\xi|)^{-(n+1)/2}.$$

When n = 1, this can be seen by a direct computation. If $n \ge 2$, this follows by applications of Theorem 3.3 and Lemmas 3.11, 4.13 of [24, Chapter IV]. Further, $\chi_0 \in \mathcal{M}^{\alpha}$, $0 < \alpha < 2$. Thus Theorem 1.1 is available for n = 1, 2, 3 when $\Phi = \chi_0$. Also, if Φ is a bounded radial function with compact support, then $|\hat{\Phi}(\xi)| \le C(1 + |\xi|)^{-(n-1)/2}$, which easily follows from a formula in [24, Theorem 3.3, Chapter IV]. If $\Phi = \chi_0$ in (1.5), then $U_{\alpha}(f)$ can be written, up to a constant factor, as

$$\left(\int_0^\infty \oint_{B(x,t)} \left| f(z) - \oint_{B(z,t)} f(y) \, dy \right|^2 \, dz \, t^{-2\alpha} \frac{dt}{t} \right)^{1/2}$$

This may extend to the case of metric measure spaces, since the expression $\int_{B(x,t)} f$ makes sense in general metric measure spaces. Thus, Theorem 1.1 suggests that we may define H^1 Sobolev spaces in metric measure spaces by considering $H^{1,\infty}$ on metric measure spaces as the definition of Hardy spaces, where $H^{1,\infty}$ denotes the atomic H^1 (see [10, Chap. 3] for $H^{1,\infty}$). The square function $U_{\alpha}(f)$ with $\Phi = \chi_0$ was used in [9] to characterize the classical Sobolev space $W^{\alpha,p}(\mathbb{R}^n)$ with $\alpha \in (0,2)$ and $p \in (1,\infty)$.

We can also consider weighted H^1 Sobolev spaces. Recall the weight class A_1 of Muckenhoupt consisting of weights w such that $M(w) \leq Cw$ almost everywhere. We have denoted by M the Hardy-Littlewood maximal operator defined as

$$M(f)(x) = \sup_{B} |B|^{-1} \int_{B} |f(y)| \, dy,$$

where the supremum is taken over all balls B containing x. Let H_w^1 , $w \in A_1$, be the subspace of L_w^1 such that $f^* \in L_w^1$ with the norm $||f||_{H_w^1} = ||f^*||_{1,w}$. Similarly, we can define $H_w^p(\mathbb{R}^n)$ for $p \in (0,1)$ with $w \in A_1$ to be the space of tempered distributions f such that $f^* \in L_w^p$. Then $\mathcal{S}_0(\mathbb{R}^n)$ is dense in $H_w^p(\mathbb{R}^n)$, 0(see [26]). Define

$$W^{\alpha}_{H^{1}_{w}}(\mathbb{R}^{n}) = \{ f \in H^{1}_{w}(\mathbb{R}^{n}) : f = J_{\alpha}(h) \text{ for some } h \in H^{1}_{w}(\mathbb{R}^{n}) \}.$$

For $f \in W_{H_w^1}^{\alpha}$, let $||f||_{W_{H_w^1}^{\alpha}} = ||h||_{H_w^1}$ with $f = J_{\alpha}(h)$, which is also well-defined since J_{α} is injective on H_w^1 (see Lemma 2.5 (2) below and recall that $J_{\alpha} : \mathbb{S} \to \mathbb{S}$ is onto). Here we note that $J_{\alpha}(h) \in H_w^1$ whenever $h \in H_w^1$. To see this, we first observe that $J_{\alpha}(h)^* \leq K_{\alpha} * h^*$, where we recall that K_{α} is the kernel of J_{α} and $K_{\alpha} > 0$ (see [23, Chapter V, identity (26)]). Also, we have $K_{\alpha} * w \leq CM(w)$ by applying suitably [23, Chapter III, Theorem 2], since the least decreasing radial majorant of K_{α} is integrable (see [23, Chapter V, identities (29), (30)]). Thus

$$||J_{\alpha}(h)^{*}||_{1,w} \leq C ||h^{*}||_{1,M(w)} \leq C ||h^{*}||_{1,w} = C ||h||_{H^{1}_{w}}.$$

In the one dimensional case, we have the following result.

Theorem 1.2. Let ν be as in (1.2) and $w \in A_1$. Then we have the equivalence of the following two statements:

(1) $f \in W^1_{H^1_w}(\mathbb{R}),$ (2) $f \in H^1_w(\mathbb{R})$ and $\nu(f) \in L^1_w(\mathbb{R}).$

(2) $f \in H_w(\mathbb{R})$ that $\nu(f) \in L_w(\mathbb{R})$. Also, we have $\|f\|_{W_{H^1}^1} \simeq \|f\|_{H_w^1} + \|\nu(f)\|_{1,w}$.

Remark 1.3. The square function $S_{\psi^{(\alpha)}}(f)$ can be treated in some respects similarly to

$$\mathcal{D}_{\alpha}(f)(x) = \left(\int_{\mathbb{R}^n} |I_{\alpha}(f)(x-y) - I_{\alpha}(f)(x)|^2 \frac{dy}{|y|^{n+2\alpha}}\right)^{1/2}$$

(See [21], [3] and also [5], [22] for \mathcal{D}_{α} .)

Remark 1.4. Let $0 < \alpha < n/2$ and $1 \le p < 2n/(2\alpha + n)$ (we note that p < 2). Then, $S_{\psi^{(\alpha)}}$ is not bounded on L^p , where $\psi^{(\alpha)}$ is as in (1.4). (See Section 5 for a proof, which is based on [3]; see also [21] for the weak type estimates at $p = 2n/(2\alpha + n)$.)

Remark 1.5. In Theorem 1.1, the condition $\alpha > n/2$ is optimal in the sense that if $0 < \alpha < n/2$, the estimate $||U_{\alpha}(f)||_1 \leq C||f||_{W^{\alpha}_{H^1}}$ does not hold, where U_{α} is as in (1.5) with $\Phi \in \mathcal{M}^{\alpha}$. (A proof can be found in Section 5.)

Remark 1.6. The proof of Theorem A is based on the estimates $\|g_{\psi^{(\alpha)}}(f)\|_{p,w} \simeq \|f\|_{p,w}, w \in A_p, 1 , where <math>\psi^{(\alpha)}$ is as in (1.4). If $\|g_{\psi^{(\alpha)}}(f)\|_1 \simeq \|f\|_{H^1}$, then we would be able to characterize $W^{\alpha}_{H^1}$ by G_{α} .

We shall prove Theorem 1.1 in Section 2 and Theorem 1.2 in Section 4. The proof of Theorem 1.1 is based on the equivalence of $||S_{\psi^{(\alpha)}}(f)||_1$ and $||f||_{H^1}$, $f \in S_0(\mathbb{R}^n)$ (Theorem 2.3). In proving Theorem 1.2, we shall show in Section 3 the estimates of the kind $||f||_{H^1_w} \leq C ||g_{\psi}(f)||_{1,w}$ for $f \in S_0(\mathbb{R}^n)$ (see Theorem 3.2), which generalizes a result of [27] to the case of weighted Hardy spaces.

2. Proof of Theorem 1.1

We will show Theorem 1.1 by means of the equivalence $c ||f||_{H^1} \leq ||S_{\psi^{(\alpha)}}(f)||_1 \leq C ||f||_{H^1}$ which will be established in Theorem 2.3. The first inequality is obtained via a duality argument based on Lemma 2.2 below, while the converse inequality will come from the application of a Calderón-Zygmund estimate for vector valued kernels

in [7, Chapter V, Corollary 3.10], whose crucial step is checking the Hörmander condition in Lemma 2.1 below.

Lemma 2.1. Let $\psi^{(\alpha)}$ be as in (1.4) with α and Φ as in Theorem 1.1. Then

$$\int_{|x|>2|y|} \left[\int_{B_0 \times (0,\infty)} \left| \psi_t^{(\alpha)}(x-y-tz) - \psi_t^{(\alpha)}(x-tz) \right|^2 dz \frac{dt}{t} \right]^{1/2} dx \le C,$$

with a constant C independent of $y \in \mathbb{R}^n$.

Proof. To prove the lemma, by a change of variables we may assume that $\operatorname{supp}(\Phi) \subset B_0$. This can be seen as follows. Suppose that $\operatorname{supp}(\Phi) \subset B(0, M)$ with M > 1. Let c = 1/M. Then by a change of variables, we see that

$$\begin{split} &\int_{B_0 \times (0,\infty)} \left| \psi_t^{(\alpha)} \left(x - y - tz \right) - \psi_t^{(\alpha)} \left(x - tz \right) \right|^2 \, dz \, \frac{dt}{t} \\ &= c^{-n} \int_{B(0,c) \times (0,\infty)} \left| \psi_{ct}^{(\alpha)} \left(x - y - tz \right) - \psi_{ct}^{(\alpha)} \left(x - tz \right) \right|^2 \, dz \, \frac{dt}{t} \\ &\leq c^{-n} \int_{B_0 \times (0,\infty)} \left| \psi_{ct}^{(\alpha)} \left(x - y - tz \right) - \psi_{ct}^{(\alpha)} \left(x - tz \right) \right|^2 \, dz \, \frac{dt}{t}. \end{split}$$

We note that

$$\psi_c^{(\alpha)}(x) = c^{-\alpha} (L_\alpha(x) - L_\alpha * \Phi_c(x))$$

and that $\operatorname{supp}(\Phi_c) \subset B_0$. This implies what we need.

Fix $x, y \in \mathbb{R}^n$ with |x| > 2|y|. Let

$$I(x, y, t) = \int_{B_0} \left| \psi_t^{(\alpha)}(x - y - tz) - \psi_t^{(\alpha)}(x - tz) \right|^2 dz.$$

We write $I(x, y, t) = I_1(x, y, t) + I_2(x, y, t)$, where

$$I_1(x, y, t) = \int_{z \in B_0, |x/t-z| < 6} \left| \psi_t^{(\alpha)}(x - y - tz) - \psi_t^{(\alpha)}(x - tz) \right|^2 dz,$$

$$I_2(x, y, t) = \int_{z \in B_0, |x/t-z| > 6} \left| \psi_t^{(\alpha)}(x - y - tz) - \psi_t^{(\alpha)}(x - tz) \right|^2 dz.$$

We first estimate $I_1(x, y, t)$. Decompose $I_1(x, y, t) = I_{1,1}(x, y, t) + I_{1,2}(x, y, t)$, where

$$I_{1,1}(x,y,t) = \int_{z \in B_0, 2|y|/t < |x/t-z| < 6} \left| \psi_t^{(\alpha)}(x-y-tz) - \psi_t^{(\alpha)}(x-tz) \right|^2 \, dz,$$

$$I_{1,2}(x,y,t) = \int_{z \in B_0, |x/t-z| < 6, |x/t-z| < 2|y|/t} \left| \psi_t^{(\alpha)}(x-y-tz) - \psi_t^{(\alpha)}(x-tz) \right|^2 dz.$$

Since $L_{\alpha} * \Phi$ is bounded and $n/2 < \alpha < n$, we easily see that

$$I_{1,2}(x,y,t) \le Ct^{-2n} \int_{|z|<3|y|/t} |z|^{-2n+2\alpha} dz \le Ct^{-2n} \left(\frac{|y|}{t}\right)^{-n+2\alpha}.$$

If |x/t - z| < 6 and |z| < 1, then t > |x|/7. Thus

(2.1)
$$\int_{0}^{\infty} I_{1,2}(x,y,t) \frac{dt}{t} = \int_{|x|/7}^{\infty} I_{1,2}(x,y,t) \frac{dt}{t}$$
$$\leq C \int_{|x|/7}^{\infty} t^{-2n} \left(\frac{|y|}{t}\right)^{-n+2\alpha} \frac{dt}{t} \leq C|y|^{-n+2\alpha} |x|^{-n-2\alpha}$$

