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CHARACTERIZATION OF H! SOBOLEV SPACES BY SQUARE
FUNCTIONS OF MARCINKIEWICZ TYPE

SHUICHI SATO

ABSTRACT. We establish characterization of H! Sobolev spaces by certain
square functions of Marcinkiewicz type. The square functions are related to
the Lusin area integrals. Also, in the one dimensional case, the non-periodic
version of the function of Marcinkiewicz is applied to characterize weighted
H' Sobolev spaces.

1. INTRODUCTION

We recall that a function ® belongs to M*, a > 0, if ® is a bounded, compactly
supported function on R™ satisfying fR" ®(z)dr = 1; if @ > 1, we further require
that

/ O(z)x” de =0 for all v with 1 < |y| < [a],

where v is amulti-index, ¥ = (y1, Y2, - - -, Yn), |7 = 1 +7y2+ - +Yn, 27 = 2] .. 2
and [«a] denotes the greatest integer not exceeding «. Let

1) e = ([Te - seser ) e

where ® € M® and ®;(z) =t "®(t'x).

Let L, 0 < p < 00, be the weighted Lebesgue space with the norm || f]|,,w
defined as || f|lp,w = (fgn |f(@)|Pw(z) dm)l/p. When w = 1 (the unweighted case),
| flp,w is written simply as || f||,. Let w € A,, 1 < p < oo, where A, denotes the
weight class of Muckenhoupt (see [7]), and let & > 0. The Sobolev space WP (R")
is defined to be the collection of functions f € LP (R™) which can be expressed as
f = Ju(g) with g € LE (R"); the norm is given by || fllp,a,w = ||gllp,w, Where Jy is
the Bessel potential operator defined as J,(g) = K, * g with

Ka(&) = (1+472IP) =2,

The Fourier transform is defined as

fO=[ fe @ dn, (5,6 =3 w;&;.
R® e}
It was proved in [17] that G can characterize the weighted Sobolev spaces WP,
1<p<oo.
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Theorem A. Let 1 <p< oo, 0<a<nandw € Ay, ® € M*. Let G, be as in
(1.1). Then f € W2P(R™) if and only if f € LY, and Go(f) € LL; furthermore,

£ 11z, 2 1 llp,w + [1Ga () lp,wws
that is,

cllfllpamw < N fllpw + 1Ga(H)llpw < c2llfllpow
for positive constants ¢y, ¢y independent of f.

(See [17, Corollary 5.2].) A square function characterization of the Sobolev spaces
of this type was established by [1]. It has been developed by [8, 15]. Special cases of
Theorem A can be found in [15]. In [16] a square function characterization of W3-
different from Theorem A was given when o = 2. Also, an alternative proof of a
result of [8] using a pointwise relation between a square function of Marcinkiewicz
type and one arising from the Bochner-Riesz operators can be found in [18].

We now state an application of Theorem A. Let B(z,t¢) be the ball centered
at x with radius ¢: B(z,t) = {y € R* : |z —y| < t} and By = B(0,1). Put
Xo = |Bo|~'xB,, where |By| denotes the Lebesgue measure of By and xp, is the
characteristic function of By. Then xo € M* for a € (0,2). If ® = x¢ in (1.1),
Go(f) can be expressed as

r

where fB(x 9 fly)dy = |B(z,t)|* fB(w " f(y) dy. Theorem A applies to this square

1/2
dt
tl+2a ’

f(z) - ]{3 - fy)dy

function for 0 < a < min(n, 2), as shown in [1] in the unweighted case.

In this note we consider characterization of H' Sobolev spaces by square func-
tions of Marcinkiewicz type. Let 8(R™) be the Schwartz class of rapidly decreasing
smooth functions. We choose ¢ € 8(R") satisfying [, ¢dz = 1, ¢ > 0 and
supp(p) C B(0,1). The function ¢ will be fixed in what follows. Let HP(R"),
0 < p < oo, be the Hardy space of tempered distributions on R™ such that
f* € LP(R™), where f*(z) = sup,sol|¢: * f(z)]. The norm of f in HP(R") is
defined to be ||f||ar = ||f*|l,- It is known that a different choice of such ¢ gives
an equivalent norm. The space HP coincides with L? when 1 < p < oo and H'! is
contained in L!. We denote by 8y(R") a dense subspace of H?(R") consisting of
those functions f in §(R™) such that f = 0 outside a compact set not containing
the origin (see [26, Chapters V and VII]).

Let f € L}, and

oo 1/2
12 @ = ([ e+ ie-0-2@PE)

Put u(f) = v(3(f)), where J(f)(z) = [y f(y)dy. Then p(f) is the function of
Marcinkiewicz and we have

(e = (1 f || £re
for f € 8o(R) when 2/3 < p < 0o (see [14, Theorem 4]). It follows that
(1.3) 1 (Hllp = 117 N1 e

if f € 80(R) when 2/3 < p < 0.
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Let gy be the Littlewood-Paley function on R" defined as

00w = (17 ener )"

with ¢ € L'(R") satisfying [, ¢(x)dz = 0. The Marcinkiewicz function p was
introduced by the author in 1938 (see [11]) in the setting of periodic functions. The
non-periodic version p(f) can be realized as a Littlewood-Paley function g, (f) on

R with 9 (2) = x[0,11(%) — X[=1,0)(2)-
We define the H' Sobolev space by

Wgi(R") = {f € H'(R"): f = J,(h) for some h € H'(R")}.
For f € W, define ||f||W;1 = ||h||2 with f = J,(h). This is well-defined since

J. is an injection from H' to H'. To see that J, is injective on H', suppose that
Jo(f) = Jalg) for f,g € H. Then by part (2) of Lemma 2.5 below, we have

/ (Ko + h) () fy) dy = / (Ko F)()h(y) dy
- / (Ko * 9)()h(y) dy = / (Ko + h)(9)g(y) dy

for all h € $(R™), which implies that f = g, since J, is a surjection from §(R™) to
S(R™).

The estimates (1.3) indicates that the square function v can characterize W, (R).
Indeed, we have Theorem 1.2 below. In general dimensions, we can give a char-
acterization of the space W (R") in terms of Lusin area integral functions of
Marcinkiewicz type. Let I, be the Riesz potential operator defined by

L(AE) = @rle)f©), feS®).
If Lo(z) = 7(a)|z|*~™, then Lo (€) = (27]€])~%, 0 < a < n, where

(o) = M
/220 (a/2)

(see [23, Chapter V.1]). Let
(1.4) ¢ (2) = La(z) — La * 2(2),
where ® € M*, 0 < a < n. We note that ¢(®) € L'(R") (see [17, p. 37]). Define

oo 1/2
S¢<a>(f)(w)=</0 [ i st >|2dzﬁ>
/
= ([ [, w7 erepaz g
B(z,t) t

Then, by homogeneity of the Riesz potential,

oo 1/2
Sy (f)(@) = (/0 /B I f(z — t2) — @y % Lo flz tz)|2dzt—2aﬂ>

oo s
= (/ / o f(2) — @ % Lo f(2)]> dzt ™2 ndt) |
0 JB(w,t) ;
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1/2
(/ / flx —t2) — @y % f(x — t2)|* dzt ™2 = )
Bo
1/2
(/ R Y CI "dt> -
0 B(w,t) t

Then U, is available to characterize the Sobolev space W, (R™).

