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WEAK TYPE ESTIMATES FOR FUNCTIONS OF
MARCINKIEWICZ TYPE WITH FRACTIONAL INTEGRALS OF
MIXED HOMOGENEITY

SHUICHI SATO

Abstract

We prove the endpoint weak type estimate for square functions of Marcinkiewicz type with
fractional integrals associated with non-isotropic dilations. This generalizes a result of C.
Fefferman on functions of Marcinkiewicz type by considering fractional integrals of mixed
homogeneity in place of the Riesz potentials of Euclidean structure.

1. Introduction

Let B = diag(a1,...,a,) be an n x n real diagonal matrix such that a; > 1,
1 < j < n. Define a dilation group {A4;}t>0 on R* by A; = exp((logt)B) =
diag(t®,...,t%). We see that |A,z| is strictly increasing as a function of ¢ on

Ry = (0,00) for z € R*,  # 0, where |z| denotes the Euclidean norm. Define
a norm function p(z), z # 0, to be the unique positive real number ¢ such that
|Ai—12z| = 1 and let p(0) = 0. Then p(A4iz) = tp(z), t > 0, z € R*, and the
following properties of p(z) and A; are known (see [2, 4, 9]):

(A) pe C=(R™\ {0});

(B) p(z +y) < p(x) + p(y);

(C) p(x) < 1if and only if |z| < 1;

(D) Ja| < p(x) if Ja] < 1
(E)
(F)

2l > p(a) if Je| > 1;
we have a polar coordinates expression for the Lebesgue measure:

[ f@)de :/0 /Sn_lf(At())ﬂ_ 1(6) do(6) dt,
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where v = trace B = E?Zl a; and p is a strictly positive C*° function
on the unit sphere S"~! = {|z| = 1} and do is the Lebesgue surface
measure on S"7L.

Define a Riesz potential operator by

L)) = @rp(&) f(&) (1.1)

for 0 < a < 7y, where the Fourier transform f is defined as
f© = | f@e Dz, (@6 =3 a6,
n =

with z = (z1,...,2,), £ = (&1, .., &) (see also Remark 8.1 in Section 8 for the
definition of I,,). Let ||f||, denote the L? norm of a function f in LP(R™). Let
S(R™) be the Schwartz class of rapidly decreasing smooth functions on R™. Then
the following result is known (see [3, Theorem 4.1]).

THEOREM A. Let 1 <p< oo, 0<a<vy/p, 1/p—1/q=a/y. Suppose that

A

[ is in 8(R™) and supp(f) does not contain the origin. Then

Ha(Hllg < Cllfllp-
Define

1/2
Do) = ([ 1a(Hle+) = L(@Pol) > dy)

In this note we shall prove the following.

THEOREM 1.1. Let 0 < a < 1 and po = 2v/(y + 2c). Suppose that py > 1.
Then

(1) the operator D, is bounded on LP(R"™) if py < p < o0;
(2) D, is of weak type (po,po) :

Zlipoﬂ"‘) {z € R" : Da(f)(x) > B} < ClIFITS, (1.2)

where |E| denotes the Lebesgue measure of a set E.

We note that po > 1 for all & € (0,1) if n > 2. See Remark 8.2 in Section 8
for the optimality of Theorem 1.1. When A;z = tz and p(z) = |z|, part (1) is
due to Stein [21] and part (2) is stated in Fefferman [10], a proof of which can
be found in Chanillo-Wheeden [5]. The proof of [5] uses properties of harmonic
functions by extending I, (f) as a harmonic function on the upper half space
R} = R x (0,00) and results are stated in weighted settings. Also, see [20]
for results related to part (1) with A; = diag(t,...,t,#3), y=n+1,n > 2.
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In 1938, a square function, now called the Marcinkiewicz function, was intro-
duced by Marcinkiewicz [12] in the setting of periodic functions on R!, which
can be used to investigate differentiability of functions and characterize function
spaces including Sobolev spaces. A generalization of the Marcinkiewicz function
to higher dimensions can be found in [21], where also D,(f), a variant of the
Marcinkiewicz function, is considered when p(z) = |z|. We refer to [1], [11],
[15], [16], [17], [18] and [19] for relevant, recent results on the relations between
functions of Marcinkiewicz type and Sobolev spaces.

To prove part (1) for p € (po,2], we first prove L? boundedness of D, by
applying the Fourier transform and the result for p € (pg,2) follows from the
Marcinkiewicz interpolation theorem between the L? boundedness and the weak
type boundedness of part (2).

