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Branches and multiplicities

Ryoichi NAGASAWA

In this note we discuss certain aspects of intersection theory in an old-fashioned style and give some gener-
alizations of related thoughts.

As is well known on the theory of plane algebraic curves, the analytic branches centered at a common point
of two plane curves, that is, the parametric or branch representétions play a central roll for counting the inter-
section multiplicity and proving the classical theorem of Bézout. Here we want to take a short glance at the
above situation in a historical perspective. As mensioned in Chevalley’s considerations[1], everything may
start from considering a local ring of the form B=C[[X,Y11/(f;g) , where iX,Y)=0 and g(X,Y)=0 define two al-
~ gebraic curves intersecting at the point P =(0,0) without common branches. We denote by "C” the field of
complex numbers and for simplicity we throughout assume that the base field is an algebraically closed field
or C in the case of some classical arguments.

Firstly choose either of the two curves, say f=0. Then consider the 1-dimensional local ring R=C [[X, Y NAf)
=C[[x,y]] which is Macaulay complete.

Each irreducible factor p of f with a certain multiplicity /, in C[[X,Y]] corresponds to the derived normal
ring V(p) of A(p)=C[IX,Y]1/p) . The ring A(p) or Spec A(p)is called an analytic branch centered at P. Let v, be
the associated discrete valuation defined by V(p). -

To motivate the discussion, we take up the cbncept of class of an algebraic curve and prove a generalization
of Pliicker formula which may explain a nice interaction between branches and multiplicities.

(a) With the notation as above, suppose that R is a domain, ie., f is irreducible in C[[X,Y]], which is
equivalent to say that P=(0,0) is a unibranched point of the curve f=0. Assume that R YV, hence xy+0
where V. is the derived normal ring of R. Then R=C [[X, Y ]1/(f)=C[x,y]] is a subring of V which is isomor-
phic to a power series ring C[[¢]], and v is the order function of z. Letting A,=C [[y]], R=A,[x] is finite over 4,,
and if J is the conductor of V in R, (fx(x,y))=JDwa, in V, where Dy, is the ‘different of V over A,. We note
that if ordx £(0,X)=n, there is a unit ¢ in C[[X,Y]] such that gf is a monic polynomial in X of degree n with
the coefficients of ¢f-X" in YC[[Y])(cf.[2],45).

- Clearly, (fx(x,y)) is the different of R over A,. Similarly, (f(x,y) )=JDva: in V, where Ax=C [[x]]. Put I=(fx, fv).
Calculating the different, we have IM(V)=M{(R)J in case of charécteristic 0.

For an example, let f=Y"— X""'+Y"™*,m>2, which is treated in this series No.49(there on page 24, line 7b :
insert “not” after “should”, and lin¢ 5 b : read ”=(m — 1)m” instead of "=(m — 1)(m+1)").Then the curve f=0
has only one singular point(a unibranched point)P =(0,0) and has no singularity at infinity. The equality IM(V)
=M(R) J implies v(I)=v(J)+v(M(R)) — 1, and hence, in general w(I) Fv(J).

Let X be an irreducible curve of degree » in the projective plane. For a point P on X, there correspond the
analytic branches A(p), i=1,2,...,r centered at P with derived normal rings V(p:). Let J(p)be the‘conductor of
V(p)in A(p) and let c,== viu(J(ps) ). Let t(i,j) =length C[[X, Y 1V/(psp), tr==2 1(i,j) (i<j), er the multiplicity of X
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at P and let s,/=r the number of analytic branches A(p) at P. Put =0 if s,/=1.Then we have the following ex-
tension of Plicker formula : ‘

(1) The class of X is equal to n(n —1)— X (ép+ep+2 t»— sr).In paticular, zf the singularity at P is ordinary,

crtert2 tr—sp= ex(er— 1), and if that is cuspidal, resolved by just one /blowingup, then this value is equal to
(ert 1)(er— 1).