Let $I'_{1,1}(x, y, t)$ and $I''_{1,1}(x, y, t)$ be defined in the same manner as $I_{1,1}(x, y, t)$ with L_{α} and $L_{\alpha} * \Phi$ in place of $\psi^{(\alpha)}$, respectively. Then $I_{1,1} \leq 2I'_{1,1} + 2I''_{1,1}$. By the mean value theorem we see that

$$\begin{split} I_{1,1}'(x,y,t) &\leq Ct^{-2n} \left(\frac{|y|}{t}\right)^2 \int_{2|y|/t < |x/t-z| < 6} \left|\frac{x}{t} - z\right|^{2(-n-1+\alpha)} dz \\ &= Ct^{-2n} \left(\frac{|y|}{t}\right)^2 \int_{2|y|/t < |z| < 6} |z|^{2(-n-1+\alpha)} dz. \end{split}$$

Thus, if $n/2 < \alpha < n/2 + 1$,

(2.2)
$$I'_{1,1}(x,y,t) \le Ct^{-2n} \left(\frac{|y|}{t}\right)^2 (2|y|/t)^{-n-2+2\alpha} \le Ct^{-2n} \left(\frac{|y|}{t}\right)^{-n+2\alpha};$$

if $n/2 + 1 < \alpha$,

(2.3)
$$I'_{1,1}(x,y,t) \le Ct^{-2n} \left(\frac{|y|}{t}\right)^2$$

and if $\alpha = n/2 + 1$,

(2.4)
$$I'_{1,1}(x,y,t) \le Ct^{-2n} \left(\frac{|y|}{t}\right)^2 \log_+\left(\frac{3t}{|y|}\right).$$

where $\log_{+} s = \max(\log s, 0)$. By (2.2), (2.3) and (2.4), we have

$$(2.5) \quad \int_{0}^{\infty} I'_{1,1}(x,y,t) \, \frac{dt}{t} = \int_{|x|/7}^{\infty} I'_{1,1}(x,y,t) \, \frac{dt}{t} \\ \leq \begin{cases} C|y|^{-n+2\alpha}|x|^{-n-2\alpha} & \text{if } n/2 < \alpha < n/2 + 1, \\ C|y|^{2}|x|^{-2n-2} & \text{if } \alpha > n/2 + 1, \\ C|y|^{2}|x|^{-2n-2} \log\left(\frac{|x|}{|y|}\right) & \text{if } \alpha = n/2 + 1. \end{cases}$$

We note that the case $\alpha \ge n/2 + 1$ may occur only when $n \ge 3$, if $n/2 < \alpha < n$. To estimate $I_{1,1}''$, we note that

$$\begin{aligned} |L_{\alpha} * \Phi(x-y) - L_{\alpha} * \Phi(x)| &= \left| \int_{\mathbb{R}^n} |2\pi\xi|^{-\alpha} \hat{\Phi}(\xi) e^{2\pi i \langle x,\xi \rangle} \left(e^{-2\pi i \langle y,\xi \rangle} - 1 \right) d\xi \right| \\ &\leq C \int_{\mathbb{R}^n} |\xi|^{-\alpha} (1+|\xi|)^{-\beta} |y|^{\epsilon} |\xi|^{\epsilon} d\xi \\ &\leq C |y|^{\epsilon}, \end{aligned}$$

where $0 < \epsilon < \min(\alpha + \beta - n, 1)$. Thus

$$I_{1,1}''(x,y,t) \le Ct^{-2n} \left(\frac{|y|}{t}\right)^{2\epsilon},$$

and hence

(2.6)
$$\int_0^\infty I_{1,1}''(x,y,t) \, \frac{dt}{t} = \int_{|x|/7}^\infty I_{1,1}''(x,y,t) \, \frac{dt}{t} \le C|y|^{2\epsilon} |x|^{-2n-2\epsilon}.$$

We recall that it is assumed that |x| > 2|y|. To estimate $I_2(x, y, t)$, we observe that if |x/t - z| > 6 and |z| < 1, then $|x|/t \ge 5$ and $|x/t - y/t - z| \ge |x|/(2t) - |z| > 3/2$. So, further if $|x/t - z| < c_0|x|/t$ with $0 < c_0 < 2/3$, we would have $|z| \ge (1 - c_0)|x|/t > 1$. Thus

$$I_2(x,y,t) = \int_{z \in B_0, |x/t-z| \ge 6, |x/t-z| \ge c_0 |x|/t} \left| \psi_t^{(\alpha)}(x-y-tz) - \psi_t^{(\alpha)}(x-tz) \right|^2 \, dz.$$

Take $c_0 \in (1/2, 2/3)$. Since $\Phi \in \mathcal{M}^{\alpha}$, by Taylor's formula, we see that

$$\psi_t^{(\alpha)}(x - y - tz) = t^{-n} \int \left[L_\alpha \left(\frac{x}{t} - \frac{y}{t} - z \right) - L_\alpha \left(\frac{x}{t} - \frac{y}{t} - z - w \right) \right] \Phi(w) \, dw$$

= $-t^{-n} \sum_{|\gamma| = [\alpha] + 1} \frac{[\alpha] + 1}{\gamma!} \int \int_0^1 (1 - s)^{[\alpha]} (\partial^{\gamma} L_\alpha) \left(\frac{x}{t} - \frac{y}{t} - z - sw \right) \, ds \, (-w)^{\gamma} \Phi(w) \, dw$

and

$$\begin{split} \psi_t^{(\alpha)}(x-y-tz) &- \psi_t^{(\alpha)}(x-tz) \\ &= -t^{-n} \sum_{|\gamma|=[\alpha]+1} \frac{[\alpha]+1}{\gamma!} \int \int_0^1 (1-s)^{[\alpha]} N_\gamma(x,y,z,w,t,s) \, ds \, (-w)^\gamma \Phi(w) \, dw, \end{split}$$

where

$$N_{\gamma}(x, y, z, w, t, s) = (\partial^{\gamma} L_{\alpha}) \left(\frac{x}{t} - \frac{y}{t} - z - sw\right) - (\partial^{\gamma} L_{\alpha}) \left(\frac{x}{t} - z - sw\right)$$
$$= \sum_{|\beta|=1} \frac{-y^{\beta}}{t} \int_{0}^{1} (\partial^{\gamma+\beta} L_{\alpha}) \left(\frac{x}{t} - \frac{uy}{t} - z - sw\right) du.$$

Here $\partial^{\gamma} = \partial_1^{\gamma_1} \dots \partial_n^{\gamma_n}$, $\partial_j = \partial/\partial x_j$, $1 \le j \le n$, and $\gamma! = \gamma_1! \dots \gamma_n!$.

We note that $|x/t - uy/t - z - sw| \ge c|x/t - z|$ for some c > 0 if |x/t - z| > 6, $2|y| < |x|, z, w \in B_0, u, s \in [0, 1]$ and $|x/t - z| \ge c_0|x|/t$. This can be seen as follows. First, as in the case u = 1 above we have $|x/t - uy/t - z| \ge 3/2$. Thus

$$\left|\frac{x}{t} - \frac{uy}{t} - z - sw\right| \ge \frac{1}{3} \left|\frac{x}{t} - \frac{uy}{t} - z\right| \ge \frac{1}{3} \left(1 - \frac{1}{2c_0}\right) \left|\frac{x}{t} - z\right|,$$

as claimed. Using these results in (2.7), we have

$$I_{2}(x, y, t) \leq C \int_{z \in B_{0}, |x/t-z| > 6, |x/t-z| \geq c_{0}|x|/t} t^{-2n} \left(\frac{|y|}{t}\right)^{2} \left|\frac{x}{t} - z\right|^{2(-n+\alpha-[\alpha]-2)} dz$$

$$\leq Ct^{-2n} \left(\frac{|y|}{t}\right)^{2} \left(\frac{|x|}{t}\right)^{2(-n+\alpha-[\alpha]-2)}$$

$$\leq Ct^{-2\alpha+2[\alpha]+2} |y|^{2} |x|^{2(-n+\alpha-[\alpha]-2)}$$

and hence

(2.8)
$$\int_0^\infty I_2(x,y,t) \frac{dt}{t} = \int_0^{|x|/5} I_2(x,y,t) \frac{dt}{t} \le C|y|^2 |x|^{-2n-2}$$

Since

$$\int_{B_0 \times (0,\infty)} \left| \psi_t^{(\alpha)}(x-y-tz) - \psi_t^{(\alpha)}(x-tz) \right|^2 dz \, \frac{dt}{t} \le C \int_0^\infty I_{1,2}(x,y,t) \, \frac{dt}{t} \\ + C \int_0^\infty I_{1,1}'(x,y,t) \, \frac{dt}{t} + C \int_0^\infty I_{1,1}''(x,y,t) \, \frac{dt}{t} + C \int_0^\infty I_2(x,y,t) \, \frac{dt}{t},$$

using (2.1), (2.5), (2.6), (2.8) and recalling that $\alpha > n/2$, we can get the conclusion.

Also, we need the next result for the proof of Theorem 2.3.

Lemma 2.2. Let $\psi^{(\alpha)}$ be as in (1.4). Then, if $f \in S_0(\mathbb{R}^n)$ and $g \in BMO(\mathbb{R}^n)$, we have

$$\left|\int_{\mathbb{R}^n} f(x)g(x)\,dx\right| \le C ||g||_{\text{BMO}} \int_{\mathbb{R}^n} S_{\psi^{(\alpha)}}(f)(x)\,dx.$$

This can be shown by the methods of part (a) of Remarks on pp. 148–149 of [6].

Proof of Lemma 2.2. There exists $\eta \in S_0(\mathbb{R}^n)$ such that

$$\int_0^\infty \widehat{\psi^{(\alpha)}}(t\xi) \widehat{\eta}(-t\xi) \, \frac{dt}{t} = 1 \quad \text{for all } \xi \neq 0.$$

We can find such η since

(2.9)
$$\widehat{\psi^{(\alpha)}}(\xi) = (2\pi|\xi|)^{-\alpha} (1 - \widehat{\Phi}(\xi))$$

satisfies a non-degeneracy condition $\sup_{t>0} |\widehat{\psi^{(\alpha)}}(t\xi)| > 0$ for $\xi \neq 0$. (See [2, Lemma 4.1] and its proof.) Since $g \in BMO$, we have the Carleson measure estimate (see [6, p. 145])

(2.10)
$$\sup_{y \in \mathbb{R}^n, h > 0} h^{-n} \int_0^h \int_{B(y,h)} |g * \eta_t(x)|^2 \, dx \, \frac{dt}{t} \le C ||g||_{\text{BMO}}^2.$$

Let

$$S_{\eta}^{(h)}(g)(x) = \left(\int_{0}^{h} \int_{\mathbb{R}^{n}} \chi_{[0,1]}\left(\frac{|x-y|}{t}\right) |g * \eta_{t}(y)|^{2} \, dy \, t^{-n} \, \frac{dt}{t}\right)^{1/2}$$

Then (2.10) implies that

(2.11)
$$\sup_{z \in \mathbb{R}^{n}, h > 0} |B(z, h)|^{-1} \int_{B(z, h)} S_{\eta}^{(h)}(g)(x)^{2} dx \leq C_{0}^{2} ||g||_{BMO}^{2}.$$

This can be seen as follows.

$$\begin{split} \int_{B(z,h)} S_{\eta}^{(h)}(g)(x)^2 \, dx &= \int_0^h \int_{\mathbb{R}^n} |B(z,h) \cap B(y,t)| |g * \eta_t(y)|^2 \, dy \, t^{-n} \, \frac{dt}{t} \\ &\leq C \int_0^h \int_{B(z,2h)} |g * \eta_t(y)|^2 \, dy \, \frac{dt}{t} \\ &\leq C ||g||_{\text{BMO}}^2 h^n. \end{split}$$

Let

$$h(x) = \sup\{h : S_{\eta}^{(h)}(g)(x) \le 2^{1/2}C_0 ||g||_{BMO}\}.$$

Then

(2.12)
$$|\{x \in B(z, h_0) : h(x) \ge h_0\}| \ge |B(z, h_0)|/2$$

for all $z \in \mathbb{R}^n$ and $h_0 > 0$. To see this, by (2.11) we observe that

$$\begin{split} C_0^2 \|g\|_{\text{BMO}}^2 |B(z,h_0)| &\geq \int\limits_{B(z,h_0) \setminus \{x:h(x) \geq h_0\}} S_\eta^{(h_0)}(g)(x)^2 \, dx \\ &\geq 2C_0^2 \|g\|_{\text{BMO}}^2 \left(|B(z,h_0)| - |\{x \in B(z,h_0): h(x) \geq h_0\}|\right), \end{split}$$

from which (2.12) follows.