Also, let

(1.5)

Theorem 1.1. Let U, be as in (1.5). Suppose that n/2 < a < n, & € M* and
that there exists 8 > 0 such that

() <CU+IENT7, a+f>n
Then the following two statements are equivalent:
(1) feWg(R),
(2) f e HY(R") and U,(f) € L*(R™).
Further, we have ||fllwa, >~ ||fllar + 1Ua ()1 -

We refer to [25] for a related previous work.
We note that
Xo(§)] < C(1 + [¢))~m+1)/

When n = 1, this can be seen by a direct computation. If n > 2, this follows by
applications of Theorem 3.3 and Lemmas 3.11, 4.13 of [24, Chapter IV]. Further,
Xo € M?%, 0 < a < 2. Thus Theorem 1.1 is available for n = 1,2,3 when ® = xo.
Also, if ® is a bounded radial function with compact support, then |®(¢)| < C(1 +
1€])~ (n-1) )/2 which easily follows from a formula in [24, Theorem 3.3, Chapter IV].

Ifo = X[) in (1.5), then U, (f) can be written, up to a constant factor, as

/ N I NICE f S 2

This may extend to the case of metric measure spaces, since the expression fB(z, £ f
makes sense in general metric measure spaces. Thus, Theorem 1.1 suggests that we
may define H! Sobolev spaces in metric measure spaces by considering H'*>° on
metric measure spaces as the definition of Hardy spaces, where H'**° denotes the
atomic H! (see [10, Chap. 3] for H*°). The square function U, (f) with ® = yq
was used in [9] to characterize the classical Sobolev space W*?(R") with a € (0, 2)
and p € (1,00).

We can also consider weighted H' Sobolev spaces. Recall the weight class A; of
Muckenhoupt consisting of weights w such that M (w) < Cw almost everywhere.
We have denoted by M the Hardy-Littlewood maximal operator defined as

M(f)(x) = sup|B| ! /B £ @)l dy,

1/2

dz t*2“ﬂ
t

where the supremum is taken over all balls B containing z. Let H., w € A, be
the subspace of L}, such that f* € L}, with the norm [|f||g1 = |[f*|l1,.. Similarly,
we can define H? (R™) for p € (0,1) with w € A; to be the space of tempered
distributions f such that f* € LP. Then 83(R™) is dense in HE(R"), 0 < p < 1
(see [26]).
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Define
Wi (R") ={f € H.(R") : f = J,(h) for some h € H.(R™)}.
For f € W, , let ||f||W;1 = [|h]|gy with f = J,(h), which is also well-defined

since .J, is injective on H. (see Lemma 2.5 (2) below and recall that J, : § — 8
is onto). Here we note that J,(h) € H. whenever h € H.. To see this, we first
observe that J,(h)* < K, * h*, where we recall that K, is the kernel of J, and
K, > 0 (see [23, Chapter V, identity (26)]). Also, we have K, *w < CM(w) by
applying suitably [23, Chapter III, Theorem 2], since the least decreasing radial
majorant of K, is integrable (see [23, Chapter V, identities (29), (30)]). Thus

17a(h)"ll1w < ClIR* 1My < ClAT 1w = CllRll gy, -

In the one dimensional case, we have the following result.

Theorem 1.2. Let v be as in (1.2) and w € Ay. Then we have the equivalence of
the following two statements:

(1) f € Wh (B),
(2) fe HL(R) and v(f) € LL(R).
Also, we have ||f||W11{%J = [ fllaz, + 1 (H)l1,w-

Remark 1.3. The square function S, ) (f) can be treated in some respects similarly
to

1/2
0,(0)@) = ([ (-0 - L@ )
(See [21], [3] and also [5], [22] for D.)

Remark 1.4. Let 0 < a < n/2and 1 < p < 2n/(2a+n) (we note that p < 2). Then,
Sy is not bounded on L, where (% is as in (1.4). (See Section 5 for a proof,
which is based on [3]; see also [21] for the weak type estimates at p = 2n/(2a+n).)

Remark 1.5. In Theorem 1.1, the condition o > n/2 is optimal in the sense that if
0 < @ < n/2, the estimate ||Us(f)|l1 < C’||f||W;1 does not hold, where U, is as in

(1.5) with ® € M. (A proof can be found in Section 5.)

Remark 1.6. The proof of Theorem A is based on the estimates [|gy ) (f)llpw ~

1 fllpw, w € Ap, 1 < p < 00, where (¥ is asin (1.4). If g (Fllr = ||| z2, then
we would be able to characterize Wy, by Go.

We shall prove Theorem 1.1 in Section 2 and Theorem 1.2 in Section 4. The proof
of Theorem 1.1 is based on the equivalence of [|Sy ) (f)|l1 and || f||z, f € So(R™)
(Theorem 2.3). In proving Theorem 1.2, we shall show in Section 3 the estimates of
the kind || f||z1, < Cllgy (f)l1,w for f € 8o(R™) (see Theorem 3.2), which generalizes
a result of [27] to the case of weighted Hardy spaces.

2. PROOF OF THEOREM 1.1

We will show Theorem 1.1 by means of the equivalence c[| f|| g1 < ||Sy@) (f)ll1 <
C||f |l which will be established in Theorem 2.3. The first inequality is obtained
via a duality argument based on Lemma 2.2 below, while the converse inequality will

come from the application of a Calderén-Zygmund estimate for vector valued kernels
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in [7, Chapter V, Corollary 3.10], whose crucial step is checking the Hérmander
condition in Lemma 2.1 below.

Lemma 2.1. Let (%) be as in (1.4) with o and ® as in Theorem 1.1. Then

/|w|>2y VBoxm,oo)

with a constant C' independent of y € R™.

. g 1/2
t(a)(m—y—tz)— t(a)(x—tz)‘ dz?] dx < C,

Proof. To prove the lemma, by a change of variables we may assume that supp(®) C
By. This can be seen as follows. Suppose that supp(®) C B(0, M) with M > 1.
Let ¢ = 1/M. Then by a change of variables, we see that

/ ‘2 dt
BOX(0,00)

dz —
t
= C_n/
B(0,c)x(0,00)
dt

(@ o N (@) zd—
wct ('Clj Y tZ) ¢ct (.’I} tZ) z t

@ —y —t2) =\ (z — t2)

dt

@)y — v —t2) — 5@ — )| g &
djct (:L’ Y tZ) djct (1‘ tZ) Z t

We note that
! (z) = ¢ *(La(x) — La * ®c(x))

and that supp(®.) C Bp. This implies what we need.
Fix z,y € R" with |z| > 2|y|. Let

It = [
By
We write I(x,y,t) = I (x,y,t) + I(z,y,t), where

hewn= [

zEBO,‘z/t—z|<6

dz.

