Some Types of Integral Extensions

S eng

HhRE
~EH:2017-10-03
*F—7— K (Ja):
*—7— K (En):
YER

A—=ILT7 KL R:
FilE:

http://hdl.handle.net/2297/579




43

Some Types of Integral Extensions

Ryoichi NAGASAWA

In this note we discuss some aspects of integral extensions and normality of related algebraic objects.
Here we recall some results on ideal transforms. Let I be an ideal of a Noetherian ring R and N an R-
"module. Then the -transform of N is defined by T; (N )= 1_1rén Homgy (I",N). Let R be a local domain
with maximal ideal M, and let R~ be its completion. The maximal ideal transformation 7 (R)=T,, (R)
of R is described as the set of elements * in K, the quotient field of R, with M"x € R for some #. Then
NT (R) =T (R)/R is canonically regardéd as a module over R* and is isomorphic to NT (R)®R* =
NT (R*). .

We are interested in submodules of N7 (R) which correspond to certain ring extensions of R. As our
starting point, we examine the Krull Akizuki Theorem(cf. [5], (33. 2)) and some idea of its proof. The fol-
lowing is a slight variation of [6, (3. 11)] . ’

(1) Let R be a Noetherian ring with total quotient ring K and let S be a ring extension.in K such that
A /R is an Artinian module over R for any finite R -submodule A of S. Then every regular ideal of S is
finitely generated. :

In fact, taking AS for N (resp. R for M), the conditions required in [6], (3. 11) are all satisfied from our
assumption. For a regular ideal I, let @ be any regular element of I. Then S/Sa , hence I/Sa is a finite
module over R, and [ is a finitely generated ideal of S.

The Krull-Akizuki Theorem proved in [5] is stated as follows :

(*) Let R be a Noetherian integral domain with quotient field K, let L be a finite algebraic extension of
K and let R’ be a ring such that RS R’ S L . If altitude R =1 , then for any ideal /" of R’ such that
I"#0, R'/I" is a module of finite léngth over R/I'NR . In particular, R’ is a Noetherian ring of alti-
tude at most one.

To apply (1) to this theorem, we need to construct a finite extension K, in R’ with the same quotient
field as that of R, Then taking R’ for S (resp. R, for R), we get a proof of this theorem. The proof pre-
sented in [5] uses [5, (33. 1)], which is interesting by itself. Here we restate this in the following form :

(*) Let R be an Noetherian domain contained in an integral domain S with the quotient field finite alge-
braic over that of K. If the integral closure R* of R in S is Noetherian and SpecS — SpecR’ is surjective,
then S is integral over K, thatis, R"=S.

For simplicity, we treat the case of integral domains. Let R be an integral domain with quotient field X
contained in an ihtegral domain S with quotient field L. Put X = SpecR and X' = SpecS .
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(2) The following conditions are equivalent.
(@) S is integral over R.
(b) For any integral domain T with R<T< L |, the lying over theorem holds for the ring extension
T<TS . |
" Here we assume that R is a Noetherian domain. Then these conditions are equivalent to
(c) For any P€A*(R) , every element of S is integral over Ry, where A* (R) denotes the set of as-
ymptotic prime ideals of K : '
A* (R)={P|PR; is minimal over aR+ P where 0 # a € R and P is a minimal prime in R} )

In fact, the assertion (a) = (b) is clear. Suppose (b) holds. Let V' be a valuation ring of L with RS V.
Then from our assumption the maximal ideal of VS is lying over the maximal ideal of V. Since the valu-
ation ring is maximal with respect to the relation of domination, we have VS=V |, hence SS V. As is
well known, this implies that S is integral over R. The assertion (a) = (c) is trivial. Conversely suppose
(c) holds. Let x be any element of S, 7= K (x) and A the integral closure of R in T':

Then there is a finite integral extension B of K with quotient field 7. It is easy to see that for any
P’'€A*(B), P'NR is an element of A*(R) and this defines the surjective map A* (B)—A*(R) .
For any P' €A*(B), By contains R, with P=P'NR and x is integral over By . Since every height 1
prime ideal of Krull domain A lies over some P’ €A* (B), our assumption implies that % is contained in
A. Thus every element of S is integral over K.