Now we can show

(2.13)
$$\int_0^\infty \int_{\mathbb{R}^n} |f * \psi_t^{(\alpha)}(y)| |g * \eta_t(y)| \, dy \, \frac{dt}{t} \le C ||g||_{\text{BMO}} \int_{\mathbb{R}^n} S_{\psi^{(\alpha)}}(f)(x) \, dx.$$

To see this, we first note that by (2.12) the left hand side is bounded up to a constant factor by

$$\begin{split} \int_0^\infty \int_{\mathbb{R}^n} |\{x \in B(y,t) : h(x) \ge t\} |t^{-n}| f * \psi_t^{(\alpha)}(y)| |g * \eta_t(y)| \, dy \, \frac{dt}{t} \\ &= \int_0^\infty \int_{\mathbb{R}^n} \left(\int_{h(x) \ge t} \chi_{[0,1]}\left(\frac{|x-y|}{t}\right) \, dx \right) |f * \psi_t^{(\alpha)}(y)| |g * \eta_t(y)| \, dy \, t^{-n} \, \frac{dt}{t} \end{split}$$

Fubini's theorem implies that this quantity is equal to

$$\int_{\mathbb{R}^n} \left(\int_0^{h(x)} \int_{\mathbb{R}^n} \chi_{[0,1]} \left(\frac{|x-y|}{t} \right) |f * \psi_t^{(\alpha)}(y)| |g * \eta_t(y)| \, dy \, t^{-n} \, \frac{dt}{t} \right) \, dx.$$

Via Schwarz's inequality, this is bounded by

$$\int_{\mathbb{R}^n} S_{\psi^{(\alpha)}}(f)(x) S_{\eta}^{(h(x))}(g)(x) \, dx,$$

from which (2.13) follows, since $S_{\eta}^{(h(x))}(g)(x) \leq 2^{1/2}C_0 ||g||_{\text{BMO}}$. Finally we prove

(2.14)
$$\int_{\mathbb{R}^n} f(x)g(x)\,dx = \int_0^\infty \int_{\mathbb{R}^n} f * \psi_t^{(\alpha)}(y)g * \eta_t(y)\,dy\,\frac{dt}{t},$$

for $f \in S_0(\mathbb{R}^n)$ and $g \in BMO(\mathbb{R}^n)$, assuming that $S_{\psi^{(\alpha)}}(f) \in L^1(\mathbb{R}^n)$. Combining (2.13) and (2.14), we get the conclusion of the lemma. To see (2.14), we first note that $\int |g(z)|(1+|z|)^{-n-1} dz < \infty$, since $g \in BMO(\mathbb{R}^n)$, and hence

$$\int |g(z)|(1+|y-z|)^{-n-1} \, dz \le C(1+|y|)^{n+1}.$$

From this we have

$$\int_{\mathbb{R}^n} f * \psi_t^{(\alpha)}(y) g * \eta_t(y) \, dy = \lim_{m \to \infty} \int_{\mathbb{R}^n} f * \psi_t^{(\alpha)}(y) g_{(m)} * \eta_t(y) \, dy$$

for each t > 0, where $g_{(m)}(x) = g(x)\chi_{[0,m]}(|x|)$, $m = 1, 2, \ldots$, which can be seen by the dominated convergence theorem, since $f * \psi_t^{(\alpha)} \in S$, $|g_{(m)} * \eta_t(y)| \le C_t (1+|y|)^{n+1}$ and $g_{(m)} * \eta_t \to g * \eta_t$ pointwise. We notice that $g_{(m)} \in L^1$ and

$$I_m(t) := \int_{\mathbb{R}^n} f * \psi_t^{(\alpha)}(y) g_{(m)} * \eta_t(y) \, dy = \int_{\mathbb{R}^n} \hat{f}(\xi) \widehat{\psi^{(\alpha)}}(t\xi) \widehat{g_{(m)}}(-\xi) \hat{\eta}(-t\xi) \, d\xi.$$

Using this and the fact $f, \eta \in S_0$, we can see that there exists $\epsilon \in (0, 1)$ such that $I_m(t) = 0$ if $t \notin (\epsilon, \epsilon^{-1})$ and

$$1 = \int_0^\infty \widehat{\psi^{(\alpha)}}(t\xi)\widehat{\eta}(-t\xi) \frac{dt}{t} = \int_{\epsilon}^{\epsilon^{-1}} \widehat{\psi^{(\alpha)}}(t\xi)\widehat{\eta}(-t\xi) \frac{dt}{t} \quad \text{for } \xi \in \text{supp}(\widehat{f}).$$

Also, we note that

$$\sup_{m \ge 1, t \in [\epsilon, \epsilon^{-1}]} \int_{\mathbb{R}^n} \left| f * \psi_t^{(\alpha)}(y) g_{(m)} * \eta_t(y) \right| \, dy \le C.$$

Applying these results, we have

$$\begin{split} \int_0^\infty \int_{\mathbb{R}^n} f * \psi_t^{(\alpha)}(y) g * \eta_t(y) \, dy \, \frac{dt}{t} &= \int_0^\infty \left(\lim_{m \to \infty} \int_{\mathbb{R}^n} f * \psi_t^{(\alpha)}(y) g_{(m)} * \eta_t(y) \, dy \right) \, \frac{dt}{t} \\ &= \int_{\epsilon}^{\epsilon^{-1}} \left(\lim_{m \to \infty} \int_{\mathbb{R}^n} f * \psi_t^{(\alpha)}(y) g_{(m)} * \eta_t(y) \, dy \right) \, \frac{dt}{t} \\ &= \lim_{m \to \infty} \int_{\epsilon}^{\epsilon^{-1}} \left(\int_{\mathbb{R}^n} f * \psi_t^{(\alpha)}(y) g_{(m)} * \eta_t(y) \, dy \right) \, \frac{dt}{t} \\ &= \lim_{m \to \infty} \int_{\epsilon}^{\epsilon^{-1}} \left(\int_{\mathbb{R}^n} \hat{f}(\xi) \widehat{\psi^{(\alpha)}}(t\xi) \widehat{g_{(m)}}(-\xi) \hat{\eta}(-t\xi) \, d\xi \right) \, \frac{dt}{t} \\ &= \lim_{m \to \infty} \int_{\mathbb{R}^n} \hat{f}(\xi) \widehat{g_{(m)}}(-\xi) \left(\int_{\epsilon}^{\epsilon^{-1}} \widehat{\psi^{(\alpha)}}(t\xi) \hat{\eta}(-t\xi) \, \frac{dt}{t} \right) \, d\xi \\ &= \lim_{m \to \infty} \int_{\mathbb{R}^n} \hat{f}(\xi) \widehat{g_{(m)}}(-\xi) \, d\xi = \lim_{m \to \infty} \int_{\mathbb{R}^n} f(x) g_{(m)}(x) \, dx \\ &= \int_{\mathbb{R}^n} f(x) g(x) \, dx. \end{split}$$

This completes the proof of (2.14) and hence that of the lemma.

Now we can prove the following result, which will be applied in the proof of Theorem 1.1.

Theorem 2.3. Suppose that $\psi^{(\alpha)}$ is as in (1.4) with α and Φ as in Theorem 1.1. Then

$$||S_{\psi^{(\alpha)}}(f)||_1 \simeq ||f||_{H^1}, \quad f \in S_0(\mathbb{R}^n).$$

Proof. The inequality $||f||_{H^1} \leq C ||S_{\psi^{(\alpha)}}(f)||_1$ follows from the estimate of Lemma 2.2 and duality of H^1 and BMO by taking supremum over $g \in BMO$ with $||g||_{BMO} \leq 1$.

The reverse inequality will be proved by applying a result of [7]. We first note that $S_{\psi^{(\alpha)}}$ is bounded on $L^2(\mathbb{R}^n)$. To see this, by the Plancherel theorem we observe that

$$\int_{\mathbb{R}^n} S_{\psi^{(\alpha)}}(f)^2(x) \, dx = |B_0| \int_{\mathbb{R}^n} |\hat{f}(\xi)|^2 \int_0^\infty |\widehat{\psi^{(\alpha)}}(t\xi)|^2 \, \frac{dt}{t} \, d\xi$$

From this we can deduce the L^2 boundedness, since $|\psi^{(\alpha)}(\xi)| \leq C|\xi|^{-\alpha}$ and $|\psi^{(\alpha)}(\xi)| \leq C|\xi|^{-\alpha}$, which is a consequence of the hypothesis $\Phi \in \mathcal{M}^{\alpha}$ and (2.9). In Lemma 2.1 we have checked the Hörmander condition which is required for [7, Chapter V, Corollary 3.10] to apply. Thus the reverse inequality follows from Corollary 3.10 of [7, Chapter V] for \mathcal{H} -valued singular integrals, where \mathcal{H} is the Hilbert space with the norm $||g||_{\mathcal{H}} = \left(\int_0^{\infty} \int_{B_0} |g(z,t)|^2 dz dt/t\right)^{1/2}$.

We also need the next result for the proof of Theorem 1.1.

Lemma 2.4. Let $\alpha > 0$ and $w \in A_1$. There exist Fourier multipliers ℓ and m for $H^1_w(\mathbb{R}^n)$ such that

(2.15)
$$(2\pi|\xi|)^{\alpha} = \ell(\xi)(1+4\pi^2|\xi|^2)^{\alpha/2},$$

(2.16)
$$(1 + 4\pi^2 |\xi|^2)^{\alpha/2} = m(\xi)(1 + (2\pi |\xi|)^{\alpha})$$

This follows from [26, Chapter XI, Theorem 14].

Proof of Theorem 1.1. Let $n/2 < \alpha < n$ and let U_{α} be as in Theorem 1.1. We show that

(2.17)
$$\|U_{\alpha}(J_{\alpha}(g))\|_{1} + \|J_{\alpha}(g)\|_{H^{1}} \simeq \|g\|_{H^{1}}$$

for $g \in H^1$. First we assume that $g \in S_0(\mathbb{R}^n)$. Then $U_\alpha(J_\alpha(g)) = S_{\psi^{(\alpha)}}(I_{-\alpha}J_\alpha(g))$ and by Theorem 2.3 we have

(2.18)
$$\|U_{\alpha}(J_{\alpha}(g))\|_{1} \simeq \|I_{-\alpha}J_{\alpha}(g))\|_{H^{1}}.$$

Thus by (2.15) with w = 1

(2.19)
$$||U_{\alpha}(J_{\alpha}(g))||_{1} \leq C||g||_{H^{1}}$$

Also, we easily see that

$$(2.20) ||J_{\alpha}(g)||_{H^{1}} \le C ||K_{\alpha}||_{1} ||g^{*}||_{1} \le C ||g||_{H^{1}}.$$

Next, by (2.16) with w = 1 and (2.18) we see that

(2.21)
$$\|g\|_{H^1} = \|J_{-\alpha}J_{\alpha}(g)\|_{H^1} \le C\|J_{\alpha}(g)\|_{H^1} + C\|I_{-\alpha}J_{\alpha}(g)\|_{H^1} \le C\|J_{\alpha}(g)\|_{H^1} + C\|U_{\alpha}(J_{\alpha}(g))\|_1,$$

By (2.19), (2.20) and (2.21), we have (2.17) for $g \in S_0(\mathbb{R}^n)$.