2
U@ -y —t2) = v (@ — t2)|

2
o -y —t2) -9V — t2)|

dz,

2
o -y —t2) - vV (@ — t2)|

dz.

Ig(l',y,t) =
zEBO,|z/t—z‘>6
We first estimate [ (z,y,t). Decompose I (x,y,t) = I 1(x,y,t) + I 2(z,y,t),
where

Ly (w,y,t) = @ —y —t2) =\ (@ —t2)| d,

=€By 2ly|/i<x/t—=] <6

‘ 2

I a(2,y,t) = D (@ —y —t2) =\ (@ — t2)| dz.

zEBo,|z/t—z|<6,|x/t—z|<2|y|/t

‘ 2

Since L, * ® is bounded and n/2 < a < n, we easily see that O

—n+2a
I o(z,y,t) < Ct™2" / |z| 722 dy < Ot <|it|> .

lzI<3lyl/t
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If |/t — z| < 6 and |z| < 1, then ¢ > |z|/7. Thus

e dt o0 dt
(21) / II,Q(x)yvt)_ = / II,Q(x)yvt)_
0 t a7 ¢

0 —n+2a
<C / t72n M ﬂ < C|y|fn+2a|x|fn72a_
< . PR
/7

Let I7 ;(z,y,t) and I}’ (x,y,t) be defined in the same manner as I ; (7, y,t) with
Lo and L, +® in place of 1)(®), respectively. Then I; ; < 217 ; +2I7 . By the mean
value theorem we see that

2(—n—1+a)
/ % — z‘ dz

2lyl /<] /t—z] <6

2
=Ct ™" (%) / |z|2(7n71+a) dz.

2

—on (1Y
I{,l(l’,y;t) <Ct? %

2|y|/t<|=|<6

Thus, if n/2 < a <n/2+1,

2 —n+2«a
@) fyeen <o (W) g <o (M)
ifn/2+1<a,
yl)*
(2:3) I, (z,y,t) <Ct " <%> ;
and if a =n/2 +1,
2
3t

(24) I{,l(wvyat) S Ctizn (%) 10g+ <m> )
where log, s = max(logs,0). By (2.2), (2.3) and (2.4), we have

= dt _ [ dt
(25) / I{,l(mayvt) - = / I{,l(mayvt) i

0 ¢ |2/7 ¢
Cly| 2o |a| -2 ifn/2<a<n/2+1,
<{ ClyPlal="—> if o >n/2+1,

ClyPle|=>n=210g (1) if a=n/2+1.

lyl

We note that the case a > n/2 + 1 may occur only when n > 3,if n/2 < a < n.
To estimate I7';, we note that

|Lo * ®(z —y) — Lo x ®(x)| =

/ |27r£|7o<(i>(£)e2ﬁi(x,£) (6727ri(y,§) _ 1) df‘
Rn

<cC / €17 (1 + &)~y L€ de
R’n
< Clyl°,
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where 0 < € < min(a + 8 — n,1). Thus

2¢€
Iy (z,y,8) < 2" ('%') :
and hence

= dt > dt
(2.6) / [{’71 (x,y,t) 7 — / [{’71 (a:,y,t) 7 < C|y|2€|x|’2"*2€_
0 |

z|/7

We recall that it is assumed that |z| > 2|y|. To estimate I»(z,y,t), we observe
that if |/t — 2| > 6 and |z| < 1, then |z|/t > 5 and |z/t —y/t — 2| > |z|/(2t) —
|z| > 3/2. So, further if |z/t — z| < colz|/t with 0 < ¢p < 2/3, we would have
|z| > (1 —co)|z|/t > 1. Thus

2.7)

-[2 (1'; Y, t) =
=€Bo,|x/t—z|>6, |z /t—z|>cole| /t

@ —y —t2) =\ (z — t2)

Take ¢ € (1/2,2/3). Since ® € M?*, by Taylor’s formula, we see that

zbE“)(w—y—tz):t*"/[La (F-L-2)-ra (3 -2 -2 -w)]| Bw)dw

t t t t
1
=t " a] + // @7 Ly) (% - % —z— sw) ds (—w)"®(w) dw
lvI= [a]+1

and

t(a)(m—y—tz) t()a:—tz

=—t " a] + L // SN, (z,y, 2, w, t,5) ds (—w)"®(w) dw,

Ivl= a]+1

where

N, (z,y,z,w,t,5) = (07" Ly) (E Y sw) (07Ly) (? —z— sw)

Here 07 = 0]" ...0)", 0; = 0/0z;, 1 < j <n,and y! =y!... 9,0

We note that |z/t — uy/t — z — sw| > c|z/t — z| for some ¢ > 0 if |z/t — z| > 6,
2ly| < |z|, z,w € By, u,s € [0,1] and |x/t — z| > co|z|/t. This can be seen as
follows. First, as in the case u = 1 above we have |z/t — uy/t — z| > 3/2. Thus

r  uy ‘ 1|z wuy 1 ‘
-, > |2 -2 1— —
S e 3( 2c0> t
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as claimed. Using these results in (2.7), we have

(on M>2 T ‘2(*n+a*[a]*2)

I(z,y,t) <C z

€Bo.[a/t—2|>6,a/t—z[>col|/t

2 2(—n+a—[a]—2)
< opeen (WY (ke
= ( ¢ t

S Ct—2a+2[a]+2 |y|2 |x|2(—n+a—[a]—2)

- —z
t t

and hence

e |z|/5
(2.8) / Iy(z,y,t) % = / L(z,y,t) % < C'|y|2|a:|_2"_2_
0 0

Since

/B()X(0,00)
dt

e dt *° dt e
+C/ I{l(ﬁ?,y,t)—-f—C/ I{II(.’I},y,t)——FC/ IQ(xayat)_a
0 ’ t 0 ? t 0 t

using (2.1), (2.5), (2.6), (2.8) and recalling that a > n /2, we can get the conclusion.
oo g

o o 2 dt e dt
wt( )(m—y—tz)—wt( )(a;—tz)‘ dz? SC/ Ilyg(a:,y,t)?
0

Also, we need the next result for the proof of Theorem 2.3.

Lemma 2.2. Let ¢)(*) be as in (1.4). Then, if f € So(R™) and g € BMO(R™), we
have

F@g(@)ds| < Clgllo [ Sy (7)(@) d.
R™ R

This can be shown by the methods of part (a) of Remarks on pp. 148-149 of [6].

Proof of Lemma 2.2. There exists n € 8o(R™) such that

/Ooo@(tg)ﬁ(—tg) % =1 forall £#0.

We can find such 7 since

—

(2.9) P (&) = (2m|€]) (1 — &(¢))

satisfies a non-degeneracy condition sup, |@ (t&)| > 0 for £ # 0. (See [2, Lemma
4.1] and its proof.) Since ¢ € BMO, we have the Carleson measure estimate (see
6, p- 145))

h

» dt

(2.10) sup h / / lg * me(z)|* do - < CllgllEmo-
YER™,h>0 o JB(y,h)

1/2
h x— _, dt
sgh><g><w>=</ [ xon (B g mpare )
0 Rn

Then (2.10) implies that

(2.11) sup IB(Z,h)I’l/ S (g)()? dz < C3llgllEmo-
2ER™ A>0 B(z,h)

Let
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This can be seen as follows.