The proof of part (2) we give in this note is motivated by the proof of the
weak type estimate for the Littlewood-Paley function g% in [10]. The proof in
[10] uses some properties of the Poisson kernel

t ['((n+1)/2)

B0 = enfm e =t

associated with harmonic functions on the upper half space R7 " (see [23, Chap-
ter I]). One of them is related to the formula

/ Pk f@) dt = Do) L) (@), (13)

where T.J(€) = (2mlé) *f(€), Pi() = ¢ "P(a/t) = P(a,b), with P(z) =
P(z,1). Also, some regularities on P(z,t) are used, although properties of har-
monic functions, like that applied in [5] to prove the special case of Theorem 1.1
(2) mentioned above, are not used in an essential way. In proving Theorem 1.1
(2), we are able to successfully generalize the methods of [10] for the estimate of
g to the present situation, where results from differential equations, like those
connected with harmonicity, are not readily available. Qur proof of Theorem 1.1
(2) in this note is new even in the case of the Euclidean norm setting.
To prove part (2) of Theorem 1.1, we consider the function K defined by

K(z) = / e 2mP() g2mile.8) e (1.4)

as a substitute for the Poisson kernel P(z) and consider the function K; x f(x),
where K;(z) = t 7K (A7 'x). Then we have an analogue of (1.3) for the general
I,(f) in (1.1) (see (4.3) below). Also, we have some results analogous to the
regularities for P (see Lemma 3.1 below). We shall apply these results to estimate
the bad part arising from the Calderén-Zygmund decomposition derived from the
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Whitney type decomposition of open sets in homogeneous spaces (see [6, 7]). To
treat the good part we shall apply the L? boundedness of D,.

In Section 2, we shall state the Calderén-Zygmund decomposition of f €
LP(R™), 1 < p < oo, at height 87, 8 > 0, needed for the proof of Theorem 1.1
(2). Some properties of functions related to K in (1.4) will be shown in Section
3.

We shall prove the L? boundedness of D,, in Section 4. Part (2) of Theorem
1.1 will be shown by applying the L? boundedness and the Calderén-Zygmund
decomposition in Sections 4 through 6. We shall show part (1) of Theorem 1.1
for p > 2 in Section 7 by proving weighted L? estimates for D, with A;-weights.
Finally, we shall have some concluding remarks in Section 8.

2. Results for the Calderén-Zygmund decomposition

For z € R* and r > 0, let B(z,r) be the ball centered at z with radius r defined
by p: B(z,r) = {y € R" : p(x — y) < r}. Then we have the following (see [7]
and also [6]).

LEMMA 2.1. Let O be an open bounded set in R™ and N > 1. Then There
exists a sequence {B(cj,r;)}52, of balls for which we have
(1) 0= use 1B(cj,rj);
(2) there emsts C > 0 such that Z ~1 XB(c;,Nr;) < O, where xp denotes the

characteristic function of a set E;
(3) there exists C1 > 1 such that B(cj, CiNr;)N(R™\ O) # 0.

Applying this we can prove the next result (see [6]).

LEMMA 2.2. Let B >0, f € LP, 1 < p < oo. Suppose that f is compactly
supported. Let N > 1. Then there exists a sequence {B(c;,7;)}32, of balls such
that

1) 32 XB(e; Ny < C5

) 10 < CH £, where © = UB(ce;, )
) [l <03 e \a

) [B(cj,rj)l fB(c] ) |f ()P dzw < CBP.

PROOF. Define the Hardy-Littlewood maximal function

M) = s oz [ 1wl

zEB

(

(2
(3
(4

where the supremum is taken over all the balls B which contain x. Let

Q={zeR": M(|f|") > 5"}
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Then Q is open and bounded. Clearly, we have part (3). By Lemma 2.1 with Q
in place of O, we have a sequence {B(cj,r;)}32; of balls as in Lemma 2.1. So
we have part (1). Also, part (2) holds true since it is known that M is of weak
type (1,1).

By part (3) of Lemma 2.1, there exist h = C1 N > 1 and y € R™ \ Q2 such that
y € B(cj, hrj). Thus

z)|P dz < hTM(|fIP)(y) < h7 57,
|B C],T'J |/ c],r])

which implies part (4).

Lemma 2.2 is used to prove the following (see [6]).

LEmMMA 2.3. Let B8, f € LP, p, N and {B(cj,7;)}32, be as in Lemma 2.2.
Then there exist a bounded function g and a sequence {bj}}?i1 of functions in LP
such that

1) f=g+352.0

(2) lg(x)] < OB;

(3) ||9||p < Cllfllps

(4) bj(z) =0 if x € B(cj,r;)° for all j, where E¢ denotes the complement
of a set E;
5) [bj(x da;—Oforall],

<>ubnpscwm3uawn|ﬁraux

(7) E(;il |B(cj, )| < CB7PIFI5

ProOOF. Define a function h; on R™ by
XB(C]',T']')(J’.)

hj(z) = ==
! Zj:l XB(C]',T']')(:L.)
and h;(z) = 0 if z € Q°, where Q = U2, B(cj,7;). Let

= 1
g(z) = ; (W /B(W]_) f@)h;(y) dy) XB(e;,r;) (@) + f(T)Xa: (7)

ifz € 0,

bi(e) = f(x)h() - (qu|/ ) )@)mmm@)

Then by the definitions and Lemma 2.2 we easily have the assertions (1) through
(6). Also, since {B(cj,r;)}52; is finitely overlapping, by part (2) of Lemma 2.2
we have part (7). This completes the proof.
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3. Some estimates for Fourier transforms

In this section we prove some estimates for the Fourier transform of the function
e 2mtP(&) and its derivatives needed in proving Theorem 1.1.