For $g \in H^1$, take a sequence $\{g_k\}$ in $\mathcal{S}_0(\mathbb{R}^n)$ satisfying $g_k \to g$, $J_\alpha(g_k) \to J_\alpha(g)$ in H^1 and almost everywhere as $k \to \infty$. Fix $x \in \mathbb{R}^n$ and t > 0. Then

$$|J_{\alpha}(g_k)(z) - \Phi_t * J_{\alpha}(g_k)(z)| \to |J_{\alpha}(g)(z) - \Phi_t * J_{\alpha}(g)(z)| \quad \text{for almost every } z \in B(x, t).$$

Thus Fatou's lemma implies that

$$\int_{B(x,t)} |J_{\alpha}(g)(z) - \Phi_t * J_{\alpha}(g)(z)|^2 \, dz \le \liminf_{k \to \infty} \int_{B(x,t)} |J_{\alpha}(g_k)(z) - \Phi_t * J_{\alpha}(g_k)(z)|^2 \, dz,$$

and hence by Fatou's lemma it follows that

$$U_{\alpha}(J_{\alpha}(g))(x) \leq \liminf_{k \to \infty} U_{\alpha}(J_{\alpha}(g_k))(x)$$

for all x. By (2.17) for $g \in S_0(\mathbb{R}^n)$ we have

$$|U_{\alpha}(J_{\alpha}(g_k))||_1 \le C ||g_k||_{H^{1}}.$$

Using this and Fatou's lemma, we have

$$\begin{aligned} \|U_{\alpha}(J_{\alpha}(g))\|_{1} &\leq \liminf_{k \to \infty} \|U_{\alpha}(J_{\alpha}(g_{k}))\|_{1} \\ &\leq C \liminf_{k \to \infty} \|g_{k}\|_{H^{1}} \\ &\leq C \|g\|_{H^{1}}. \end{aligned}$$

Applying this we can deduce that

$$\begin{split} &\lim_{k \to \infty} \left\| U_{\alpha}(J_{\alpha}(g)) - U_{\alpha}(J_{\alpha}(g_{k})) \right\|_{1} \leq \lim_{k \to \infty} \left\| U_{\alpha}(J_{\alpha}(g - g_{k})) \right\|_{1} \\ &\leq C \lim_{k \to \infty} \left\| g - g_{k} \right\|_{H^{1}} = 0. \end{split}$$

Therefore, letting $k \to \infty$ in

$$||U_{\alpha}(J_{\alpha}(g_k))||_1 + ||J_{\alpha}(g_k)||_{H^1} \simeq ||g_k||_{H^1},$$

which follows from (2.17) on $S_0(\mathbb{R}^n)$, we have (2.17) on the whole H^1 .

Since we have shown (2.17), to complete the proof of Theorem 1.1, it suffices to prove that $f \in W_{H^1}^{\alpha}$ if $f \in H^1$ and $U_{\alpha}(f) \in L^1$. For this we need the next two lemmas.

Lemma 2.5. Let $f \in L^1_w$, $w \in A_1$, $g \in S(\mathbb{R}^n)$ and $\alpha > 0$. Then

(1) we have

$$K_{\alpha} * (f * g)(x) = (K_{\alpha} * f) * g(x) = (K_{\alpha} * g) * f(x) \quad \text{for every } x \in \mathbb{R}^n$$

(2) also,

$$\int_{\mathbb{R}^n} (K_\alpha * f)(y)g(y) \, dy = \int_{\mathbb{R}^n} (K_\alpha * g)(y)f(y) \, dy$$

Proof. By Fubini's theorem, the result is a consequence of the estimate

$$\iint K_{\alpha}(x-z-y)|f(y)||g(z)|\,dy\,dz<\infty,\quad x\in\mathbb{R}^n$$

This follows from the inequality

$$\int K_{\alpha}(x-z-y)|g(z)|\,dz \le C_{x,M}(1+|y|)^{-M}$$

for any M > 0, which is a consequence of the fact that $g \in S(\mathbb{R}^n)$ and K_{α} is rapidly decreasing as $|x| \to \infty$ (see [23, p.132]), since the assumption $f \in L^1_w$ implies $\int |f(y)|(1+|y|)^{-n} dy < \infty$ (see [13, Section 4]).

SHUICHI SATO

Lemma 2.6. Let $w \in A_1$ and let $\{g_m\}_{m=1}^{\infty}$ be a sequence of functions in H_w^1 satisfying $\sup_{m\geq 1} \|g_m\|_{H_w^1} < \infty$. Then there exist a subsequence $\{g_{m_k}\}_{k=1}^{\infty}$ and $g \in H_w^1$ such that

$$\int_{\mathbb{R}^n} g_{m_k}(x)v(x) \, dx \to \int_{\mathbb{R}^n} g(x)v(x) \, dx \quad \text{as } k \to \infty \text{ for } v \in C_c(\mathbb{R}^n),$$

where $C_c(\mathbb{R}^n)$ is the space of all continuous functions with compact support on \mathbb{R}^n ; also this is valid for all $v \in S(\mathbb{R}^n)$.

Proof. Let $O_l = B(0,l)$, $l = 1, 2, 3, \ldots$ We note that $w(x) \ge C_w (1 + |x|)^{-n}$ for $w \in A_1$, which follows from the property $M(w)(x) \le Cw(x)$ valid for A_1 weights (see [13, Section 4]). Thus we have $\sup_{m \ge 1} \int_{O_l} |g_m| dx < \infty$ for every l.

It is well-known that there exist a subsequence $\{g_{m_k}\}_{k=1}^{\infty}$ and a regular Borel measure μ_l such that

(2.22)
$$\int_{\mathbb{R}^n} \chi_{O_{l+1}}(y) g_{m_k}(y) v(y) \, dy \to \int_{\mathbb{R}^n} v(y) \, d\mu_l(y) \quad \text{as } k \to \infty \text{ for } v \in C_c(\mathbb{R}^n)$$

(see [4, 1.9, Theorem 2]). We note that the subsequence can be chosen independent of l by the diagonal process. Taking $\varphi_{\epsilon}(x-y)$ in (2.22) in place of v(y) for $x \in O_l, \epsilon \in (0, 1)$, we easily see that

$$\left| \int_{\mathbb{R}^n} \varphi_{\epsilon}(x-y) \, d\mu_l(y) \right| \le \liminf_{k \to \infty} \left| \int_{\mathbb{R}^n} \varphi_{\epsilon}(x-y) g_{m_k}(y) \, dy \right| \le \liminf_{k \to \infty} g_{m_k}^*(x),$$

since $y \in O_{l+1}$ if $\varphi_{\epsilon}(x-y) \neq 0$, and hence

$$\int_{O_l} \mu_l^{\dagger}(x) \, dx \leq \liminf_{k \to \infty} \|g_{m_k}^*\|_1 \leq C,$$

where

$$\mu_l^{\dagger}(x) = \sup_{\epsilon \in (0,1)} \left| \int_{\mathbb{R}^n} \varphi_{\epsilon}(x-y) \, d\mu_l(y) \right|, \quad g_{m_k}^*(x) = \sup_{\epsilon > 0} \left| \int_{\mathbb{R}^n} \varphi_{\epsilon}(x-y) g_{m_k}(y) \, dy \right|.$$

Also, for $v \in C_c(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} \varphi_{\epsilon}(x-y) \, d\mu_l(y) \right) v(x) \, dx \to \int_{\mathbb{R}^n} v(y) \, d\mu_l(y) \quad \text{as } \epsilon \to 0.$$

Thus

$$\left| \int_{\mathbb{R}^n} v(y) \, d\mu_l(y) \right| \le \int_{O_l} |v(x)| \mu_l^{\dagger}(x) \, dx$$

for all $v \in C_c(\mathbb{R}^n)$ with support in O_l , which implies

$$|\mu_l|(O) \le \int_O \mu_l^{\dagger}(x) \, dx \le \int_{O_l} \mu_l^{\dagger}(x) \, dx$$

for any open set O in O_l , where $|\mu_l|$ is the total variation of μ_l . Thus μ_l is absolutely continuous when restricted to O_l and there exists $g_l \in L^1(\mathbb{R}^n)$ such that

(2.23)
$$\int v(x) d\mu_l(x) = \int v(x)g_l(x) dx \quad \text{for } v \in C_c(\mathbb{R}^n) \text{ with support in } O_l.$$

By (2.22) and (2.23), we can see that there is a locally integrable function g on \mathbb{R}^n such that $g = g_l$ on O_l and

$$\int_{\mathbb{R}^n} g_{m_k}(y) v(y) \, dy \to \int_{\mathbb{R}^n} g(y) v(y) \, dy \quad \text{as } k \to \infty \text{ for } v \in C_c(\mathbb{R}^n).$$

Applying this with $v(y) = \varphi_{\epsilon}(x-y)$, as above, we have $g^{*}(x) \leq \liminf_{k \to \infty} g^{*}_{m_{k}}(x)$, which combined with the assumption that $\{g_k^*\}$ is L_w^1 bounded implies $g^* \in L_w^1$ and hence $g \in H^1_w$. The result for $v \in \mathcal{S}(\mathbb{R}^n)$ follows from that for $v \in C_c(\mathbb{R}^n)$.

Now we can finish the proof of Theorem 1.1. Suppose that $f \in H^1$ and $U_{\alpha}(f) \in$ L^1 . Let $f^{(\epsilon)}(x) = \varphi_{\epsilon} * f(x)$ and $g^{(\epsilon)}(x) = J_{-\alpha}(\varphi_{\epsilon}) * f(x)$. Then $g^{(\epsilon)} \in H^1$ and by part (1) of Lemma 2.5 with w = 1, $f^{(\epsilon)} = J_{\alpha}(g^{(\epsilon)})$ and (2.17) implies

(2.24)
$$\|U_{\alpha}(f^{(\epsilon)})\|_{1} + \|f^{(\epsilon)}\|_{H^{1}} \simeq \|g^{(\epsilon)}\|_{H^{1}}.$$

We easily see that

(2.25)
$$\sup_{\epsilon>0} \|f^{(\epsilon)}\|_{H^1} \le C \|f\|_{H^1}.$$

Further, using Minkowski's inequality, we have

$$\begin{aligned} U_{\alpha}(f^{(\epsilon)})(x) &= \left(\int_{0}^{\infty} \int_{B(x,t)} |\varphi_{\epsilon} * f(z) - \Phi_{t} * \varphi_{\epsilon} * f(z)|^{2} dz t^{-2\alpha - n} \frac{dt}{t}\right)^{1/2} \\ &\leq \int_{\mathbb{R}^{n}} \varphi_{\epsilon}(y) \left(\int_{0}^{\infty} \int_{B(x,t)} |f(z-y) - \Phi_{t} * f(z-y)|^{2} dz t^{-2\alpha - n} \frac{dt}{t}\right)^{1/2} dy \\ &= \int_{\mathbb{R}^{n}} \varphi_{\epsilon}(y) U_{\alpha}(f)(x-y) dy, \end{aligned}$$

which implies

(2.26)
$$\sup_{\epsilon > 0} \|U_{\alpha}(f^{(\epsilon)})\|_{1} \le \|U_{\alpha}(f)\|_{1}$$

Combining (2.24), (2.25) and (2.26), we have $\sup_{\epsilon>0} \|g^{(\epsilon)}\|_{H^1} < \infty$. Thus by Lemma 2.6 for w = 1 we have a sequence $\{g^{(\epsilon_k)}\}$ with $\epsilon_k \to 0$ and $g \in H^1$ such that

$$\int_{\mathbb{R}^n} g^{(\epsilon_k)}(x)v(x) \, dx \to \int_{\mathbb{R}^n} g(x)v(x) \, dx \quad \text{as } k \to \infty \text{ for } v \in \mathbb{S}(\mathbb{R}^n).$$

Also, $\{f^{(\epsilon_k)}\}$ converges to f in L^1 . Thus, we can see that $f = J_{\alpha}(g)$. We show this in more detail as follows. Let $v \in S(\mathbb{R}^n)$. Then, using part (2) of Lemma 2.5 with w = 1 and the fact that $J_{\alpha}(v) \in \mathcal{S}(\mathbb{R}^n)$, we see that

$$(2.27) \qquad \int f(x)v(x) \, dx = \lim_{k \to \infty} \int f^{(\epsilon_k)}(x)v(x) \, dx = \lim_{k \to \infty} \int J_\alpha(g^{(\epsilon_k)})(x)v(x) \, dx$$
$$= \lim_{k \to \infty} \int g^{(\epsilon_k)}(x)J_\alpha(v)(x) \, dx = \int g(x)J_\alpha(v)(x) \, dx$$
$$= \int J_\alpha(g)(x)v(x) \, dx.$$

It follows that $f = J_{\alpha}(g)$. Thus $f \in W_{H^1}^{\alpha}(\mathbb{R}^n)$.