Remark : If for any scheme Y over X, X'x, Y — Y is a closed map, then X’ is integral over X. The
condition (b) is a prototype of the above geometric form. :

Let (R, M) be a local domain with dim B > 1.
(*) There is one to one correspondence berween the set of ring extensions of R in the maximal ideal
transform T (R) and that of R* inT(R*). In fact, T (R)®z R* =T (R") and T (R)/R is regarded as
a module over R, canonically isomorphic to T (R*)IR*. If S’ corresponds to S, then S’ is isomorphic
to S®, R* . In particular, if S is finite integral over R, then S” is regarded as the completion of S.

(3) Suppose that the zero ideal of R*, the completion of R, has the following irredundant decomposition
by isolated components : (0)=I,NINI,N---N1, , where I, is unmixed with height I, =0 and coheight
L=1(1<i<n). |

Then we have a finite ring extension S such that S has the maximal ideals My , M, , -, My with
height M; =1(1 < i< ), which correspond to I, , I, ,~~-I. ‘respectively. '

Tn fact, let I be the intersection of I, , k# i . Then the sum of the ideals [, I W 70 5 M~
primary ideal. In particular, we have a regular element @ = ¢, +¢; +-+¢, with ¢; €I (0<i<n),
Letting ¢;=c¢;/a (0<i<#n), 1=¢, +e, + -+e,, where the ¢; are orthogonal idempotent elements.

Corresponding- to this decomposition, we have a ring extension S’ =R,®R & ®R, ,
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R; =R*e¢; 0<i<n in the total quotient ring of R*. Then the ideal /=R*a+I is an MR*— primary
ideal with JR; SR*, (1 <i<n) and hence JR, S R" since ¢=1—e,—+—e, . Thus S’ is a finite integral
extension of R* in T (R*) and it corresponds to a finite integral extension S in T (R). Since R, =R 1,
and the completion S*is isomorphic to the product S’ =R,®R,;®--@R, , S has the maximal ideals
My -+, M, stated as above.

As a simple application we have the following result due to Ratliff (cf. [3], (3. 19))'
"(4) Suppose that the zero ideal of R* has n coheight 1 minimal prime ideals. Then the integral closure of
. R in K has n height 1 maximal ideals.

More precisely, we have the following :

(5) Suppose that,the zero ideal of R™ has a coheight | minimal prime ideal P. Then R"/IP is al-
dimensional complete local domain, and the normalization V* of R*/P is a Noetherian valuation ring. Let
V=V"NK where K is the quotient field of R, and let R’ be the normalization of R in K. Then the con-
traction M of the maximal ideal of V to R’ is the height | maximal prime ideal which corresponds to P as
stated in (3) and V=R 'u.

As for the integral closure of K in 7' (R ), we have a beautiful result, an extension of the Kull-Akizuki
Theorem. Here we give a slight different proof to the following extension (cf. [6], (3. 15)).

(6) Let B be the integral closure of R in T(R). Then B=T (R)N Vin-nV,, where the V; are
Noetherian valuation rings and  is the number of coheight 1 minimal prime ideals of R*. The integral
closure in K is R" =R, n--NR, NV NNV, , where the R, are quasi-local domains with dim R; =2
and r < the number of minimal prime_ideals of coheight Z 2 in R* (¥ = the the number of minimal p;'ime
ideals of coheight = 2 in the Henselization of R).