LEMMA 3.1. We have the following estimates:

|K(z)] < C(1+p(x)) 7Y, where K is as in (1.4), (3.1)
1Q(z)| < C(1+ p(z))7 7, (3.2)
where
Q@) =~ [ 2mp@)eOm 9 ag,

Gee PO dg) < C(Ltpla)) T, 1<k <, (3.3)

Rn
Eep(§)e P2l 8) di‘ <C(+p(x) 1™, 1<k<n, (34)

Rn
Ep&e PO 2mie0) di‘ <C(L+p(x)7 77w 1<k I<n (3.5)
Rn

To prove this lemma we need the following two estimates for the derivatives
of functions involving homogeneous functions (Lemmas 3.2, 3.3).

LEMMA 3.2. Let b= (by,...,b,) be a multi-index of non-negative integers b;,
1< j <n. Let H be homogeneous of degree m € R with respect to the dilation
A; and in C°(R™ \ {0}). Then we have

0"H(©)] < Cop(§)™ =", ¢ e R"\ {0},
where 8* = 9P ... b with 9; = 8/0¢; and a = (a1, - .-, an).
Proor. Differentiating in & both sides of the equality

t"H(E) = H(t" &, ..., t*E), t>0,

which follows from the homogeneity, and putting ¢t = p(£), £’ = A;(lg)f e st
we get the estimates as claimed.

LEMMA 3.3. Choose ¢ € C§° such that p(§) =1 if p(§) < 1/2 and supp(yp) C
B(0,1). Let F € C®(R). Leter =0 o0r 1,1 <k <mn, méeR. Then we have

|0°(&4-€1" (&)™ F(p(€)) ()] < Cop(g)mHerataa—iab,
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ProOOF. Applying Lemma 3.2 with H = p, we observe that
|0°(F(p(€)9(9)] < Cop(€)' =M, b #0. (3.6)
By Leibniz’s formula we have

OEHE P& F(p(E)(©) = D Coan [0 (€ (&)™) [0 (F(0(€)0(©))] -

b’ 4+b"=b

Since S(&) = £2&"p(€)™ is homogeneous of degree eiay + €;a; + m, by Lemma
3.2 and (3.6) we see that

P SEOFPEOE)] < 3 Crp
b’ b =b

< Cp(é')m+€kak+€lal*<ayb> +C Z p(g)m+ekak+ela17(a,b >p(§)17<a’b >,
b/ 4b'"=b,b'" £0

for ¢ € B(0,1) \ {0}. This completes the proof.

8'5(6)][0” (P (p(©)e(©))

Applying Lemma 3.3 and integration by parts, we can prove the following
estimate, from which Lemma 3.1 readily follows.

LEMMA 3.4. Let G(§) = §1& ' p()™F(p(§))p(§) be as in Lemma 3.3. We
assume that m > —v. Then

GO de| < O(1 + pla)) 7 m-erenee
R’ﬂ.

Proor. Let & € C§°(Ry) be such that supp(®) C {1/2<r <2}, & > 0 and
Ym0 ®(27p(€)) =1 on B(0,1) \ {0}. Decompose

R™

GO dg =3 277 | G(Ay=§)@(p(§))e* e ) d.
=0 R7

We write & = Ay’ = (p(x)*af,...,p(x)"™x}) with 2’ € S*~'. We may
assume that |z}]| = maxi<;<n |7} without loss of generality. Then applying
integration by parts

=37

C?L42—f£)¢(p(g))e2wMAz—jz@>dg‘

R~

<ca 3 [am oG e o) o s @ pw)) .

h=h'+h'"
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By Lemma 3.3 with b = (h,0,...,0) we have

2797 | G(Ays ) @(p(&))e™ =) d

RTL

< 02*1"}’ / 2fja1h'2fj(m+ekak+elal7h'a1)2jha1p(m)fhal df
h=h'+h ¢ 1/2<p(£)<2

S O2j(ha17mfekakfelal77)p(m)7ha1 .

Thus if ha; — m — epar, — ga; — v > 0, p(z) > 1,
> e
0<j<log, p(x)

<COplw)™her YT pilhmmmaeman=a)  Cp(g) TRk,
0<j<log; p()

G(A2_jg)<1>(p(£))e2m<A2_].M) e

R™

(3.7)
Also, by Lemma 3.3 with b = 0 we see that

Z 9—iv
)

j>logs p(z

/Rn G(A2_]-£)(I>(p(£))627ri(,42_].LE) df

<C Z 9i(=m—erap—erar—y) < C’p(m)—m—fkak—flal—’)’_ (38)

j>logs p()

Combining (3.7) and (3.8), we get the desired result, since the estimate for
p(z) <1 is obvious.

PrOOF OF LEMMA 3.1. Let ¢ be as in Lemma 3.3. Decompose

e PP = —2mp(€) A(=2mp(€))9(€) + p(&) + e PO (1 - (€)),
where A(s) = (e® — 1)/s. To prove (3.1), it suffice to show that

| HOA2mp(©)p( @) de < 1+ pla))

which follows from Lemma 3.4 with m = 1,¢;, = 0,¢; = 0. The other estimates
can be shown similarly by applying Lemma 3.4 suitably.