3. Estimates for Littlewood-Paley functions on the weighted Hardy SPACES

To prove Theorem 1.2, we need Theorem 3.2 below with p = 1 and n = 1 (see [19] and [20] for the unweighted case).

Definition 3.1. Let $\psi \in L^1(\mathbb{R}^n)$. We say $\psi \in \mathcal{B}$ if

- (1) $\hat{\psi} \in C^{\infty}(\mathbb{R}^n \setminus \{0\});$
- (2) $\sup_{t>0} |\hat{\psi}(t\xi)| > 0$ for all $\xi \neq 0$; (3) $\psi \in C^1(\mathbb{R}^n), \partial_k \psi \in L^1(\mathbb{R}^n), 1 \le k \le n$;
- (4) $|\hat{\psi}(\xi)| \leq C |\xi|^{\epsilon}$ for some $\epsilon > 0$;
- (5) $|\partial^{\gamma} \hat{\psi}(\xi)| \leq C_{\gamma,\tau} |\xi|^{-\tau}$ outside a neighborhood of the origin for all multiindices γ and $\tau > 0$.

Theorem 3.2. Let $0 , <math>w \in A_1$ and $\psi \in \mathcal{B}$. Then we have

$$||f||_{H^p_w} \leq C_p ||g_\psi(f)||_{p,w}$$

for $f \in S_0(\mathbb{R}^n)$ with a positive constant C_p independent of f, where we recall that $||f||_{H^p_w} = ||f^*||_{p,w}.$

Let \mathcal{H} be the Hilbert space of functions u(t) on $(0,\infty)$ such that $||u||_{\mathcal{H}} =$ $\left(\int_{0}^{\infty} |u(t)|^2 dt/t\right)^{1/2} < \infty$. Let $w \in A_1$. We consider the weighted Lebesgue space $L^q_{\mathcal{H},w}(\mathbb{R}^n)$ of functions h(y,t) with the norm

$$\|h\|_{q,\mathcal{H},w} = \left(\int_{\mathbb{R}^n} \|h^y\|_{\mathcal{H}}^q w(y) \, dy\right)^{1/q},$$

where $h^{y}(t) = h(y, t)$. When w = 1, we write simply $L^{q}_{\mathcal{H},w}(\mathbb{R}^{n}) = L^{q}_{\mathcal{H}}(\mathbb{R}^{n})$.

Let $0 . We consider the weighted Hardy space of functions on <math>\mathbb{R}^n$ with values in \mathcal{H} , which is denoted by $H^p_{\mathcal{H},w}(\mathbb{R}^n)$. We say that $h \in H^p_{\mathcal{H},w}(\mathbb{R}^n)$ if $h\in L^2_{\mathcal{H}}(\mathbb{R}^n)$ and $\|h\|_{H^p_{\mathcal{H},w}}=\|h^*\|_{p,w}<\infty$ with

$$h^*(x) = \sup_{s>0} \left(\int_0^\infty |\varphi_s * h^t(x)|^2 \frac{dt}{t} \right)^{1/2},$$

where we write $h^t(x) = h(x, t)$ and we recall that φ is the function in $S(\mathbb{R}^n)$ fixed in Section 1.

In proving Theorem 3.2, we need the next result.

Lemma 3.3. Let $\hat{\psi} \in S(\mathbb{R}^n)$ be a radial function such that $\operatorname{supp}(\hat{\psi}) \subset \{1 \leq |\xi| \leq 2\}$ and

$$\int_0^\infty |\hat{\psi}(t\xi)|^2 \frac{dt}{t} = 1 \quad \text{for all } \xi \neq 0.$$

Let $F(y,t) = f * \psi_t(y)$ with $f \in S_0(\mathbb{R}^n)$. Let $w \in A_1$. Then $F \in H^p_{\mathcal{H},w}(\mathbb{R}^n)$, 0 , and

$$||f||_{H^p_w} \le C ||F||_{H^p_{\mathcal{H},w}}.$$

Let ψ be as in Lemma 3.3 and

$$E_{\psi}^{\epsilon}(h)(x) = \int_0^{\infty} \int_{\mathbb{R}^n} \psi_t(x-y) h_{(\epsilon)}(y,t) \, dy \, \frac{dt}{t},$$

where $h \in L^2_{\mathcal{H}}$ and $h_{(\epsilon)}(y,t) = h(y,t)\chi_{(\epsilon,\epsilon^{-1})}(t), 0 < \epsilon < 1.$

To prove Lemma 3.3 we apply the following.

Lemma 3.4. Suppose that $w \in A_1$. Then

$$\sup_{\epsilon \in (0,1)} \|E_{\psi}^{\epsilon}(h)\|_{H^{p}_{w}} \le C \|h\|_{H^{p}_{\mathcal{H},w}}, \quad 0$$

To prove Lemma 3.4 we use the atomic decomposition.

Definition 3.5. We say that a is a (p, ∞) atom in $H^p_{\mathcal{H}, w}(\mathbb{R}^n), w \in A_1, 0 , if$

- (i) $\left(\int_0^\infty |a(x,t)|^2 dt/t\right)^{1/2} \le w(B)^{-1/p}$, where B is a ball in \mathbb{R}^n and $w(B) = \int_B w(x) dx$;
- (ii) $supp(a(\cdot, t)) \subset B$ for all t > 0, where B is the same as in (i);
- (iii) $\int_{\mathbb{R}^n} a(x,t) x^{\gamma} dx = 0$ for all t > 0 and multi-indices γ such that $|\gamma| \leq [n(1/p-1)]$.

Lemma 3.6. Let $w \in A_1$, $0 . Suppose that <math>h \in H^p_{\mathcal{H},w}(\mathbb{R}^n)$. Then there exist a sequence $\{a_k\}$ of (p, ∞) atoms in $H^p_{\mathcal{H},w}(\mathbb{R}^n)$ and a sequence $\{\lambda_k\}$ of positive numbers such that $\sum_{k=1}^{\infty} \lambda_k^p \leq C ||h||^p_{H^p_{\mathcal{H},w}}$, where C is a constant independent of h, and $h = \sum_{k=1}^{\infty} \lambda_k a_k$ in $H^p_{\mathcal{H},w}(\mathbb{R}^n)$ and in $L^2_{\mathcal{H}}(\mathbb{R}^n)$.

A proof of the atomic decomposition for $H^p_w(\mathbb{R}^n)$ can be found in [26, Chapter VIII] and the proof for the vector valued case is similar; we can apply the same arguments as in the case of the scalar valued case by replacing absolute values with \mathcal{H} -norms in appropriate places.

Also, we need the following result in proving Lemma 3.4.

Lemma 3.7. Let $w \in A_2$ and $h \in L^2_{\mathcal{H},w}(\mathbb{R}^n) \cap L^2_{\mathcal{H}}(\mathbb{R}^n)$. Let ψ be as in Lemma 3.3. Then

$$\sup_{\epsilon \in (0,1)} \|E_{\psi}^{\epsilon}(h)\|_{2,w} \le C \|h\|_{2,\mathcal{H},w}.$$

Proof. Let $\Psi \in C_0^{\infty}(\mathbb{R}^n)$ satisfy $\operatorname{supp}(\Psi) \subset \{1/2 \leq |\xi| \leq 2\}$ and $\sum_{m \in \mathbb{Z}} \Psi(2^{-m}\xi) = 1$ for $\xi \neq 0$. Define

$$\Delta_m(h)(x,t) = \int \Psi(2^{-m}\xi)\hat{h}(\xi,t)e^{2\pi i\langle\xi,x\rangle} d\xi,$$

where the Fourier transform \hat{h} is with respect to x variable, and

$$A_m(h_{(\epsilon)})(x) = \int_0^\infty \int_{\mathbb{R}^n} \psi_t(x-y) \Delta_m(h_{(\epsilon)})(y,t) \, dy \, \frac{dt}{t}.$$

Then by taking the Fourier transform we see that

$$A_m(h_{(\epsilon)})(x) = \int_{2^{-m-1}}^{2^{-m+2}} \int_{\mathbb{R}^n} \psi_t(x-y) \Delta_m(h_{(\epsilon)})(y,t) \, dy \, \frac{dt}{t}.$$

We note that

$$\left|\int_{\mathbb{R}^n} \psi_t(x-y)\Delta_m(h_{(\epsilon)})(y,t)\,dy\right| \le CM(\Delta_m(h_{(\epsilon)})(\cdot,t))(x),$$

since the least decreasing radial majorant of ψ is integrable (see [23, Chapter III, Theorem 2]). Similarly,

$$\left|\Delta_m(h_{(\epsilon)})(x,t)\right| \le CM(h_{(\epsilon)}(\cdot,t))(x).$$

It follows that

$$|A_m(h_{(\epsilon)})(x)|^2 \le C \int_{2^{-m-1}}^{2^{-m+2}} M^2(h_{(\epsilon)}(\cdot,t))(x)^2 \frac{dt}{t}$$

Thus, since the maximal operator M is bounded on L^2_w for $w \in A_2$,

$$\int |A_m(h_{(\epsilon)})(x)|^2 w(x) \, dx \le C \int_{2^{-m-1}}^{2^{-m+2}} \int |h(x,t)|^2 w(x) \, dx \, \frac{dt}{t}.$$

Using this and applying Littlewood-Paley inequality with $w \in A_2$, we have

$$\begin{aligned} \|\sum_{m\in\mathbb{Z}} A_m(h_{(\epsilon)})\|_{2,w}^2 &\leq C\sum_{m\in\mathbb{Z}} \|A_m(h_{(\epsilon)})\|_{2,w}^2 \\ &\leq C \|h\|_{2,\mathcal{H},w}^2. \end{aligned}$$

This completes the proof, since $E_{\psi}^{\epsilon}(h) = \sum_{m \in \mathbb{Z}} A_m(h_{(\epsilon)})$.

Proof of Lemma 3.4. The proof is analogous to the one for Lemma 3.5 of [19]. So we put it briefly. Let a be a (p, ∞) atom in $H^p_{\mathcal{H},w}(\mathbb{R}^n)$ supported on the ball B of Definition 3.5. If \widetilde{B} is a concentric enlargement of B such that 2|y - y'| < |x - y'| for $y, y' \in B$ and $x \in \mathbb{R}^n \setminus \widetilde{B}$. Then, as in the proof of Lemma 3.5 of [19], using properties of an atom, for $x \in \mathbb{R}^n \setminus \widetilde{B}$ and $y' \in B$ we have

(3.1)
$$|\varphi_s * E_{\psi}^{\epsilon}(a)(x)| \le Cw(B)^{-1/p} |x-y'|^{-n-M-1} \int_B |y-y'|^{M+1} dy$$

where M = [n(1/p - 1)].