In fact, by [8], (6.2), everything depends on the calculation of the number =, 8(P). The above consideration

is also valid if R is replaced by an analytic branch A(p)=C [[X,Y1)/(p)=C [[x,y]]. Then we have
Px(x9)V(p) =J(0)Dvioun=J(p)(y)V(p)M(V(p))

(c£.]51,p.56). Adding this to the similar equation for px(x,y)V (p), we have

(pxpr)M(V(p))=J(p)(x,y)V(p)=J(p)M(A(p))V(p).
Letting f=p(X,Y)h(X,Y), we have fi=pxh+phx, hence iV(p)=pxhV(p), and similarly /iV(p)=paV(p) . Then mul-
tiplying the above equation by &, we have (f,fi)M(V(p))=J(p)M(A(p))hV(p) . If p=p:, then h=p....p,, and v,(p)
=length C[[X,Y 1)/(pi,p)=t(1,i), i=2,...,r. Thus taking the value v, on the above equation, we have »

Vo((fef N+ 1=v,(J(p) )+ve(M (A(p)))+2(1,2)+...41(1,1).
Adding these equations for p=pi,...,p., we have 8(P )= "=, v,((fufv))=cr+ er+2 tr— sp. Since the class of the curve
X isn(n—1)— = &(P), our assertion is completely proved.

(b) Now we return to the discussion on the concept of intersecti()_n multiplicity. As is well known, the inter-
section multiplicity at the origin P, i(P ; f=0,g=0) is defined to be the length of B=C[[X,Y]l/(f,g) asa B —
module, which is equal to the dimension of B as a vector space over C in our case.

The next part is concerned with the use of branches, that is, the local prametrizations of an algebraic curve.
With the notation as stated above, this classical case is described concisely as follows :

(2) With the same notation as above, i(P ; f=0,g=0)==2. Lv(gV), where the sum. is taken over all branches V
centered at P on the curve f=0. The similar formula holds by reversing the roles of f=0 and g=0. Further,
suppose that £(0,Y )40 and g(0,Y)F0. Let f* be the monic polynomial in Y over C [[X]] which is obtained as -
in [2),45, exer. 1. Then as a local version of the Zeuthen’s rule (cf.[61,p.74 or [71), this value is caluculated as
ordyr*(X), where r<(X) € CI[X1] is the resultant of f* and g with respect Y(the modification for g is superflu-
ous). More simply, if r(X)=Res(f(X +uY,Y),g(X+uY,Y)) is the resultant with respect to Y , this value is the
multiplicity of zero as a root of r(X), where u is an indeterminate. '

In fact, I(P ; f=0,g=0)is the multiplicity of the ideal (f,g) in C[[x,y]] which is equal the multiplicity of the
ideal (g) in C[[x,y])/(f). The additive formula(cf.[2],23)implies that this value is equal to = Lm,(g), where
my,(g)1is the multiplicity of (g) in A=A(p)=C [[x,y])/(p). We know that the branch V is a finite A-module and

my(g) =lengthi(A/gA) =lengths(V/gV)=v(gV) )
(the residue fields of A and V are equal to C).

The second assertion is easy. The following is a slight variation of the proof given in [6],p.74.

By solving f*(¥)=0 in the field C (X )* of fractional power series, we obtain the roots f/, and each root corre-
sponds to an irreducible parametrization of the curve f=0 at the origin and conversely. Each equivalent(or con-
jugate) class of the roots corresponds to a unique analytic branch p: of the curve at the origin, which is repre-
sented by an equivalent parametrization : ’

", al,-t':"+a2.-t"2"+....), anF0, I<i<r.

Cleatly v,.i(g)=m; ordx g(X,f’;), where(f’;,...,ffm,.) is the conjugate class of roots corresponding to the branches
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p: and v, is the associated valuation. The last assertion is clear from a usual representation of the resultant. We
just used a linear change of variables to satisfy a certain condition which enables r(X) to calculate the inter-
section multiplicity only at the origin.