In fact, with the same notation as in (3), let \/_I—,— =P, , 1<i<n be the radicals, the coheight I mini-
mal prime ideals in R*. Then 7 (R*) is equal to T (R*/],)®K,® - ®K, , where K; is the total quotient
ring of R*/I; . Then T (R*/I,) is integral over R*/I, (cf. [3], (10. 4)), and the integral closure V;* of

R*/I; in K, is a pseudo valuation ring(cf. [2], (7.6)) and the inverse image of V' under the inclusion
K— K, (—T(R"/P)) is the Noetherian valuation ring V; which corresponds to the minimal prime P;
as stated in (5). Thus the integral closure of R* in T (R*) is B’ = T (R*/I eV e oV , and that of R
in T(R)is equal o B=T (R)NV,n---nV, . In particular, since a Henselian local domain is uni-
branched, its completion has no coheight 1 minimal prime divisors if its dimension = 2. Thus the zero
ideal of the Henzelization of R has n minimal prime divisors which correspond to P; , 1< i< #. Letting
7 be the number of prime divisors which are of coheight = 2, we have the latter part of our assertion.

Next, for any Noetherian domain R, we consider the ring R which is the intersection of all Ry with
height P =1, P & SpecR.

(N If R is a semi-local domain such that the zero ideal of the completion R* has no embedded prime di-

visors and only finitely many essential primes have height>1, then there is a finite integral extension A of
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R in K such that AV is finite integral over R.

In fact R is finite integral over R if and only if there are no essential prime divisors of height> 1
and only finitely many embedded prime divisors of nonzero elements in . In particular if R is semi-local,
then R satisfies the latter condition(cf. [4], (7. 7)). Hence any finite integral extension in K also satisfies

this condition. Qur assumption implies that every essential prime ideal is an asymptotic prime ideal, that is,

an element of A* (R)(cf. (2), (c)). Let R’ be the integral closure of R in K. Let P, ,--,Ps be the em-
bedded essential prime divisors of nonzero elements in R. Then there are only finitely many prime ideals
P’1,+,P’win R’ whose contractions to R are the P; ,1<i<s. It is easy to see that there is a finite in-
tegral extension A in K such that for each prime ideal P’s, P’s is the only prime ideal which lies over
P’vNA. Let P be a essential prime ideal of A. Suppose that P is embedded. Then we see that
PNR=P, for some i. Let P’ be a prime ideal of R’ which lies over P. Then P’ = P’: for some P's.
Thus we have P=P’; N A for some k. From the construction of A, we have height P = height P"» =1, -
a contradiction. Thus every essential prime ideal in A is height one, and this proves our assertion.

(8) Remark. There is a 2-dimensional local domain S whose integral closure is finite integral over S and
has two- maximal ideals of height 1 and 2 (cf. [5]; p- 205). Thus its completion has a coheight 1 minimal
prime ideal which is a reduced component of zero, and the maximal ideal is an essential asymptotic prime
ideal. Consequently, the ring S W is not finite integral over S. On the other hand, there is a2-
dimensional local domain T whose integral closure is a regular local ring, not finite integral over T ({1D.
In this example, the maximal ideal of T is essential, and there is no such finite integral extension A as

mentioned above.

Next we discuss some results concerning normalization of homogeneous domains. Let V' be a projective
variety defined over an algebraically closed field # and let R =21 R, its homogeneous coordinate ring,
where R is the homogeneous part of degree # in R. Let M be the maximal ideal generated by
R, =kxjt+kx,.

9) Let S be the M—transform of R, the ideal transform. Then S is contained in R’, the integral clo-
sure of R, and V is projectively normal if and only if V is normal and (x;): M = (x;) for some x; # 0.

The first part is easy. In fact, R is finite integral over K, and there is no height 1 prime ideal lying over
M. (If such prime ideal N exists, then R’/N should be integral over %.) Since S is the intersection of all
localizations R, for prime ideals P 7# M, S is integral over R, hence is-contained in R’. The normality of
V implies S= R’ (cf. [7], p. 175). On the other hand, if V' is projectively normal, then R is normal, and
M is not a prime divisor of regular elements. Conversely suppose that V' is normal and (x;): M = (x,) for
some x; 7# 0. Then for any ﬁon-zero element y € R, M is not a prime divisor of (¥). Thus we have
R=S=R"andV is projectively normal.