To prove (3.1), let $\Psi_{s,t} = \varphi_s * \psi_t$, s, t > 0. Let $P_x(y, y')$ be the Taylor polynomial in y of order M = [n(1/p-1)] at y' for $\varphi_{s/t} * \psi(x-y)$. Then, if |x-y| > 2|y'-y|, we see that

$$|\Psi_{s,t}(x-y) - t^{-n}P_{x/t}(y/t,y'/t)| \le Ct^{-n-M-1}|y-y'|^{M+1}(1+|x-y'|/t)^{-L}$$

where L > n + M + 1 and the constant C is independent of s, t, x, y', y. Thus, using the properties of an atom and the Schwarz inequality, for $x \in \mathbb{R}^n \setminus \widetilde{B}$ we have

$$\begin{split} \left|\varphi_{s} * E_{\psi}^{\epsilon}(a)(x)\right| &= \left|\iint_{\mathbb{R}^{n} \times (0,\infty)} \left(\Psi_{s,t}(x-y) - t^{-n}P_{x/t}(y/t,y'/t)\right) a_{(\epsilon)}(y,t) \, dy \, \frac{dt}{t} \right. \\ &\leq \int_{B} \left(\int_{0}^{\infty} \left|\Psi_{s,t}(x-y) - t^{-n}P_{x/t}(y/t,y'/t)\right|^{2} \, \frac{dt}{t}\right)^{1/2} \left(\int_{0}^{\infty} |a(y,t)|^{2} \, \frac{dt}{t}\right)^{1/2} \, dy \\ &\leq Cw(B)^{-1/p} \int_{B} \left(\int_{0}^{\infty} \left|\Psi_{s,t}(x-y) - t^{-n}P_{x/t}(y/t,y'/t)\right|^{2} \, \frac{dt}{t}\right)^{1/2} \, dy \\ &\leq Cw(B)^{-1/p} \int_{B} |y-y'|^{M+1} |x-y'|^{-n-M-1} \, dy, \end{split}$$

which proves (3.1).

Since p > n/(n + M + 1), by a straightforward computation, using (3.1), we see that

(3.2)
$$\int_{\mathbb{R}^n \setminus \widetilde{B}} \sup_{s>0} \left| \varphi_s * E_{\psi}^{\epsilon}(a)(x) \right|^p w(x) \, dx \leq Cw(B)^{-1} |B| \inf_{y' \in B} M(w)(y')$$
$$\leq Cw(B)^{-1} \int_B w(y) \, dy \leq C.$$

By Hölder's inequality, the L^2_w -boundedness of M, Lemma 3.7 and the properties (i), (ii) of Definition 3.5, we get

$$\begin{split} \int_{\widetilde{B}} \sup_{s>0} \left| \varphi_s * E_{\psi}^{\epsilon}(a)(x) \right|^p w(x) \, dx &\leq C w(B)^{1-p/2} \left(\int_{\widetilde{B}} |M(E_{\psi}^{\epsilon}(a))(x)|^2 w(x) \, dx \right)^{p/2} \\ &\leq C w(B)^{1-p/2} \left(\int_{\widetilde{B}} |E_{\psi}^{\epsilon}(a)(x)|^2 w(x) \, dx \right)^{p/2} \\ &\leq C w(B)^{1-p/2} \left(\int_{B} \int_{0}^{\infty} |a(y,t)|^2 w(y) \, \frac{dt}{t} \, dy \right)^{p/2} \\ &\leq C, \end{split}$$

where we have used the estimate $|\varphi_s * E_{\psi}^{\epsilon}(a)| \leq CM(E_{\psi}^{\epsilon}(a))$. Combining (3.2) and (3.3), we have

(3.4)
$$\int_{\mathbb{R}^n} \sup_{s>0} \left| \varphi_s * E_{\psi}^{\epsilon}(a)(x) \right|^p w(x) \, dx \le C.$$

By Lemma 3.6 and (3.4) we can prove

$$\int_{\mathbb{R}^n} \sup_{s>0} \left| \varphi_s \ast E^{\epsilon}_{\psi}(h)(x) \right|^p w(x) \, dx \le C ||h||^p_{H^p_{\mathcal{H},w}}.$$

This completes the proof.

(3.3)

Proof of Lemma 3.3. It can be shown that $F \in H^p_{\mathcal{H},w}(\mathbb{R}^n)$ similarly to the proof of Lemma 3.4 by using the atomic decomposition for $f \in H^p_w(\mathbb{R}^n)$; recall that $f \in S_0$ and that S_0 is a subspace of $H^p_w(\mathbb{R}^n)$. We give a sketch of the proof. First we can prove an estimate analogous to (3.1):

(3.5)
$$\sup_{s>0} \left(\int_0^\infty |\varphi_s * \psi_t * a(x)|^2 \frac{dt}{t} \right)^{1/2} \le C w(B)^{-1/p} |x - y'|^{-n-M-1} \int_B |y - y'|^{M+1} dy,$$

where a is a (p, ∞) atom for $H^p_w(\mathbb{R}^n)$ supported on the ball B with properties analogous to those for the atom in (3.1) and $y' \in B$ and $x \in \mathbb{R}^n \setminus \widetilde{B}$ with \widetilde{B} denoting a concentric enlargement of B as in the case of (3.1); further M = [n(1/p-1)]. Also, we have the following L^2_w -boundedness:

(3.6)
$$\int_{\mathbb{R}^n} \sup_{s>0} \int_0^\infty |\varphi_s * \psi_t * f(x)|^2 \, \frac{dt}{t} \, w(x) \, dx \le C ||f||_{L^2_w}^2.$$

This can be shown by using the L^2_w -boundedness of M and g_{ψ} as follows.

$$\begin{split} \int_{\mathbb{R}^n} \sup_{s>0} \int_0^\infty |\varphi_s * \psi_t * f(x)|^2 \, \frac{dt}{t} \, w(x) \, dx &\leq C \int_0^\infty \int_{\mathbb{R}^n} |M(\psi_t * f)(x)|^2 \, w(x) \, dx \, \frac{dt}{t} \\ &\leq C \int_0^\infty \int_{\mathbb{R}^n} |\psi_t * f(x)|^2 \, w(x) \, dx \, \frac{dt}{t} \\ &= C \int_{\mathbb{R}^n} g_\psi(f)(x)^2 \, w(x) \, dx \\ &\leq C ||f||_{L^2_w}^2. \end{split}$$

Using (3.5) and (3.6), we can show $F \in H^p_{\mathcal{H},w}(\mathbb{R}^n)$ as in the proof of Lemma 3.4. Let ψ, F be as in Lemma 3.3 and let $\overline{\psi}$ denote the complex conjugate. Then

$$E_{\bar{\psi}}^{\epsilon}(F)(x) = \int_{\epsilon}^{\epsilon^{-1}} \int_{\mathbb{R}^n} \psi_t * f(y) \bar{\psi}_t(y-x) \, dy \, \frac{dt}{t} = \int_{\mathbb{R}^n} \Psi^{(\epsilon)}(x-z) f(z) \, dz,$$

where

$$\Psi^{(\epsilon)}(x) = \int_{\epsilon}^{\epsilon^{-1}} \int_{\mathbb{R}^n} \psi_t(x+y) \bar{\psi}_t(y) \, dy \, \frac{dt}{t}.$$

There exists $\epsilon_0 \in (0, 1)$ such that

$$\widehat{\Psi^{(\epsilon_0)}}(\xi) = \int_{\epsilon_0}^{\epsilon_0^{-1}} \widehat{\psi}(t\xi) \widehat{\overline{\psi}}(-t\xi) \frac{dt}{t} = \int_{\epsilon_0}^{\epsilon_0^{-1}} |\widehat{\psi}(t\xi)|^2 \frac{dt}{t} = 1 \quad \text{for } \xi \in \text{supp}(\widehat{f}).$$

Thus

$$E_{\vec{\psi}}^{\epsilon_0}(F)(x) = \int \widehat{\Psi^{(\epsilon_0)}}(\xi) \widehat{f}(\xi) e^{2\pi i \langle x,\xi \rangle} \, d\xi = \int \widehat{f}(\xi) e^{2\pi i \langle x,\xi \rangle} \, d\xi = f(x)$$

and hence by Lemma 3.4

$$||f||_{H^p_w} = ||E^{\epsilon_0}_{\bar{\psi}}(F)||_{H^p_w} \le C ||F||_{H^p_{\mathcal{H},w}}.$$

Along with Lemma 3.3, the next two results (Lemmas 3.8, 3.9) are used in proving Theorem 3.2.

Lemma 3.8. Let $w \in A_{\infty} = \bigcup_{p>1} A_p$. Suppose that $\eta \in S(\mathbb{R}^n)$, $\operatorname{supp}(\hat{\eta}) \subset \{1/2 \le |\xi| \le 4\}$ and $\hat{\eta}(\xi) = 1$ on $\{1 \le |\xi| \le 2\}$. Let ψ be as in Lemma 3.3. Then for p, q > 0 and $f \in S_0(\mathbb{R}^n)$ we have

$$\left\| \left(\int_0^\infty \sup_{s>0} |\varphi_s * \psi_t * f|^q \frac{dt}{t} \right)^{1/q} \right\|_{p,w} \le C \left\| \left(\int_0^\infty |\eta_t * f|^q \frac{dt}{t} \right)^{1/q} \right\|_{p,w}$$

This can be established by the proof of Lemma 3.3 of [19], where only the unweighted version of Lemma 3.8 is explicitly treated but the proof is exactly the same in the weighted cases.

Lemma 3.9. Let $\Psi \in \mathcal{B}$ and $w \in A_{\infty}$. Suppose that $0 < p, q < \infty$. Let $\eta \in S(\mathbb{R}^n)$ satisfy $\hat{\eta} = 0$ in a neighborhood of the origin. Then

$$\left\| \left(\int_0^\infty |f \ast \eta_t|^q \frac{dt}{t} \right)^{1/q} \right\|_{p,w} \le C \left\| \left(\int_0^\infty |f \ast \Psi_t|^q \frac{dt}{t} \right)^{1/q} \right\|_{p,w}$$

for $f \in S_0(\mathbb{R}^n)$ with a positive constant C independent of f.

This is a particular case of Theorem 2.4 of [20] (also, results of [19] imply Lemma 3.9).

Now we can complete the proof of Theorem 3.2.

Proof of Theorem 3.2. Let η and ψ be as in Lemma 3.8 and $w \in A_1$. Applying successively Lemma 3.3 and Lemma 3.8 with q = 2, we have

$$\begin{aligned} \|f\|_{H^p_w} &\leq C \left\| \sup_{s>0} \left(\int_0^\infty |\varphi_s * \psi_t * f|^2 \frac{dt}{t} \right)^{1/2} \right\|_{p,u} \\ &\leq C \left\| g_\eta(f) \right\|_{p,w} \end{aligned}$$

for $f \in S_0(\mathbb{R}^n)$. By this and Lemma 3.9 with q = 2 we can finish the proof of Theorem 3.2.

4. Proof of Theorem 1.2

We first note the following.

Lemma 4.1. Let $W^1_{H^1_w}(\mathbb{R})$, $w \in A_1$, be as in Section 1. Then

$$||f||_{W^1_{H^1}} \simeq ||f||_{H^1_w} + ||f'||_{H^1_w}, \quad f \in \mathfrak{S}_0(\mathbb{R}).$$

Proof. Let $f \in S_0(\mathbb{R})$. Then $f \in H^1_w$ and $f = J_1(g)$ for $g \in S_0(\mathbb{R})$. Applying integration by parts, we have

$$\int f'(x)\hat{\eta}(x)\,dx = -\int f(x)(\hat{\eta})'(x)\,dx = \int \widehat{K}_1(\xi)\hat{g}(\xi)2\pi i\xi\eta(\xi)\,d\xi$$

for $\eta \in S(\mathbb{R})$. Since $\xi = (\operatorname{sgn} \xi) |\xi|$, by Lemma 2.4 (2.15) and the fact that the Hilbert transform is bounded on H_w^1 , we see that $2\pi i \xi \hat{K}_1(\xi) \hat{g}(\xi) = \hat{h}(\xi)$ for $h \in S_0(\mathbb{R})$ with $\|h\|_{H_w^1} \leq C \|g\|_{H_w^1}$ (see [26, Chapter XI, Theorem 14]). Thus we have

$$\int f'(x)\hat{\eta}(x)\,dx = \int \hat{h}(\xi)\eta(\xi)\,d\xi = \int h(x)\hat{\eta}(x)\,dx,$$

which implies that f' = h and hence $||f'||_{H^1_w} \le C ||f||_{W^1_{H^1_w}}$. Also, a straightforward computation implies that

$$\|f\|_{H^{1}_{w}} = \|(J_{1}(g))^{*}\|_{1,w} \le C \|g^{*}\|_{1,M(w)} \le C \|g^{*}\|_{1,w} = C \|f\|_{W^{1}_{H^{1}_{w}}}.$$

Here we give a proof of the first inequality for completeness. As in Section 1, we have $(J_1(g))^* \leq K_1 * g^*$ and $K_1 * w \leq CM(w)$. Thus

$$\|(J_1(g))^*\|_{1,w} \le \int K_1 * g^*(x) w(x) \, dx = \int g^*(y) K_1 * w(y) \, dy \le C \int g^*(y) M(w)(y) \, dy,$$

where we have used the fact that K_1 is even.