4. Outline of Proof of Theorem 1.1 for p € [po, 2]

We first prove L? boundedness of D, for 0 < a < 1. (We notice that more
general weighted estimates will be shown in Section 7; see Proposition 7.1.) By
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the Plancherel theorem we have

1Da 00 = [ o2 ([ Ma(De+) = L)@ do) dy
= [ ot ([ Jemrie (00 - 1) de) ay
=em [ e ([ e e <1 s ay) a

where ¢’ = A;é)g. By (D) of Section 1 we have

. , 2
/ ‘62’”(‘”’5 ) — 1‘ ply) " dy < / A p(y)*ply) ™ > dy < oo
p(y)<1 p(y)<1

since o < 1. Also, we have

o 2
/ ‘62”“”5 ) — 1‘ ply) 7> dy < / dp(y) " dy < oo
p(y)>1 ply)>1

for a > 0. Combining results, we see that
IDa ()l < CILAIE = CIFIB,

which proves the L? boundedness.

To prove (1.2) we may assume that f is bounded and compactly supported.
Let 8 > 0, po = 2v/(y + 2a). We apply Lemmas 2.2 and 2.3 with these f, 3
and with N = 2, p = po. Then we have the sequence {B(c;,r;)}32, of balls of
Lemma 2.2 and the decomposition f = g +b, b = 3772, b;, of Lemma 2.3. It
suffices to prove

[{z € R" : Da(g)(z) > B < B~ flIpe (4.1)
and
[{z € B : D,(3)(2) > BY| < OB || . (42)

The estimate (4.1) easily follows from the L? boundedness of D,, as follows. By
Chebyshev’s inequality along with (2) and (3) of Lemma 2.3, since 1 < py < 2,
we have

[{z € R" : Da(g)(z) > 5}

< B72Dal9)llz < CB72(lgll3 < CB7™llglibe < CBF|fIl%s.
It remains to prove (4.2). Let K be as in (1.4) and

v(z,t) = Ky xb(z), V(r,t) =K *xI,(b)(z).
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Then

Vix,t) = ﬁ /000 v(z,t+ 5)s* " ds. (4.3)

We have

[ (0)(z +y) = La(b)(2)] < V(2 +y,p(y)) = La(b)(z +y)|
+ V(2 p(y)) = L)) + V(2 +y,p(y) = V(z, p(y))].  (44)

T0@) =1@? [ Wi ply =)~ LOWE ply =) dy
J?(z) =T (a)? /n V(2 ply — z)) — I (b)(z)|* ply — z) 72 dy,

J® (z) = F(O‘)Q /Rn V(y,ply —x)) = V(z,ply — m))|2 py — m)—v—Qa dy.

By (4.3) we can rewrite

o ply—a)
JW () = / / dt/ dov(y,s + t)t* 1 ds
n | Jo 0

oo ply—z) 2
J®(z) = / / dt/ dov(z, s+ t)t* ' ds
n|Jo 0

where (30 = 8/88 Let Ql = UjB(Cj,QTj), QQ = UjB(Cj,4Tj). Since |QQ| S
CBPo| f||Po, by (4.4), the estimate (4.2) follows from the inequalities

2
ply —x) 7> dy,

ply — )77 dy,

T (z)dw < CB* P f|B, (4.5)
Q3

T (z) dx < CB*P°|| f||P0, (4.6)
Q3

JO) (@) dw < CB*7P0||f|I2e. (4.7)
Q3

This will prove part (2) of Theorem 1.1. As mentioned in Section 1, part (1)
for p € (po,2) follows by the Marcinkiewicz interpolation theorem between the
estimate in part (2) and the L? boundedness. This will complete the proof of
Theorem 1.1 for p € [po, 2].

We shall prove (4.5), (4.6) in Section 5 and (4.7) in Section 6.
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5. Proofs of the estimates (4.5) and (4.6)
We first prove the estimate (4.5). Let x(r) = x(0.1(r). Then

JO (2 /
R’n

We have

tAp(y—a)

| s s = Wattpty - ) (5.1)

0

where
1
Wal(t,s) = —(t* = (t = (tAs)%), ts20,

with @ A b = min(a,b). We note that W, > 0 and [;° Wa(t,1)dt/t < co when

0 < a < 1. Using (5.1), we write

() = / n / T Wt ply — ))00(y, 1) di

Define v;(y,t) = b; * K,(y) and B; = B(c;,r;), B; = B(c;,2r;). Let
2

Jl(l)(a:) /R / Wa(t, p(y — x) Z dovj(y,t)dt| ply — )~ 772 dy,

yeBC

2
ply —z) 7% dy.

where Zye 5 means that the summation is over all j such that y € E;, similar
J
notation will be used in what follows, and let

2

@ =@ [ |3 (Kt * 10)0) ~ L (b)) oy =) 7 dy.

n

yEB,;