" dt
[ ez = [ [ 15e00 ool e
B(z,h n

<C’// lg * ne(y |2dy—
B(z,2h)

< Cllglimoh™

Let
h(z) = sup{h : S{" (9)(x) < 2"/CollgllBmo}-
Then
(2.12) {z € B(z,ho) : h(x) > ho}| = |B(z, ho)|/2

for all z € R™ and ho > 0. To see this, by (2.11) we observe that

C2llglnio| Bz, ko) > / 5 (g) (2)? da
B(2,ho)\{:h(z)>ho}
> 2C2lglnio (1B, ho)| — |{z € B(z.ho) : hz) > ho} ).

from which (2.12) follows.
Now we can show

(2.13) //|f*¢ Wllg *me(y >|dyd—<c||g||BMo/ St (f) (&) .

To see this, we first note that by (2.12) the left hand side is bounded up to a
constant factor by

[ [ e e Bt s o) = 0l 1 ol Wl mldy

N ) .
/ /n / X[O’”('mty') dr | 1f %0 W)llg * me(y)| dy t n%

h(z)>t

Fubini’s theorem implies that this quantity is equal to

h(z) _ d
/Rn (/0 /Rnxm,u <|x ; y|> 1 %68 (9)|lg * me(y)| dy ¢ %) dz.

Via Schwarz’s inequality, this is bounded by

Sy () (@) S5 (g) () de,

RTL
from which (2.13) follows, since S")(g)(z) < 2'/2Co]|gllBMO-

Finally we prove

(2.14) f(x)g(z)dz = /oo Fpi™ (y)g * me(y) dy ﬂ
R~ 0 R™
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for f € 8o(R™) and g € BMO(R™), assuming that Sy ) (f) € L'(R™). Combining
(2.13) and (2.14), we get the conclusion of the lemma. To see (2.14), we first note
that []g(2)](1+ |z]) " dz < oo, since g € BMO(R"), and hence

/ 9L+ ly — 2) " dz < O(L+ Jy)™.
From this we have
[ 1 W) dy = hm/ £+ 9 @) gmy * () dy

for each t > 0, where g(m)(x) = g(z)X[0,m1(|2]), m = 1,2,..., which can be seen by

the dominated convergence theorem, since f*1/}t(a) € 8, |g(m)*ne(y)| < Ce(1+|y|)" !
and g(m) *n¢ — g * 1 pointwise. We notice that g(,,) € L' and

In(t) i= [ S0l g ) dy = [ F@U (€)0 (~0n(~1€) de.
Using this and the fact f,n € Sy, we can see that there exists € € (0,1) such that
L,(t)=0ift ¢ (e,e ') and

0o d et d N
1= [ F= [ 00§ tor ¢ (.

Also, we note that

sup /
m>1,t€le,e~ 1] JR™

Applying these results, we have

[ [ wenmant = [ (1 [ sl wom snwar) T
R™ 0 n

m—roo R

:/E <hm e W *m()dy>

m—r0o0

() gm) * m(y)‘ dy < C.

~3

—1

= i [ ( 70 ()90 *m()dy>7

U
3y

671

~ tim ( f(@@(tﬁ)sfm(—g)ﬁ(—tadg) di

m—oo t
. dt

= m [ e (/ 9 (161 5)7>d£
m—00 [pn

= Jim [ f©dG (-0 de = lim [ f@)g (@) de

= | [f(2)g(z)dx
Rn

This completes the proof of (2.14) and hence that of the lemma. O

Now we can prove the following result, which will be applied in the proof of
Theorem 1.1.
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Theorem 2.3. Suppose that 1(*) is as in (1.4) with a and ® as in Theorem 1.1.
Then

1Sy (Dlly = [[fllars € 8o(R™).

Proof. The inequality || f|[z1 < C|Syc (f)|[1 follows from the estimate of Lemma
2.2 and duality of H! and BMO by taking supremum over g € BMO with ||g||smo <
1.

The reverse inequality will be proved by applying a result of [7]. We first note
that Sy ) is bounded on L?*(R™). To see this, by the Plancherel theorem we observe
that

S (2@ do =Bl [ 1F©OP [ 100w 5 de
R e Jo _
From this we can deduce the L? boundedness, since [1)(®) (£)| < C[¢]7 and |1(®) (£)| <
C|é|led+1=2 which is a consequence of the hypothesis & € M and (2.9). In Lemma
2.1 we have checked the Hérmander condition which is required for [7, Chapter V,

Corollary 3.10] to apply. Thus the reverse inequality follows from Corollary 3.10 of
[7, Chapter V] for H-valued singular integrals, where H is the Hilbert space with

- 1/2
the norm ||g||sc = (fo I8, l9(z, 1) dz dt/t) . O
We also need the next result for the proof of Theorem 1.1.

Lemma 2.4. Let o > 0 and w € Ay. There exist Fourier multipliers £ and m for
HL(R™) such that

(2.15) 2m€)™ = £(&)(1 + 4x>[¢*)*/?,
(2.16) (1+47°|€)*)*/ = m(€) (1 + (27[¢))*).
This follows from [26, Chapter XI, Theorem 14].

Proof of Theorem 1.1. Let n/2 < a < n and let U, be as in Theorem 1.1. We show
that

(2.17) 1Ua(Ja(g)ll + 1Ta(9) | mr = llglla

for g € H'. First we assume that g € 8o(R"). Then Ua(Ja(9)) = Sy (I-aJalg))
and by Theorem 2.3 we have

(2.18) Ua(Ja(g)llt = H-ada(g)la-
Thus by (2.15) with w =1
(2.19) Ua(Ja(g)lls < Cllgller
Also, we easily see that
(2.20) el < CllEalllg™lle < Cligllme-
Next, by (2.16) with w = 1 and (2.18) we see that
(2.21) 9l = [1T-aJa(@)llar < CllJa(@)llar + CllT-ada(g)llm

< Ol + CllUa(Jalg)ls,

By (2.19), (2.20) and (2.21), we have (2.17) for g € S§o(R™).
For g € H', take a sequence {gx} in 8o(R") satisfying gr — g, Ja(gr) = Ja(g)
in H' and almost everywhere as k — co. Fix z € R® and t > 0. Then

| Ja(gk) (2) = ®ixJa(gr) (2)| = |Ja(9)(2)—PixJo(g)(2)| for almost every z € B(z,t).
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Thus Fatou’s lemma implies that

/B( t)IJa(g)(Z)—<I>t*Ja(g)(Z)|2dZSliminf | (98) (2) = Bex Ja(gi) () dz,

k—oco B(z,t)

and hence by Fatou’s lemma it follows that
UalJa(9)) (@) < limint Ua(Ja(g6)) (@)
for all z. By (2.17) for g € $o(R™) we have
1Ua(Ja(gi))ll < Cligella-
Using this and Fatou’s lemma, we have
1Ua(Talg)ll < liminf [[Ua (o () s
< Climinf ||gg|| g
k—o0
< Cliglla-
Applying this we can deduce that
i [[Ua(Ja(9)) = Ua(Jalge)ll < lim [Ua(Ja(g = g))lls
—00 k— o0
< C Jim lg — gull s = 0.
Therefore, letting k — oo in
1Ua(Ja(ge))lly + [[Ja(gi) [ = [lgnll

which follows from (2.17) on 8y(R™), we have (2.17) on the whole H'.