On the other hand, let $g = J_{-1}(f) \in S_0(\mathbb{R})$. Then, by (2.16)

$$\hat{g}(\xi) = \hat{f}(\xi)\hat{K}_{-1}(\xi) = m(\xi)\hat{f}(\xi) + m(\xi)(-i\operatorname{sgn}(\xi))\hat{f}'(\xi)$$

Using again the boundedness of the Hilbert transform together with Lemma 2.4, we get that $\|f\|_{W^1_{H^{\frac{1}{2}}}} = \|g\|_{H^1_w} \le C \|f\|_{H^1_w} + C \|f'\|_{H^1_w}$.

Also, we require the next result to prove Theorem 1.2.

Lemma 4.2. Let ν be as in (1.2) and $w \in A_1$. Then $\|\nu(f)\|_{1,w} \simeq \|f'\|_{H^1_w}, \quad f \in S_0(\mathbb{R}).$ *Proof.* It suffices to show that $\|\mu(f)\|_{1,w} \simeq \|f\|_{H^1_w}$ for $f \in S_0(\mathbb{R})$. We recall a Littlewood-Paley function g_0 defined as

$$g_0(f)(x) = \left(\int_0^\infty |(\partial/\partial x)u(x,t)|^2 t \, dt\right)^{1/2},$$

where u(x,t) is the Poisson integral of f: $u(x,t) = P_t * f(x), \hat{P}(\xi) = e^{-2\pi |\xi|}$.

Let $\hat{R}(\xi) = 2\pi i \xi e^{-2\pi |\xi|}$. We note that R = P' and that $R \in \mathcal{B}$; the condition (3) of Definition 3.1 is obvious from the explicit forms:

$$P'(x) = \frac{-2x}{\pi(1+x^2)^2}, \quad P''(x) = \frac{2(3x^2-1)}{\pi(1+x^2)^3}$$

We see that $g_0(f) = g_R(f)$ and, since $R \in \mathcal{B}$, by Theorem 3.2 with p = 1 we have $\|f\|_{H^1_w} \leq C \|g_R(f)\|_{1,w}$ for $f \in \mathcal{S}_0(\mathbb{R})$ and $w \in A_1$ (see [6, 27] for the unweighted case). Also we have the pointwise relation $g_0(f) \leq C\mu(f)$ for $f \in \mathcal{S}_0(\mathbb{R})$ (see [14, Theorem 5]). Combining results, we see that $\|f\|_{H^1_w} \leq C \|\mu(f)\|_{1,w}$.

In proving the reverse inequality, we apply the pointwise equivalence between g_3^* and μ to get

$$\|\mu(f)\|_{1,w} \le C \|g_3^*(f_1)\|_{1,w} + C \|g_3^*(f_2)\|_{1,w}$$

where

$$g_{\lambda}^{*}(f)(x) = \left(\iint_{\mathbb{R} \times (0,\infty)} \left(\frac{t}{t + |x - y|} \right)^{\lambda} |\nabla u(y, t)|^{2} \, dy \, dt \right)^{1/2}$$

is another Littlewood-Paley function and $\hat{f}_1 = \hat{f}\chi_{[0,\infty)}$, $\hat{f}_2 = \hat{f}\chi_{(-\infty,0]}$ (see [14, Theorems 1, 2 and Remark 1] for the pointwise equivalence). It follows that

 $\|\mu(f)\|_{1,w} \le C \|g_3^*(f)\|_{1,w} + C \|g_3^*(Hf)\|_{1,w},$

where H denotes the Hilbert transform; this can be seen by noting

$$\chi_{[0,\infty)}(\xi) = \frac{1}{2} \left(\chi_{(-\infty,\infty)}(\xi) + \operatorname{sgn}(\xi) \right), \quad \chi_{(-\infty,0]}(\xi) = \frac{1}{2} \left(\chi_{(-\infty,\infty)}(\xi) - \operatorname{sgn}(\xi) \right)$$

for $\xi \neq 0$. Then, we apply the $H_w^1 - L_w^1$ boundedness with $w \in A_1$ of g_3^* due to [12] and the boundedness of H on H_w^1 . Here we would like to recall the following. In [12] H_w^1 norm is defined as $||N(u)||_{1,w}$ for $u(x,t) = f * P_t(x)$, where N(u) denotes the non-tangential maximal function and we have

$$||N(u)||_{1,w} \le C ||f^*||_{1,w},$$

which can be shown, for example, by applying the atomic decomposition for $f \in H^1_w$.

To prove $\|\mu(f)\|_{1,w} \leq C \|f\|_{H^1_w}$, alternatively, we can apply an argument similar to the one in the proof of Lemma 3.4, using an atomic decomposition for H^1_w and an estimate from (4.7) of [17]:

$$\left(\int_0^\infty |\psi_t(x-y) - \psi_t(x)|^2 \frac{dt}{t}\right)^{1/2} \le C \frac{|y|^{1/2}}{|x|^{3/2}} \quad \text{for } 2|y| < |x|,$$

where $\psi(x) = \chi_{[0,1]}(x) - \chi_{[-1,0]}(x)$ (see the proof of Theorem 4.5 of [17]).

Proof of Theorem 1.2. The proof is analogous to that of Theorem 1.1. Lemmas 4.1 and 4.2 imply that

(4.1)
$$\|J_1(g)\|_{H^1_w} + \|\nu(J_1(g))\|_{1,w} \simeq \|g\|_{H^1_w}$$

for $g \in S_0(\mathbb{R})$. We prove (4.1) for all $g \in H^1_w$. Let $g \in H^1_w$ and take a sequence $\{g_k\}$ in $S_0(\mathbb{R})$ such that $g_k \to g$, $J_1(g_k) \to J_1(g)$ in H^1_w and almost everywhere as $k \to \infty$. We note that, if x is fixed,

$$|J_1(g_k)(x+t) + J_1(g_k)(x-t) - 2J_1(g_k)(x)| \to |J_1(g)(x+t) + J_1(g)(x-t) - 2J_1(g)(x)| \to |J_1(g)(x+t) - 2J_1(g)(x)| \to |J_1(g)(x+t) - 2J_1(g)(x)| \to |J_1(g)(x+t) - 2J_1(g)(x)| \to |J_1(g)(x+t) - 2J_1(g)(x+t) - 2J_1(g)(x)| \to |J_1(g)(x+t) - 2J_1(g)(x+t) - 2J_1(g)(x+t) \to |J_1(g)(x+t) - 2J_1(g)(x+t) - 2J_1(g)(x+t) \to |J_1(g)(x+t) \to |J_1(g$$

for a.e. $t \in (0, \infty)$, which implies that

$$\nu(J_1(g))(x) \le \liminf_{k \to \infty} \nu(J_1(g_k))(x)$$

for every x by Fatou's lemma. By (4.1) established with $g \in S_0(\mathbb{R}^n)$, for $g_k \in S_0(\mathbb{R}^n)$ we have

$$\|\nu(J_1(g_k))\|_{1,w} \le C \|g_k\|_{H^1_w},$$

from which and Fatou's lemma, it follows that

$$\|\nu(J_{1}(g))\|_{1,w} \leq \liminf_{k \to \infty} \|\nu(J_{1}(g_{k}))\|_{1,w}$$

$$\leq C \liminf_{k \to \infty} \|g_{k}\|_{H^{1}_{w}}$$

$$\leq C \|g\|_{H^{1}_{w}}.$$

Therefore

$$\lim_{k \to \infty} \|\nu(J_1(g)) - \nu(J_1(g_k))\|_{1,w} \le \lim_{k \to \infty} \|\nu(J_1(g - g_k))\|_{1,w} \le C \lim_{k \to \infty} \|g - g_k\|_{H^1_w} = 0.$$

Thus, letting $k \to \infty$ in the relation

$$\|J_1(g_k)\|_{H^1_w} + \|
u(J_1(g_k))\|_{1,w} \simeq \|g_k\|_{H^1_w}, \quad g_k \in \mathbb{S}_0(\mathbb{R}),$$

which is already shown, we have (4.1) for $g \in H^1_w$.

Thus, to complete the proof of Theorem 1.2, it suffices to prove that if $f \in H^1_w$ and $\nu(f) \in L^1_w$, then $f \in W^1_{H^1_w}$. Suppose that $f \in H^1_w$ and $\nu(f) \in L^1_w$. Let $f^{(\epsilon)}(x) = \varphi_{\epsilon} * f(x)$ and $g^{(\epsilon)}(x) = J_{-1}(\varphi_{\epsilon}) * f(x)$. Then $g^{(\epsilon)} \in H^1_w$ and $f^{(\epsilon)} = J_1(g^{(\epsilon)})$ (see Lemma 2.5). The relation (4.1) implies

(4.2)
$$\|f^{(\epsilon)}\|_{H^1_w} + \|\nu(f^{(\epsilon)})\|_{1,w} \simeq \|g^{(\epsilon)}\|_{H^1_w}.$$

We see that

(4.3)
$$\sup_{\epsilon>0} \|f^{(\epsilon)}\|_{H^1_w} \le C \|f^*\|_{1,M(w)} \le C \|f^*\|_{1,w} = C \|f\|_{H^1_w},$$

since $w \in A_1$. By Minkowski's inequality,

$$\begin{split} \nu(f^{(\epsilon)})(x) &= \left(\int_0^\infty |\varphi_\epsilon * f(x+t) + \varphi_\epsilon * f(x-t) - 2\varphi_\epsilon * f(x)|^2 \frac{dt}{t^3}\right)^{1/2} \\ &\leq \int_{\mathbb{R}} \varphi_\epsilon(y) \left(\int_0^\infty |f(x+t-y) + f(x-t-y) - 2f(x-y)|^2 \frac{dt}{t^3}\right)^{1/2} dy \\ &= \int_{\mathbb{R}} \varphi_\epsilon(y) \nu(f)(x-y) \, dy. \end{split}$$

Thus

(4.4)
$$\sup_{\epsilon > 0} \|\nu(f^{(\epsilon)})\|_{1,w} \le C \|\nu(f)\|_{1,M(w)} \le C \|\nu(f)\|_{1,w}.$$

Consequently, it follows that $\sup_{\epsilon>0} \|g^{(\epsilon)}\|_{H^1_w} < \infty$ from (4.2), (4.3) and (4.4).

Applying Lemma 2.6, we choose a sequence $\{g^{(\epsilon_k)}\}$ in H^1_w with $\epsilon_k \to 0$ and $g \in H^1_w$ such that

$$\int_{\mathbb{R}} g^{(\epsilon_k)}(x)v(x)\,dx \to \int_{\mathbb{R}} g(x)v(x)\,dx \quad \text{as } k \to \infty \text{ for } v \in \mathbb{S}(\mathbb{R}).$$

Further, $\{f^{(\epsilon_k)}\}$ converges to f in L^1_w . Thus, (2.27) applies and $f = J_1(g)$, so $f \in W^1_{H^1_w}(\mathbb{R})$.