Then JO < 27 427 since

| wattonty — a)aboty e
/ Wal(t, p(y — ) Zaovjy, dt—l—/ Wa(t, p(y — x) Zaovjy,

yeBC y€B,

/ Walt,ply —2)) 3 vy ) dt+ 37 (Ko * La(5)(y) = La(8)(9)) -

yeBC yeB

[ 3 G ) x (e sty st =2
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To estimate Jl(l), we show that

> vy, t)| < CB/.

yef?;
This can be seen as follows. Let E(z) = (1 + p(z))~"~!. Note that if y € EJC

sup Ei(y —2) < C inf Ei(y — 2).
z€Bj Z€B;

Therefore, by Lemma 2.2 (1), Lemma 2.3 and (3.2),

Z dovi(y,t)| < Ct™t Z sup Et(y—z)/|bj(z)|dz

yEB; yEBS

yef?;
< Ct7' BB
Thus

| Wttty =) S owostu0yde| <€ [ Walt,ply— ) T
0 yeé]C. 0
o0 dt
= Coply - ) [ Walt) T
0
and hence
TV (z)dz < C - W, —v-e g Aov; dy d
1 (x)dz < OB o(t, p(z))p(x) w) | > Bovjly,t)| dydt.
n » Jo R~ yeb:
We note that

Waltsp)p(e) 2~ do = [ Wa(lp(@)p() "2 do < o0,

R™
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if 0 < a < 1. This implies that

[ @aeses [[ Y owsw0| dyds
n n+1
R? -2

Since [b; =0,ify € gjc, by (3.4) and Taylor’s formula we see that

100y ()] = £ Q0 % by (y)] = £ / (Quly — 2) — Quly — ) by(2) d=

B;

<Oyt =) T [ el s

k=1 B;

<O P (14 gy —cj))*”*““’c/ 1b, (=) d

k=1 B;

<SCBY P tTIT T (Lt (ply — ) + 1) By,
k=1

where the penultimate inequality follows from the estimate |zi| < Cp(x)®*.
Therefore, [, Jl(l)(a:) dz is bounded by

cp? Z | Bj| Z //Rn+1 T?’“tilf“’FV (L+t " ply —cj) + rj))_w_l_ak dy dt.
j k=1

+

It is easy to see that the last integral is equal to
J] 07T ) 4y
R7H
Thus, by Lemma 2.3 (7) with p = poy, we have
[ @ ds <08 3151 < 08T (52)
J

Next, we evaluate Jél). By Lemma 2.2 (1), we see that
2
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Let = € Q5. Then by the L? boundedness of the maximal operator M we have

K@) <O plo—cy 7 [ ML) dy

B(c;,2r;)

J
<O pla =) Labyll5.
i

So, from Theorem A and Lemma 2.3 (6) with p = pg it follows that

TP (@) <O pla =) b2, < O pla — ) 723 By .
J J

Consequently,

/ J2(1)(a:) dx < CBQZ|BJ-|2/”°/ p(x —c;) 72 dx

Qs J plz—cj)>dr;

S CﬁQ Z |Bj|2/p0T;2a

J
<CB*> IBjl,
J
and hence Lemma 2.3 (7) implies
T () da < CB> 0| f|[Ee. (5.3)

Q3

The estimate (4.5) follows from (5.2) and (5.3), since J1 < 270 4275,
Let us prove the estimate (4.6) next. In the same way as in the case of JW,
we can write

T (z) = / )

Interchanging the order of integration on the left hand side of (4.6), we have

/C J () dz

L

For z € Q§, we note that dyv(z,t) =

in the same way as (5.2).

2
ply —z) 7> dy.

/000 Wa(t, p(y — )00 K * b(x) dt

2

/Ooo Walt, ply — 2))0ov(x, 1) dt

ply —x)~ 772 dm) dy.

c
2

veBs Oovj(,t). Thus we can prove (4.6)
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6. Proof of the estimate (4.7)

We note that

V(z+y,p(y) = V(zply) = ﬁ /OOO (f * Kippt) (@ +y) = [ Kippy () 77" dt.

Thus we have

TG (z)
- /R /Ooo (b* Ki(y) — bx Ki(2)) [t — ply — 2)[* "' x <M) dt‘zp(y—m)_"’_h "
Let
Aj(z,y) = /Ooo </(Kt(y —2) — Ki(x — 2))bi (2) dz) It — ply — 2)[* 1y (M) i,

with y € EJC By (3.3) and Taylor’s formula, if z € B; and p(z —y) < t we have
. g — _ —v—1—a
Ki(y—2) = Ki(x —2)| SCY ye —aelt ™ 7 (14t "ply—¢) "
k=1

< C'Zp(y — )T Z'%En]g (L+t'ply — z))ivflfak :
k=1 ’

Therefore if p(x — y) < t, by Lemma 2.3 (6),

\ [y —2) - Kl = )ty (2)

<CBY ply - w)“kt‘“k_”/ (L+ttpy —2) 7™ dz,
k=1 B;

J

and hence Lemma 2.2 (1) implies that

2|/

yeB]C.