Since we have shown (2.17), to complete the proof of Theorem 1.1, it suffices to
prove that f € W5, if f € H' and U,(f) € L'. For this we need the next two
lemmas.

Lemma 2.5. Let f € Ll w € A;,g € 8(R") and a > 0. Then
(1) we have

Kt (£ %9)() = (Ko ) g(0) = (Ka v g) f(2) for every a € B
(2) also,
| e D) s = [ (Ko x9)0) 5w v

n

Proof. By Fubini’s theorem, the result is a consequence of the estimate

J[ Koo =2 -l @lg@N dydz < o, o e B,

This follows from the inequality

/Ka(a: —2—y)|g9(2)|dz < Copr(1+ |y))™

for any M > 0, which is a consequence of the fact that g € S(R™) and K, is rapidly
decreasing as |¥| — oo (see [23, p.132]), since the assumption f € Ll implies
J 1@+ Jy])~" dy < oo (see [13, Section 4]).

O
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Lemma 2.6. Let w € A; and let {g,}55_, be a sequence of functions in H)
satisfying sup,,>1 [|gm|lgy < oo. Then there exist a subsequence {gm, }ze, and
g € H. such that

/ Im, (X)v(x) de — g(z)v(z)dz ask — oo forv e C.(R),
n Rn
where C.(R™) is the space of all continuous functions with compact support on R™;
also this is valid for all v € $(R™).

Proof. Let Oy = B(0,1), 1 = 1,2,3,.... We note that w(z) > C, (1 + |z|)™" for
w € Ay, which follows from the property M (w)(z) < Cw(z) valid for A; weights
(see [13, Section 4]). Thus we have sup,,>, fOz |gm| dz < oo for every I.

It is well-known that there exist a subsequence {gm, }7>,; and a regular Borel
measure y; such that

(2.22) /'XQH@mmxwmwdy% v(y) duily) s k — oo for v € Co(R")
R" R"

(see [4, 1.9, Theorem 2]). We note that the subsequence can be chosen independent
of | by the diagonal process. Taking y.(z — y) in (2.22) in place of v(y) for = €
Oy, € € (0,1), we easily see that

/ pe(z —y) d (y)‘ < liminf

k—o0

/ (T = Y)gm,, (y) dy‘ < liminfgy, (),

since y € Op41 if . (z — y) # 0, and hence
[ i@ ds < timint gz, < C.
Ol k— oo

where

pl(x) = sup

/ Pe(z —y) du(y)
e€(0,1) [/R™
Also, for v € C.(R™),

/n </n¢e(m -y) d;u(?/)) v(z)dr — an(y) diu(y) ase— 0.

/n (T = Y)gmi (¥) dy‘ :

s Gy (T) =sup
>0

Thus

[ o] < [ @

Oy
for all v € C.(R™) with support in O;, which implies

IM@SAM@MSAM@M

for any open set O in Oy, where || is the total variation of ;. Thus gy is absolutely
continuous when restricted to O; and there exists g; € L' (R™) such that

(2.23) /U(:L’) dpy(x) = /v(a:)gl (x)dz for v € C.(R™) with support in O;.

By (2.22) and (2.23), we can see that there is a locally integrable function g on R”
such that g = ¢g; on O; and

| amwntdn > [ ge)dy ask— oo torve C.(m)
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Applying this with v(y) = ¢.(z —y), as above, we have g*(z) < liminf;_, g}, (2),
which combined with the assumption that {g;} is L!, bounded implies g* € L}
and hence g € H.. The result for v € §(R™) follows from that for v € C.(R™).

a

Now we can finish the proof of Theorem 1.1. Suppose that f € H' and U, (f) €
L'. Let f()(z) = ¢ * f(z) and ¢(9(z) = J_a(gof) % f(z). Then g(9 € H' and by
part (1) of Lemma 2.5 with w = 1, f() = J,(¢'®)) and (2.17) implies

(2.24) 1Ua(F N+ 1 = Nl e
We easily see that

(2.25) Sl>113||f(€)||H1 < Cliflla-

Further, using Minkowski’s inequality, we have

s </ /B(xt)m*f Boxpex f(2)f dzi n?) :
/ (/ / e (z—y)— B * f(z—y)|° dzt_Q"—"%>1/2 dy

z/n%@ﬂkﬁxx—wd%

which implies

(226) sup [V (F)ll < V(-

Combining (2.24), (2.25) and (2.26), we have sup, ||g') ||z < 0.
Thus by Lemma 2.6 for w = 1 we have a sequence {g(*)} with ¢, — 0 and
g € H' such that

/ g\ (z)o(x) de — g(x)v(z)dx as k — oo for v € $(R™).
n R’n

Also, {f(*)} converges to f in L'. Thus, we can see that f = J,(g). We show this
in more detail as follows. Let v € §(R™). Then, using part (2) of Lemma 2.5 with
w =1 and the fact that J,(v) € S(R"), we see that

(2.27) /f x)dr = hm /f(f" (z)dz = lim | Jo(¢'"))(z)v(z) dz

k—oo

= tim [ ¢ (@) Ja(v) () dz = / 9(2)Ja (v)(x) do

k—oo

= [ 1@ @pi) ds

It follows that f = J,(g). Thus f € Wg, (R").
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3. ESTIMATES FOR LITTLEWOOD-PALEY FUNCTIONS ON THE WEIGHTED HARDY
SPACES

To prove Theorem 1.2, we need Theorem 3.2 below with p =1 and n = 1 (see
[19] and [20] for the unweighted case).

Definition 3.1. Let ¢ € L*(R"). We say ¢ € B if
1) ¢ € C=(R™ \ {0});

s

|07 (€)| < C,.-1€|”" outside a neighborhood of the origin for all multi-
indices v and 7 > 0.

Theorem 3.2. Let 0 <p <1, w € Ay and ¢y € B. Then we have

1 1ez, < Cpllge (Fllpw
for f € $(R™) with a positive constant C,, independent of f, where we recall that
111z, = 11" llp -
Let 3 be the Hilbert space of functions u(t) on (0,00) such that ||u|lsc =

(fo7 lu(t)? dt/t)l/2 < oo. Let w € A;. We consider the weighted Lebesgue space
L ,(R") of functions h(y,t) with the norm

1/q
Il s = ( / 195w (y) dy) ,

where h¥(t) = h(y,t). When w = 1, we write simply L%, (R") = L] (R™).