As is well known, under the the assumption that V' is normal, the linear system of hypersurfacé sections
of degree m is complete for sufficiently large 7 (R = S, for all large ). As for this direction, we note
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the following known result.

(10). With the same notation as in (9), suppose that V is nonsingular of codimension one. If U be a pro-
Jective variety which is defined by a homogeneous domain T with RS TS R’, then the degree of U is
equal to that of V. Also, V is projectively normal, that is, R =R’ if and only if any linear system of hy-
' persurface sections is complete, or equivalently for every d—~ uple embedding W of V, W is not a non-

trivial projection from:a projective variety of same dimension and same degree.

Let T=k[y, -, ¥w ] and N=Ty, +--+Tym. As is well known, the extended ideal MT is an N—
primary ideal and a reduction of N. Then the localization Ty is finite integral over Ry, and their multi-
plicities are equal to the degrees of the corresponding varieties. By the extension formula of multiplicities,
we have deg V=deg U . The later part is a well-known result.

Finally we describe some results related to the concepts of normalization and complete modules. In the
above statement, the homogeneous coordinate ring R = 2} R. is normal if and only if each 2— module
R, is complete(cf. [7], p. 350). Now, let R < K be rings, let I be an R— module contained in K, let
H=R[It] with t an indeterminate and let F = K[#]. Then the integral closure HofHinFisa graded
subring of F, and 2zt €H if and only if z€ K is integral over I”. Thus H=31I"t", where
I°=R (resp.17) is the integral closure of of R (vesp.I”) in K.

We assume that K is a field. Let V be a valuation ring of K (¢) which contains H. Then V' = VnK is
a valuation ring of K which contains R and V' contains V'I"t. Conversely, for any valuation ring V' of
K which contains K, if at” €V'I"t*, then @ € K is not integral over I” and a¢” is not integral over H.
Thus there is a valuation ring V of K (t) with at” &V and H< V. The integral closure H of H in
K (t) is graded, and the completion of I” is defined to be the intersection of all ¥'I” mentioned above.
Hence the integral closure of I” in K is equal to NV'I” = KNt~V where V’ (resp, V') runs over all

valuation rings of K containing R (vesp.in K (t) containing H.)

We close this note with a brief remark on integral closures of ideals . Here we introduce a useful ring
R (I') which is derived from a Noetherian domain R and a non-zero ideal 1. Let R (I} be the set UIa !,
where @ runs over all superficial elements of degree s for I, the first neighbourhood ring with respect to 7,
a slight generalization of that firstly introduced by Northcott. From the definition we have the following :

(11) R (I) is a normal domain if and only if R (I)is a finite intersection of discrete valuation rings.
Suppose that R is normal. Then R (I} is normal if and only if I" is integrally closed in R for all large n.
Further, if R (I) is local, then 1" is a complete primary ideal for all large n. ‘

(12) R[1t] is normal if and only if R and R (I) are normal and there is an element a in I such that
I":a=1""foralln=1.
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The proof of these statements are easy. First assume that R is normal. R (/) is semi-local and each
maximal ideal is a prime divisor of the principal ideal IR (I). Hence, if R (I) is normal, then it is a semi-
local principal ideal domain. From the definition of R (1), I"R (I)NR=.1I" for all large #» and each
I"R (I) is normal in K. Thus /* is normal in K for all large #. Conversely assume that J” is normal in
R for all large #. Since R(I)=R{U"), r= 1; we see that R (I') is normal. Next assume that R[If] is
normal. Then R and R (I) are normal; Since S = R[#, It], u ="' is normal and S/uS = R[It1/IR[It],
IR[I#] has no embedded prime divisors. Hence there is a strongly surperficial element @ as mentioned
above. Conversely assume that R and R (I) are normal and there is an element @ such that [*:a=1""
for all # = 1. In this case we have IR (I)NR=1I" for all » = 1. From the assumption /* is normal in

K for all # = 1. Since R is normal, we see that R[] is normal.
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