<CBY_ Crply —z)™t

k=1

(Ki(y — 2) = Ki(z = 2))b;(2) dz
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with O = [o. (1+p(2)) 7'~ dz. Consequently,

S i) = CBY. Coply =)™ [ = ply =)t
k=1

yeBs p(y—a)

n

= CBply—2)* Y (ck /loo poo(p— 1)L dt) .

k=1
Thus we have

> Aj(z,y)| < CBply — ). (6.1)

yEBS

Let J1(3) (z) be

h a—1 p(y - 37) ——2a
/R" /0 E;C_ iy, 1) — (@ D) [t = ply = 2)| x( , ) dt| ply — ) dy
and let

1) =1(@? [

R~

ple—y)"7 7> dy.

Z (Kp(wfy) * Ia(bj)(y) - Kp(wfy) * Ia(bj)(x))
yEB,
Then J®) < 2J1(3) + 2J2(3). From (6.1) we see that J1(3) (x) is majorized by

v R /000 y%;:c_ (v (Y, t) —vi (@, 6) |t = ply — 2)|* "X (M> dt| p(y — )77 dy.

Let
R(t,y, @, 2) = Ki(y — z) — Ki(z — 2).

Then

03 (0,1) — v (1, 1) = / R(t,y,, 2)b;(2) dz = / (R(t,9,2,2) — R(t,y,7,c;))bj (2) d.
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By (3.5) and Taylor’s formula, we have
|R(t> y,x, Z) - R(t) y,x, C]‘)|

<O plz =)™ plm —y) T T (Lt p(y — ej)) T

k=1 1=1

if z€ Bj, plx —y) <tand y € EJC Also, we note that

[ oy (@) dr = 1 / DT ()

Using these results and Lemma 2.3 (6), we see that

J1(3) (x)dz
Rn
= ZZ// TR B (Lt py — ) T dy dt
k=1 I=1 R+ yGEJC
<Ry SB [[ e e o) )y
k=11=1 j RY

The last integral equals
// (L4 8) T (p(y) + 1) dy dt.
R+
Thus, by Lemma 2.3 (7) with p = py we have

[ 1@ e < o (62

We next evaluate JQ(B). We note that

| K (amy) * Ia(bj) (w)| < CM(Iob;)(y), for w=y,z.
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Therefore, if z € Q5 and py = 2v/(y + 2a), using the Schwarz inequality and
Lemma 2.2 (1), we see that
2

J2(3) (z) < C/R ZXB(Cj,2rj)(y)M(Iabj)(y) ply —z)"7"2 dy
J

<oy /B M (Lby) )P ply — )22 dy

(¢j,2r;)

<CYple-c) [ NI dy.
P, B(Cj,27‘j)

Consequently, the L? boundedness of the maximal function M, Theorem A and
Lemma 2.3 (6) with p = po imply

TP @) <O pla— ) 72112, < CS ple — ej) 772257 | By e
j J

J

Thus, applying Lemma 2.3 (7) with p = po, we see that

| B@dr<c s wimpe [ ple = e) 7 (63)
j 4

5 (w—cj)24r;

<O BIBPror < 0 BB;| < OB f[Ee.
J J
Combining (6.2) and (6.3), we have (4.7).

7. Proof of part (1) of Theorem 1.1 for p > 2

Let A; be the weight class of Muckenhoupt consisting of those weights w which
satisfy M (w)(z) < Cw(z) a.e. Applying the methods of [8] we prove the follow-
ing.
PROPOSITION 7.1. Let w € Ay. Suppose 0 < a < 1. Then we have
[1Da(f)ll2,0 < Cllfll2,u,
where || fll2, is the norm in L2 defined as || fll2,w = ([g. |f(z)[Pw(z) dz) 12,

Let,
pm(2) = / (27p(£)) " B (2™ p(£))e2™ 8 ¢

with @ € C§°(Ry ) which is identically 1 on the support of ®, where ® is as in
the proof of Lemma 3.4. To prove Proposition 7.1 we need the following.
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LEMMA 7.2. The estimates
|pm (2)] < Cp(2)*77, (7.1)
10.m ()] < Cp(z)7 7%, 1< s <n, (7.2)
hold true with a positive constant C' independent of m € 7 (the set of integers).

PROOF. To prove (7.1) we write

Pm(z) =2 /(27Tp(§))*ai(p(g))e%i(%ﬂn2,£> de.

From this we easily have (7.1) when p(z) < 2™. Suppose 2™ < p(z). Then we
can prove (7.1) in the same way as (3.7) by applying integration by parts. The
estimates in (7.2) can be shown similarly.