Let 0 < p < 1. We consider the weighted Hardy épace of functions on R"
with values in 3{, which is denoted by Hf , (R"). We say that h € Hf,  (R") if
h e L3, (R™) and hllmz, = [1A*]lpw < oo with

oo 1/2
B (@) = sup ( / |sos*ht<m>|2ﬂ) ,
0

s>0 t

where we write hf(x) = h(z,t) and we recall that ¢ is the function in §(R™) fixed
in Section 1.
In proving Theorem 3.2, we need the next result.

Lemma 3.3. Let ¢ € S(R™) be a radial function such that supp(¥) C {1 < |¢| < 2}
and

(
(2)

(3) v € CL(R"), Op € L' (R™), 1 < k <
(4) |[¥(&)| < C|&J€ for some € > 0;

(5)

/Oo | (t6)? % =1 forall € #0.
Let F(y,t) = f*¢(y) ?uz'th f € So(R"). Let w € Ay. Then F € HY.  (R"),
0<p<1, and
1, < CUF,
Let ¢ be as in Lemma 3.3 and

) %0 dt
B0@ = [ [ e = phow0d T
0 n
where h € L3 and h(.)(y,t) = h(y, t)x(c,c-1)(t), 0 < e < 1.
To prove Lemma 3.3 we apply the following.
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Lemma 3.4. Suppose that w € Ay. Then

sup ||Ey(W)llgz, < Clibllgz, , 0<p<T.
e€(0,1) ’

To prove Lemma 3.4 we use the atomic decomposition.

Definition 3.5. We say that a is a (p,c0) atom in ch,w(]Rn)’ weA,0<p<1,
if

(i) (fooo la(z, t)|2 dt/t) < w(B)~Y?, where B is a ball in R* and w(B) =

w(z) dx

(

(11) supp a(-, ) C B for all t > 0, where B is the same as in (7);
(iii) [gna(x,t)zY dz = 0 for all ¢ > 0 and multi-indices vy such that |y| <

[n(1/p— 1)]-
Lemma 3.6. Let w € Ay, 0 < p < 1. Suppose that h € ch,w(Rn)' Then there
exist a sequence {ar} of (p,00) atoms in Hgfyw(]R”) and a sequence {\} of positive
numbers such that Y~ Xo < C||h||%,» , where C is a constant independent of h,
I, w
and h =" Meag in H5.  (R™) and in L3 (R™).

A proof of the atomic decomposition for H? (R™) can be found in [26, Chapter
VIII] and the proof for the vector valued case is similar; we can apply the same
arguments as in the case of the scalar valued case by replacing absolute values with
H-norms in appropriate places.

Also, we need the following result in proving Lemma 3.4.

Lemma 3.7. Let w € Ay and h € L (R*) N L5 (R™). Let ¢ be as in Lemma
3.3. Then

sup || E}, (h)l|2,w0 < CllAll2,5¢,w-
e€(0,1)

Proof. Let ¥ € C5°(R™) satisfy supp(¥) C {1/2 < [{| <2} and ), ., ¥(27™¢) =
1 for £ # 0. Define

An(®art) = [ WEmEOh(E e dg,
where the Fourier transform / is with respect to x variable, and
e dt
Antho)@) = [ [ e =)Aot dy

Then by taking the Fourier transform we see that

92— m+2

dt
)@= [ [ e =A@

We note that

[ 01 = 8B 500) 5| < O (hi) ) ),

since the least decreasing radial majorant of ¢ is integrable (see [23, Chapter III,
Theorem 2]). Similarly,

|Am(h(e))(m7t)| < CM(h(e)(at))(m)
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It follows that
2—m+2

dt
Anbe)@F <0 [ Mo () @R T
Thus, since the maximal operator M is bounded on L2 for w € As,
g-m+2

/|Am(h(e))( 2)dz < c/ /|h 2,1 da:—

Using this and applying Littlewood-Paley inequality with w € As, we have

1D An(he) 3w < C Y I1Am (o)l

mEZ meEZ
< ClINI3 3¢ 0
This completes the proof, since £y (h) =3,y Am(h())- O

Proof of Lemma 3.4. The proof is analogous to the one for Lemma 3.5 of [19]. So
we put it briefly. Let a be a (p,00) atom in ch,w(Rn) supported on the ball B of

Definition 3.5. If B is a concentric enlargement of B such that 2|y — ¢'| < |z — ¢/|
for y,y' € B and z € R™ \ B. Then, as in the proof of Lemma 3.5 of [19], using
properties of an atom, for € R” \ B and y’ € B we have

(31)  |pw* ES(0)(@)| < Cuw(B) 7|z —yf| M1 /B y— ' M dy

where M = [n(1/p —1)].

To prove (3.1), let ¥, ; = g%y, s,t > 0. Let P,(y,y") be the Taylor polynomial
in y of order M = [n(1/p—1)] at y' for ¢,/ x (2 —y). Then, if [z —y| > 2|y’ —y|,
we see that

Wi(@ —y) =t Poply/t,y' /D] < O My — /M A+ e -y /1)"

where L > n+ M + 1 and the constant C is independent of s, ¢, x,y',y. Thus, using
the properties of an atom and the Schwarz inequality, for x € R™ \ B we have

//Rno T, o(m — ) =t " Py eyt /1) ago () dy

<[ ([T 1 -epyp 4) " (/Omm(y,t)ﬁ%)/ 0y

< cu(py i | ( | esto =) = Pt @) s

B t

|05 * B (a)(z)| =

< CoB) 7 [y =y -y dy,
B

which proves (3.1).
Since p > n/(n+ M + 1), by a straightforward computation, using (3.1), we see
that

(3.2) / sup | * Ef,(a)(z)|" w(z) dz < Cw(B)*|B| inf M (w)(y')
R\ B s>0 y'eB
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By Hélder’s inequality, the L2 -boundedness of M, Lemma 3.7 and the properties
(i), (ii) of Definition 3.5, we get

(3.3)

/Bsup|90s*E¢ 2)|" w(w) de < Cw(B)* /2 (/ MBS (@)(@) w(x)dx>p/2

B)i-v/2 ( /~ |ES (a) () Pw(z) dm) "

<o ([ ot )

where we have used the estimate
(3.3), we have

(3.4) /R sup |cps * By (a)(x )|pw(a:) dx < C.

n >0

ps x E, (a)‘ < CM(E;(a)). Combining (3.2) and

By Lemma 3.6 and (3.4) we can prove

/ sup [ps * E5(h)(@)|” w(z) dz < Clh|E,
R~ s>0 Iw

This completes the proof. a

Proof of Lemma 3.3. It can be shown that F' € Hﬁaw(]R") similarly to the proof of
Lemma 3.4 by using the atomic decomposition for f € HE (R"™); recall that f € 8§
and that 8y is a subspace of H? (R™). We give a sketch of the proof. First we can
prove an estimate analogous to (3.1):

oo 1/2
(3.5) sup </0 s * Wy * a(z)]? %)

s>0
< Cw(B)P|p — y/|-n= M= / y— o' M dy,
B

where a is a (p,00) atom for HP (R™) supported on the ball B with properties

analogous to those for the atom in (3.1) and 3’ € B and & € R™ \ B with B denoting
a concentric enlargement of B as in the case of (3.1); further M = [n(1/p — 1)].
Also, we have the following L2 -boundedness:

(3.6) / sup / oo 160 % 1) Laua) do < CIIF 2.

n s>0
This can be shown by using the L2 -boundedness of M and gy as follows.

s [Clocsves f@f Fo@ds <o [T s pel we s %
<cf” /nwt*f(wn?w()dm%

= [ gulN@? ule) ds
<Ol
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Using (3.5) and (3.6), we can show F' € Hf ,(R") as in the proof of Lemma 3.4.
Let ¢, F be as in Lemma 3.3 and let ¢ denote the complex conjugate. Then

-1

By = [ [ vt -ad G = [ 996 -5,

where

-1
dt

v (z) = / - iz +y)e(y) dy <

There exists €y € (0,1) such that

P (o)

v

dt .
|? - = 1 for ¢ € supp(f).