Remark 4.3. The function of Marcinkiewicz $\mu(f)$ is generalized. Let $\mu_{\beta}(f) = g_{\eta^{(\beta)}}(f), \beta > 0$, where

$$\eta^{(\beta)}(x) = \beta |1 - |x||^{\beta - 1} \operatorname{sgn}(x) \chi_{(-1,1)}(x)$$

Then μ_{β} generalizes μ in the sense that $\mu_1 = \mu$. See [14] for properties of μ_{β} .

5. Proofs of results in Remarks 1.4 and 1.5

Here we give proofs of Remarks 1.4 and 1.5 for completeness.

Proof of Remark 1.4. We prove that if $0 < \alpha < n/2$, $1 \leq p \leq 2$ and $S_{\psi(\alpha)}$ is bounded on $L^p(\mathbb{R}^n)$, then $p \geq 2n/(n+2\alpha)$. Let $f \in S_0(\mathbb{R}^n)$, $f \neq 0$. We estimate $S_{\psi(\alpha)}(f)$ as

$$2^{\alpha+(n+1)/2} S_{\psi^{(\alpha)}}(f)(x) \ge \left(\int_{1}^{2} \int_{B(x,1)} |I_{\alpha}(f)(z) - \Phi_{t} * I_{\alpha}(f)(z)|^{2} dz dt\right)^{1/2}$$

$$\ge \left(\int_{1}^{2} \int_{B(x,1)} |I_{\alpha}(f)(z)|^{2} dz dt\right)^{1/2} - \left(\int_{1}^{2} \int_{B(x,1)} |\Phi_{t} * I_{\alpha}(f)(z)|^{2} dz dt\right)^{1/2}$$

$$= \left(\int_{B(x,1)} |I_{\alpha}(f)(z)|^{2} dz\right)^{1/2} - \left(\int_{1}^{2} \int_{B(x,1)} |\Phi_{t} * I_{\alpha}(f)(z)|^{2} dz dt\right)^{1/2}.$$

We easily see that

$$\int_{1}^{2} \int_{B(x,1)} |\Phi_{t} * I_{\alpha}(f)(z)|^{2} dz dt \leq C ||\Phi||_{\infty}^{2} \left(\chi_{B(0,C_{1})} * |I_{\alpha}(f)|(x) \right)^{2}.$$

Thus

(5.1)
$$\left(\int_{B(x,1)} |I_{\alpha}(f)(z)|^2 dz\right)^{1/2} \le CS_{\psi^{(\alpha)}}(f)(x) + C\chi_{B(0,C_1)} * |I_{\alpha}(f)|(x).$$

On the other hand we will show that

(5.2)
$$\left(\int_{\mathbb{R}^n} |I_{\alpha}(f)(x)|^2 \, dx \right)^{p/2} \le C \int_{\mathbb{R}^n} \left(\int_{B(x,1)} |I_{\alpha}(f)(z)|^2 \, dz \right)^{p/2} \, dx.$$

 24

To see this, we consider a covering of \mathbb{R}^n : $\bigcup_{j=1}^{\infty} B(c_j, 1) = \mathbb{R}^n$. We assume that there exists $\tau > 0$ such that $\bigcup_{j=1}^{\infty} B(x_j(y), 1) = \mathbb{R}^n$ for all $y \in B(0, \tau)$ with $x_j(y) = c_j + y$ and $B(c_j, \tau) \cap B(c_k, \tau) = \emptyset$ if $j \neq k$. Then, since $p/2 \leq 1$, we have

$$\left(\int_{\mathbb{R}^n} |I_{\alpha}(f)(x)|^2 \, dx\right)^{p/2} \le \sum_{j=1}^{\infty} \left(\int_{B(x_j(y),1)} |I_{\alpha}(f)(x)|^2 \, dx\right)^{p/2}$$

for all $y \in B(0, \tau)$. Thus

$$\begin{split} \left(\int_{\mathbb{R}^n} |I_{\alpha}(f)(x)|^2 \, dx \right)^{p/2} &\leq \inf_{y \in B(0,\tau)} \sum_{j=1}^{\infty} \left(\int_{B(x_j(y),1)} |I_{\alpha}(f)(x)|^2 \, dx \right)^{p/2} \, dy \\ &\leq C_{\tau} \int_{B(0,\tau)} \sum_{j=1}^{\infty} \left(\int_{B(x_j(y),1)} |I_{\alpha}(f)(x)|^2 \, dx \right)^{p/2} \, dy \\ &= C_{\tau} \sum_{j=1}^{\infty} \int_{B(0,\tau)} \left(\int_{B(x_j(y),1)} |I_{\alpha}(f)(x)|^2 \, dx \right)^{p/2} \, dy \\ &= C_{\tau} \sum_{j=1}^{\infty} \int_{B(c_j,\tau)} \left(\int_{B(y,1)} |I_{\alpha}(f)(x)|^2 \, dx \right)^{p/2} \, dy \\ &\leq C_{\tau} \int_{\mathbb{R}^n} \left(\int_{B(y,1)} |I_{\alpha}(f)(x)|^2 \, dx \right)^{p/2} \, dy, \end{split}$$

which proves (5.2). From (5.1) and (5.2), it follows that

$$|I_{\alpha}(f)||_{2} \leq C ||S_{\psi^{(\alpha)}}(f)||_{p} + C ||\chi_{B(0,C_{1})} * |I_{\alpha}(f)|||_{p}.$$

Thus if $||S_{\psi^{(\alpha)}}(f)||_p \le C||f||_p$, since $||\chi_{B(0,C_1)} * |I_{\alpha}(f)||_p \le C||I_{\alpha}(f)||_p$, we have $||I_{\alpha}(f)||_2 \le C||f||_p + C||I_{\alpha}(f)||_p$.

From this with f_{ρ} in place of f, by homogeneity, it readily follows that

$$\rho^{\alpha-n/2} \leq C\rho^{-n+n/p} + C\rho^{\alpha+n(1/p-1)} \leq C\rho^{-n+n/p}$$

for all $\rho \in (0, 1)$, which implies that $p \ge 2n/(n + 2\alpha)$ as claimed.

Proof of Remark 1.5. Suppose that $0 < \alpha < n/2$, $1 . We see that <math>S_{\psi^{(\alpha)}}$ is not bounded from H^1 to L^1 ; otherwise $S_{\psi^{(\alpha)}}$ would be bounded on L^p by interpolation between the $H^1 - L^1$ and L^2 boundedness of $S_{\psi^{(\alpha)}}$ (for the L^2 boundedness see the proof of Theorem 2.3 in Section 2). This contradicts Remark 1.4.

However, if U_{α} was bounded from $W_{H^1}^{\alpha}$ to L^1 , then $||U_{\alpha}(J_{\alpha}(g))||_1 \leq C||g||_{H^1}$ for $g \in S_0(\mathbb{R}^n)$. Since $U_{\alpha}(f) = S_{\psi^{(\alpha)}}(I_{-\alpha}(f))$, it follows that $||S_{\psi^{(\alpha)}}(g)||_1 \leq C||I_{\alpha}J_{-\alpha}(g)||_{H^1}$. Thus by Lemma 2.4 with w = 1

(5.3)
$$\|S_{\psi^{(\alpha)}}(g)\|_1 \le C \|I_{\alpha}(g)\|_{H^1} + C \|g\|_{H^1}, \quad g \in \mathfrak{S}_0(\mathbb{R}^n).$$

Since $S_{\psi^{(\alpha)}}(g_{\rho}) = (S_{\psi^{(\alpha)}}(g))_{\rho}, ||I_{\alpha}(g_{\rho})||_{H^{1}} = \rho^{\alpha} ||I_{\alpha}(g)||_{H^{1}} \text{ and } ||g_{\rho}||_{H^{1}} = ||g||_{H^{1}}$, by (5.3) with g_{ρ} in place of g we have

$$||S_{\psi^{(\alpha)}}(g)||_1 \le C\rho^{\alpha} ||I_{\alpha}(g)||_{H^1} + C||g||_{H^1}$$

for all $\rho > 0$. Thus, letting $\rho \to 0$, we see that $\|S_{\psi^{(\alpha)}}(g)\|_1 \leq C \|g\|_{H^1}$, from which the $H^1 - L^1$ boundedness of $S_{\psi^{(\alpha)}}$ follows. This contradicts what we have already observed.

References

- R. Alabern, J. Mateu and J. Verdera, A new characterization of Sobolev spaces on Rⁿ, Math. Ann. 354 (2012), 589-626.
- [2] A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1-64.
- F. Dai, J. Liu, D. Yang and W. Yuan, Littlewood-Paley characterizations of fractional Sobolev spaces via averages on balls, arXiv: 1511.07598.
- [4] L. C. Evans and R. F. Gariepy, *Measure Theory and Fine Properties of Functions*, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
- [5] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36.
- [6] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137– 193.
- [7] J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, New York, Oxford, 1985.
- [8] P. Hajłasz and Z. Liu, A Marcinkiewicz integral type characterization of the Sobolev space, Publ. Mat. 61 (2017), 83-104.
- [9] Z. He, D. Yang and W. Yuan, Littlewood-Paley characterizations of second order Sobolev spaces via averages on balls, Canadian Math. Bull. **59** (2016), 104–118.
- [10] J.-L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math. vol. 994, Springer-Verlag, 1983.
- [11] J. Marcinkiewicz, Sur quelques intégrales du type de Dini, Annales de la Société Polonaise 17 (1938), 42-50.
- [12] B. Muckenhoupt and R. L. Wheeden, Norm inequalities for the Littlewood-Paley function g_{λ}^{*} , Trans. Amer. Math. Soc. **191** (1974), 95-111.
- [13] B. Muckenhoupt and R. L. Wheeden, On the dual of weighted H¹ of the half-space, Studia Math. 63 (1978), 57-79.
- [14] S. Sato, Multiparameter Marcinkiewicz integrals and a resonance theorem, Bull. Fac. Ed. Kanazawa Univ. Natur. Sci. 48 (1999), 1-21. (http://hdl.handle.net/2297/25017)
- [15] S. Sato, Littlewood-Paley operators and Sobolev spaces, Illinois J. Math. 58 (2014), 1025-1039.
- [16] S. Sato, Square functions related to integral of Marcinkiewicz and Sobolev spaces, Linear and Nonlinear Analysis 2 (2016), 237–252 (special issue on ISBFS 2015).
- [17] S. Sato, Littlewood-Paley equivalence and homogeneous Fourier multipliers, Integr. Equ. Oper. Theory 87 (2017), 15-44.
- [18] S. Sato, Spherical square functions of Marcinkiewicz type with Riesz potentials, Arch. Math. 108 (2017), 415-426.
- [19] S. Sato, Vector valued inequalities and Littlewood-Paley operators on Hardy spaces, Hokkaido Math. J. (to appear), arXiv:1608.08059v2 [math.CA].
- [20] S. Sato, Characterization of parabolic Hardy spaces by Littlewood-Paley functions, arXiv:1607.03645v2 [math.CA].
- [21] S. Sato, F. Wang, D. Yang and W. Yuan, Generalized Littlewood-Paley characterizations of fractional Sobolev spaces, Commun. Contemp. Math. (to appear), https://doi.org/10.1142/S0219199717500778.
- [22] E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc. 67 (1961), 102–104.
- [23] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [24] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
- [25] R. S. Strichartz, H^p Sobolev spaces, Colloq. Math. 60/61 (1990), 129-139.
- [26] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong, 1989.

[27] A. Uchiyama, Characterization of $H^p(\mathbb{R}^n)$ in terms of generalized Littlewood-Paley gfunctions, Studia Math. 81 (1985), 135-158.

Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa 920-1192, Japan

 $E\text{-}mail\ address:\ \texttt{shuichi}\texttt{@kenroku.kanazawa-u.ac.jp}$