PROOF OF PROPOSITION 7.1. We may assume that f € §(R*). We also as-
sume that Y = _ ®(27p(¢)) = 1 for £ € R" \ {0}. Define the operator A;

by moe
AN =@ p)f(§) for jeL.
Let
T;(f)(z)

oo 1/2
= ( > /Xu,z](?_'“p(y))IIa(Aj+kf)(w+y) — Ln(Aj1 ) (@) Pply) 772 dy) :
k=—o0
Then we have

Da(f)(@) < Y Ti(f)(2). (7.3)

j==o0

If we put S; = {27771 < p(€) < 279+1}, the Plancherel theorem implies

175 ()13
<c Y /X[1,2](2"“p(y))p(y)_”_2“ (/S |F©Pp&) >

k=—o00

) 2
1— i) d§> dy.
(7.4)

If 2% < p(y) < 281 ¢ € Sk and j > 0, we see that

[1— et < 2 Il < O3 o) p(e)" < 'Y 277 < €2,
=1 =1

=1
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Also, |1 - e2ﬁi<y’5>| < 2. Therefore by (7.4) we have
175 ()2

<C > 02 min(1,27%) / 1f(©)” d¢ < C2* min(1,27¥)||£[13, (7.5)

k=—o00 Sitk

where the last inequality follows from the bounded overlap of {S;} and the
Plancherel theorem.
Next, when 2% < p(y) < 2F*!, we decompose

Ia(Aj1k f) (@ +y) — Ia(Aj4rf)(2)

- / (Bier(z — ) — ian(2)) Agpa (o + 2) dz
p(z)> 2042

+ / Bz — 1) = Prok() Ajif @+ 2) dz,  (7.6)
p(z)<2b+2

where p,, is as in Lemma 7.2.
If 2 < p(y) < 2" and p(z) > 2842, by (7.2)

Pivk(z =) = Piar(2)] S CD_ luilplz) 77" < C Y ply) plz) 7 Hem,
=1 1=1

By this and an elementary computation concerning the maximal operator M,
we see that the first integral on the right hand side of (7.6) is majorized by

oy [ A A 9l < O M (A ).
=1 Pz

>ok+2

Similarly, if 2% < p(y) < 2¥+1 (7.1) implies that the second integral on the right
hand side of (7.6) is bounded by

/( S~ p(2) 7T Ajik f(z+y+2)| dz+/ p(2) A i f (42| dz
p(z)<2*k o

(2)<2h+2
< C2OM(Ag i f) (@ +y) + C2M (A f) (@),
Using these estimates in (7.6), we see that

oAk )@ +y) = La(Bj11f)(2)] < O2" M(Ajif) (@ +y) + O2"* M (Ajii f) (2)

when 2F < p(y) < 2k+1,
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Thus

Tj(f)(x)* < C Z / X122 p() 1M (Ajii f) (@ +y) + M(Aj1ef) (@) Pply) ™ dy

k=—oc0

and hence, if w € Ay,

| miharu) ds
gcfii(A;Mﬂﬁﬁwﬂ@PM@M@dﬁ+An
<C§:/I%Mf w(a) da

k=—o00

LW@Mmmw@w)

where the last inequality follows from the defining property of the A; weights and
the L2 boundedness of M with w € A;. Thus the Littlewood-Paley inequality
in L2 implies

175 (H)ll2.0 < CllSll2,00- (7.7)

Interpolating between (7.5) and (7.7) with change of measures, and noting
that for any w € A; there is § > 0 such that w't? € A;, we have

1T (N2 < C27 V| £]l2,0

with some € > 0 for w € Ay, if 0 < a < 1. This implies the desired inequality in
Proposition 7.1 via (7.3).

Now we can prove part (1) of Theorem 1.1 for p > 2. Choose a non-negative
function g such that [|g[/(,/2y = 1 and ||Da(f)]|2 = [ |Da( 2g(x) dz, where

(p/2)" denotes the exponent conjugate to p/2 For s > 1, let Ms( ) = M(g®*)'/5.
Then g < M,(g) a.e. and it is known that M(g) € A;. Thus by Proposition 7.1
we have

/w )Pyl M</w Aﬂ@MSC/WM%Ume

Applying Hoélder’s inequality to the last integral with 1 < s < (p/2)’, by L®/2)
boundedness of M we see that

/ID () dz < Ol fIGIMs(9)llpr2y < CULII3-

Combining results, we can get the desired estimate.
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8. Remarks

We conclude this note with three remarks.

REMARK 8.1. Let 0 < a < «. The Fourier transform of (27p(£))~* is a
function R, (z) which is homogeneous of degree a — v with respect to A; and in
C>(R™ \ {0}) (see [3] and [13, Chapter I]). Thus we have

Lo (f)(x) = - Ralz = 2)f(2)dz, [ €S(R").

REMARK 8.2. Let 0 < a < 1, pgp = 2v/(y + 2a) and pop > 1 as in the
hypotheses of Theorem 1.1. Then, if 1 < p < po, D, is not of weak type
(p,p). Since D, is bounded on L?(R"), by taking into account the interpolation
of Marcinkiewicz, to show this it suffices to prove that D, is not bounded on
LP(R™) when 1 < p < po.