©=[" deoieT= [ 1w

0 €0

Thus

——
(eo

EP(F)(z) = | W) (&) f(¢)e™ ) de = / f(&)em =2 dg = f(a)
and hence by Lemma 3.4
W e, = 1EZ (F)llaz, < CllFNlaz, -

O

Along with Lemma 3.3, the next two results (Lemmas 3.8, 3.9) are used in
proving Theorem 3.2.

Lemma 3.8. Let w € Ao = Ups14,. Suppose that n € S(R™), supp(}) C {1/2 <
€] < 4} and 7€) =1 on {1 < |§| < 2}. Let ¢ be as in Lemma 3.3. Then for

p,q >0 and f € 8(R™) we have
o0 A 20 A
([Tswloocvor ) ) <o) ([ mesn )
0 s>0 t pow 0 t

This can be established by the proof of Lemma 3.3 of [19], where only the
unweighted version of Lemma, 3.8 is explicitly treated but the proof is exactly the
same in the weighted cases.

p,w

Lemma 3.9. Let ¥ € B and w € As,. Suppose that 0 < p,q < oco. Let n € §(R™)
satisfy 1 = 0 in a neighborhood of the origin. Then

0o dt 1/q 0 dt 1/q
‘ </ | f o me]? 7) (/ | f Wyl 7)
0 0
P P

for f € 8o(R™) with a positive constant C' independent of f.

<c

This is a particular case of Theorem 2.4 of [20] (also, results of [19] imply Lemma
3.9).
Now we can complete the proof of Theorem 3.2.
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Proof of Theorem 3.2. Let n and ¢ be as in Lemma 3.8 and w € A;. Applying
successively Lemma 3.3 and Lemma 3.8 with ¢ = 2, we have

o0 dt\ '/
sup (/ (w0 % P —)
s>0 0 t

< Cllgn (Pl

for f € 80(R™). By this and Lemma 3.9 with ¢ = 2 we can finish the proof of
Theorem 3.2.

£l <€

p,w

O

4. PROOF OF THEOREM 1.2
We first note the following.
Lemma 4.1. Let W}, (R), w € Ay, be as in Section 1. Then

I llwr, = fllay, + 11 My, f € So(R).

Proof. Let f € 8(R). Then f € H! and f = Ji(g) for g € 8o(R). Applying
integration by parts, we have

[ F@ids = [ @)@ ds = [ Ri©ae2micas) de

for n € 8(R). Since ¢ = (sgn )|, by Lemma 2.4 (2 15) and the fact that the Hilbert

transform is bounded on H}, we see that 2mic Ky (©)§(€) = h(€) for h € 8y(R) with
Pl gy < Cligllm:, (see [26, Chapter XI, Theorem 14]). Thus we have

/f dm—/h ¢)de = /h Yz

which implies that f' = h and hence ||f'||z;, < C||fllw1 . Also, a straightforward
w o

computation implies that
111, = 1(J1(9)) Nl w < Cllg™ I,y < Cllg™ (1w = Cllfllwr,

Here we give a proof of the first inequality for completeness. As in Section 1, we
have (J1(g9))* < K; *g* and K *w < CM (w). Thus

1(72(@)* i < / Kyxg* (2w (z) de = / g* () Kysw(y) dy < C / 0" () M (w) (y) dy,

where we have used the fact that K is even.
On the other hand, let g = J_1(f) € So(R). Then, by (2.16)

3(6) = FOK_1(&) = m(&) (&) + m(&)(—i sgn(€) ' (€).
Using again the boundedness of the Hilbert transform together with Lemma 2.4,
we get that [[fllys = llgllay < Clifllay + Cllf 'y -
’ O

Also, we require the next result to prove Theorem 1.2.

Lemma 4.2. Let v be as in (1.2) and w € A;. Then
(w1 e, f € So(R).
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Proof. 1t suffices to show that ||u(f)|[1,w = ||fllz: for f € So(R). We recall a
Littlewood-Paley function gg defined as

9ol f) () = ( | |<a/ax>u(m,t>|2tdt) "

where u(x, t) is the Poisson integral of f: u(x,t) = P, * f(z), P(¢) = e~27¢l.
Let R(¢) = 2mie>"€l. We note that R = P’ and that R € B; the condition (3)
of Definition 3.1 is obvious from the explicit forms:

-2z 2(3z% - 1)
= PII = 7
(1 + 22)?’ (z) m(1+ 22)3

We see that go(f) = gr(f) and, since R € B, by Theorem 3.2 with p = 1 we have
Il < Cllgr(f)ll1,w for f € So(R) and w € Ay (see [6, 27] for the unweighted
case). Also we have the pointwise relation go(f) < Cu(f) for f € So(R) (see [14,
Theorem 5]). Combining results, we see that || f||z1 < Cllp(f)l1,w-

In proving the reverse inequality, we apply the pointwise equivalence between g3
and p to get

P'(z) =

(e < Cllgs (Fllrw + Cllgz (F2)l1w,

G (@) = ( // . (ﬁ) Vuly, t) dy dt)

is another Littlewood-Paley function and fl = fx[o,oo), fz = fX(_oq()] (see [14,
Theorems 1, 2 and Remark 1] for the pointwise equivalence). It follows that

(1w < Cllgs (HDllw + Cllgs (H 1w,
where H denotes the Hilbert transform; this can be seen by noting

1 1

=3 (X(—o0,00)(§) +580(E)) ,  X(—00,01(&) = 3 (X(—o00,00) (€) — sgn(§))

for £ # 0. Then, we apply the H! — L. boundedness with w € A4; of g5 due to [12]
and the boundedness of H on H}. Here we would like to recall the following. In
[12] H]. norm is defined as ||N(u)||1,w for u(z,t) = f x P;(z), where N(u) denotes
the non-tangential maximal function and we have

IN ()l w < ClLF 1w,

which can be shown, for example, by applying the atomic decomposition for f €
HL. 0

where
1/2

X[0,00) ()