To see this, we prove that if D, is bounded on LP(R™) with 1 < p < 2, then
p > po. Let A(z) ={y € R* : 1/2 < p(y — z) < 1}. Let n be a non-zero element
in §(R™) with supp(n) C {a < p(&) < b} for some a,b > 0. Then

1/2
Da(n)(z) > (/A(O) [Ta(n)(x + y) — Lo (n)(2)? dy)

1/2 1/2
(/ IIa(n)(ery)lzdy) - (/ IIa(n)(w)|2dy>
A(0) A(0)

1/2
=</ Ifa(n)(w+y)l2dy> — [AO)["/?|Ta(n) ().
A(0)

Y%

Therefore
1/2
(/A( : [ () (w)[? dy) < Da(n)(z) + Clla(n)(z)|. (8.1)
We have

(/ IIa(n)(y)lzdyy/2 <C . (/A(w) |1.(n)(y)|? dy)p/2 dz (8.2)

Let S(z,r) = {y € R* : |z —y| < r} for x € R" and r > 0. To see (8.2), we
consider a covering of R™: U;?’;IA(a:(j)) =R, for all 29 € S(¢j,7),5=1,2,...,
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where S(cj, 7) N S(ck,7) =0 if j # k. Then we see that

</n or dy)p = z:: </A(m>) () dy) :

for all 29 € S(c;,7), j =1,2,..., since p/2 < 1. Tt follows that

p/ p/2
([ mmora)” <ZW)£§M) ( [, 0w dy>
p/2
<0 2/ (/ <n><y>|2dy> da
p/2
<c [ ( [, =l dy> d,

which proves (8.2). By (8.1) and (8.2), we have
1 a(m)l2 < ClIDam)llp + CllLa(n)llp-
Thus if || Da (1)l < Cllnll,, we have
e (Ml < Clinlly + CllLa(m)lp-
Using this with 7 in place of n and homogeneity, we readily see that
1oe—v/2 < Ct—YT/P 4 opetr(1/p=1) < Ccr-+v/p
for all ¢ € (0,1), which implies that p > 2v/(y + 2a) as claimed.

REMARK 8.3. Define the Littlewood-Paley function

sal0)@) = ([ 10 s %)/

where @ is as in (3.2). Then it is known that

allflly < lge(Nlly < c2llfllp, 1 <p < oo,

with positive constants ¢, co independent of f (see [14]). Also, we can show
that

90(f)(x) < CaDa(f)(z), 0<a<l, (8.3)

for f € §(R™), similarly to [22, p. 162, 6.12], which implies the reverse inequality
of [Da(Nllp < CJlfllp in part (1) of Theorem 1.1.
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Here we give a proof of (8.3) in more details for completeness. Let

Us(z,t) = Ky x I, (f)(x) = /f(ﬁ)(27rp(§))—ae—27rtp(£)e27ri(fv76> de,

where K is as in (1.4). Then

OUa(ast) = [ FOmp(e)) 2000

where Jp = 0/0t, and
/OO ORU(z,t + 5)s™ds = (/OO e s ds) /f(f)(?ﬂ'p(f))e_%tp(g)e27ri<‘”’5> d¢
0 0
= T~ a)7Qu* f(a)

Using this, we see that

</0°° @+ f(@)? %)1/2 —T(1-a)! (/Omt > dt>1/2
=T(1—a)* (/OOO

5 1/2
dt> .
By Minkowski’s inequality, this is bounded by

oo oo 1/2
r(l—a)™! / (s—1)"" (/ £2G/2=) |92 U, (a, st)|2 dt> ds
1 0

—T(1—a) (/100(3 _q)og2e ds) (/Ooo £5-20 62U (2, 8)| dt) v

Thus

/ 03U (m,t + 8)s™ “ds
0

/ t3/2—ax[1700) (s)|s — 1|7“6§Ua(a:, st)ds
0

g0 (f)(@) < Ca (/tha 102U (2, ) dt>1/2. (8.4)

0
Since [ 93K = 0, we have
B (z,t) = / R K ()L f (x4 ) dy = / RK(y) (Inf(x +y) — L () dy.

Arguing similarly to the proof of Lemma 3.1, we see that

105 K(y)| < C(t+ p(y) ™72
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Using this, we have
02U, 8)] < C / (t+ ()2 nf(x +y) — I f(2)] dy

<cC / 2 L f (a4 2) — Lo f(2)] dy + C / ()2 L f (e + 2) — T ()] dy.
py)<t p(y)>t
00 OIt follows that
/ £572 |2U (z, t)|* dt < C(T +11),
0
where

2
1= [ e (/ t“|faf(m+y)—faf(m)|dy> i,
0 ply)<t

2
"= /0 o (/p(y)th(y)_7—2 Laf(z+y) = L f(2)] dy) dt.

By the Schwarz inequality

I< C/ t3—2“t—2(7+2)ﬂ/ \I.f(z +y) — I.f(z)|” dydt
0 p(y)<t

_ _ 2 > —1l—y—2a«a
=C [ 1 +9) - Lf@) (/p(y)t dt) ay

1

= 05 Dalle)”

Also,

IT< C/oot3‘2“t‘2 (/ p() P | Laf (@ +y) — I f ()] dy) dt
0 p(y)>t

p(y)
ZC/p(y)’”*Z’ Lo f(z +y) — I.f(2)]? (/0 t”“dt) dy
1

= O3 Dal D@,

Therefore

o 1/2
( / 1572 | Q2U, () dt> < CuDu(f)(2).
0
Combining this with (8.4), we have (8.3).
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