To prove ||u(f)ll1,w < C||f||m, alternatively, we can apply an argument similar

to the one in the proof of Lemma 3.4, using an atomic decomposition for H} and
an estimate from (4.7) of [17]:

= dr\'? _ oyl
2
(/ (e = y) — e ()] 7) <ol tor 2l < el

where 9(z) = x[0,1](%) — X[—1,0](z) (see the proof of Theorem 4.5 of [17]).
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Proof of Theorem 1.2. The proof is analogous to that of Theorem 1.1. Lemmas 4.1
and 4.2 imply that

(4.1) 1T (s, + 117 (T(@)lw = Mgl s,

for g € 8o(R). We prove (4.1) for all g € H.. Let g € H. and take a sequence
{gx} in 8o(R) such that g — g, Ji(gr) — Ji1(g) in H. and almost everywhere as
k — oo. We note that, if z is fixed,

|J1(ge)(x + 1) + Ji(ge) (@ — 1) — 2J1(ge) ()| = |J1(9)(z + 1) + J1(g)(z — t) — 2J1(g)(z)|
for a.e. t € (0,00), which implies that

V(J1(9)(x) < liminf v(J: (91)) (@)

for every x by Fatou’s lemma. By (4.1) established with g € 8o(R"), for gi € So(R™)
we have

v (Ji(ge))lltw < Cllgellay ,
from which and Fatou’s lemma, it follows that
()l < lian inf 173 (98)) 10
< Climinf ||gg|| g2
k—o0 w
< Cllgllmy -

Therefore
i [[v(1(9)) = v( (gl < lim v (Ti(g = gi))lly
— 00 k— o0
< C lim [lg =gl =0
Thus, letting £ — oo in the relation
T2 (gi)l s, + (T (gDl = llgkllay, g € So(R),

which is already shown, we have (4.1) for g € H}.

Thus, to complete the proof of Theorem 1.2, it suffices to prove that if f € H),
and v(f) € Ly, then f € W}, . Suppose that f € H; and v(f) € L},. Let
fz) = pex f(x) and g9 () = J_1(pe)* f(x). Then g'9 € HL and f(¢) = J;(g(9)
(see Lemma 2.5). The relation (4.1) implies

(4.2) AN + 12 (F ) w2 19
We see that
(4.3) sup 1F N s < CF 1 mo) < CNF M = CllF Nl

since w € A;. By Minkowski’s inequality,

N 1/2
V(f ) (z) = </0 pe * f(z + 1) + e x f(z —t) — 20 % f(z)] %)

13

< | ¢ew) fx+t—y) + fla—t—y)—2f@z -y 5 12dy
L (] £
Z/Rsoe(y)V(f)(w—y) dy.
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Thus

(4.4) sup (N < CID i pw) < Clw-

Consequently, it follows that sup, [|g'“||m < co from (4.2), (4.3) and (4.4).

Applying Lemma 2.6, we choose a sequence {g{*)} in H! with ¢, — 0 and
g € H} such that

/ (er) ( da:—)/ z)dr as k — oo for v € §(R).

Further, {f(“*)} converges to f in L.. Thus, (2.27) applies and f = Ji(g), so
feWh (R). O

Remark 4.3. The function of Marcinkiewicz u(f) is generalized. Let pg(f) =
gy (f), B> 0, where

D (x) = BI1 — Jz||” " sgn(@)x(-1,1) (@)-

Then ug generalizes p in the sense that @1 = p. See [14] for properties of ug.

5. PROOFS OF RESULTS IN REMARKS 1.4 AND 1.5

Here we give proofs of Remarks 1.4 and 1.5 for completeness.

Proof of Remark 1.4. We prove that if 0 < a < n/2,1 < p < 2 and Sy is
bounded on LP(R™), then p > 2n/(n + 2a). Let f € §(R ) f # 0. We estimate

Sy (f) as

2ot nt/2g L (f (/ /w1 — &, x I(f )(z)|2dzdt>1/2
> (/ / . |2dzdt> _ (/2/3(30 1)|<I>t*Ia(f)(z)|2dzdt>1/2
- (/3@,1)'[ ()= |2dz> (/ / L )(z)|2dzdt>1/2.

We easily see that

[, |2 LNE dedt < ORI, (xpo.00 * (@)

Thus

1/2
(5.1) (/B( 1)Ifcv(f)(Z)IQdZ> < CSy (f)(@) + CxBo,cy) * | a(f)I(2)-

On the other hand we will show that

52 ([ mnwre) <o [ ( [ IIa(f)(Z)I2dZ>p/2 de.
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To see this, we consider a covering of R": U2, B(c;,1) = R". We assume that there
exists 7 > 0 such that U2, B(z;(y),1) = R for ally € B(0,7) with z;(y) = ¢; +y
and B(cj,7) N B(eg, ) =0 if j # k. Then, since p/2 < 1, we have

([ moera)” < fj ( [ e dw) "

for all y € B(0,7). Thus

Jj=1

oo

p/2
<O, > (/ |Ia(f)(w)|2dw> dy
B(0,7) =1 B(xz;(y),1)
o p/2
ey [ |/ L () (@) dm) dy
Z B(07T) ( B(z]'(y),l)

=1
p/2
( / L (f) (@) dm> dy
B(cj,T) B(y,1)

=C, Z/
p/2
<c | ( [, e dm) .

which proves (5.2). From (5.1) and (5.2), it follows that

e (Hll2 < ClISye (Dl + Clixso.cry * Ha(H]llp-
Thus if [|Syce) (f)llp < ClIfllp, since [Ixpo,c1) * La(Hllp < CliLal(F)llp, we have

o (Hll2 < Cllfllp + CliLa()p-
From this with f, in place of f, by homogeneity, it readily follows that

pafn/2 < CpfnJrn/p + Cpoc+n(1/p71) < Cp7n+n/p
for all p € (0,1), which implies that p > 2n/(n + 2a) as claimed. O

Proof of Remark 1.5. Suppose that 0 < o < n/2,1 < p < 2n/(2a + n). We see
that Sy is not bounded from H' to L'; otherwise S, would be bounded on
LP by interpolation between the H' — L' and L? boundedness of S, (for the L?
boundedness see the proof of Theorem 2.3 in Section 2). This contradicts Remark
1.4.

However, if U, was bounded from W, to L', then [|Ua(Ja(9))ll1 < Cllgllsm
for g € 8o(R™). Since Un(f) = Sy (I—a(f)), it follows that [|Syw (g)lli <
Cl|IaJd—a(g)|| 2 Thus by Lemma 2.4 with w =1

(5:3) 1Sy (@l < Clila(g)llar + Cllgllar, g € 8o(R?).

Since Sy (9p) = (Sy (9))p, 1La(gp)llr = p*|Ha(9)llmr and [lgpllr = llgllar, by
(5.3) with g, in place of g we have

1Sy (@)l < Co®l[Ta(g)llar + Cllglla
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for all p > 0. Thus, letting p — 0, we see that ||S, @ ()1 < Cllgllgr, from which
the H' — L' boundedness of S, follows. This contradicts what we have already

observed.
O
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