"(c) The second part is to describe a general relationship between branches and intersection multiplicities.
Let U and W be subvarieties’ of an algebraic variety V. Let X be a proper component of the intersection of U
and W with respect to V, and R the local ring of V along X with dim R=r. ‘

In [1], an intersection theory of algebraic varietis was established , and there the term ” the‘sheets of U ata
point P € X, was introduced for the study of connections between algebraic varieties and algebroid varieties.
Instead of the concept of sheets at points, we introduce a new term “the analytic branches of a variety U along
a subvariety X”. Namely, they are Ux(p)=Spec A*/p , where A* is the completion of the local ring A of U
along X and p runs over all prime divisors of the zero ideal (0) of A*, which is semiprime in our case. Let U,
and W, be analytic branches of U and w along X respectively. They correspond to the prime divisors p{U)of
P(U)R *and pW) of p(W)R* respectively, where p(U)and p(W)are the ideals of R which correspond to U
and W respectively. Put D=R ®, R’, where R’ is the copy of R. Let & be the ideal of D which corresponds to
the diagonal A of V' X V. Then N=M(R)+d is a maximal ideal of D . Here we note that there is a simple point
O on X which is simple on V. Let x;,...,x. be a regular system of parameters of the local ring S of V at @, and
suppose that (x,,...,x,) is'the ideal of X in S.The completion of Dy is isomorphic to a power series ring D=
K [[X1,eeesXr Y1500 s¥rsZra1se0Zrea] ], Where K is a coefficient field of R * with k CK, d=dim X and z=x,— y;, j=1,....n
=r+d. Let g« be the ideal generated by p{U) and the copy of pk( W)in B=K[[xy,...,XnYs,...,y:}], and let Bi=B/qa.
As in the case of algebraic curve, we define the intersection multiplicity ex of the analytic branches U: and Wi
by the multiplicity of (z,...,2.)Bx in Bi.

(3) The intersection multiplicity of U and W along X in V is equal to 2 e, where U and Wi run over all
analytic branches of U and W along X respectzvely Further, the value e is equal to 3,( — 1)’ length Tor[ (R%/
p(U),R¥p(W)).

In the above statement, the number of branches may be different from that of sheets defined in[1], but mul-
tiplicities may be calculated somewhat directly in certain cases.

The proof of our assertion is easy. Let H = Di/(p(U), p(W)*) Dy, which is a domain in our case. From the
definition of intersection multiplicity, i(X ; U - W) is equal to the multiplicity of 8H . The completion H *of
H is 1som0rphlc to D/(p( U), p( W) ) D which is reduced, and i(X ; U -+ W) is equal to the multiplicity of
(z15-.-,z)H *. The completion of R — Dy defines a inclusion Ry =K [[x3,...,%/]] CD and the induced inclusion B
—D defines the faithfully flat extension B— H* with B=B I(p(U) ,p(W)*)B. Clearly, H*/(Z+1,...,2,) 18 is0-
morphic to B which is reduced and unmixed (or the radical of (z,...,z,) H*is q—M( B)H*, a prime ideal, and H
*/q is isomorphic to K [[Z-+1,...,2.]], regular local).

By the associative law, we -conclude that the multiplicity of (z,....z)H * is(equal to that of (z,...,z)H,*,
hence by the theorem of transition,) equal to the multiplicity of (zl,l..,z,)l_i. We identify B with the analytic ten-
sor product of Ri/p(U)Rk and RS /p(W)Re over K. Then it is faithfully flat over each factor and
(p(U) .,p(W)")B =M gy In fact, this intersection is irredundant. Suppose that g; contains the intersection of all
guF gy. Then a prime divisor Q of gs contain some gy, and their restrictions to Rx(resp. R’)are p{U)-and p(U)

(resp. g{W)and g(W)) respectively. It is imposible since the restrictions must be same on either side.
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' The additive law implies that the multiplicity of(z....,z.) B is the sum of the multiplicities ex of(z,...,z)Bx in
B;.

Here we recall Serre’s definition of intersection multiplicity, which is described by using the Tor functors(cf.

[4]).With the same notation as above, it takes the following expression :
i(X; U - W)=3( — 1) length Tor{(R/p(U), R/p(W)).

Clearly,

Tor{(R/p(U),R/p(W) )=Tor; (R*/p(U)R* R*/p(W)R*),

and R * is identified with K[[xi,...,.x:]] as is stated above. These are identified with the homology ‘modules of
Kosuzul complex

H(K (21,2, R*Ip(U)R *®x R *p(W)R *))

with B =K [[xi,...,X,Y1,.-.,y.]], where ® denotes the complete tensor product and it is identified with the analytic

tensor product(cf.[2],47).Thus we have
length Torf(Rip(U), R/p(W) )=length H(K"((zs....%), BI(p(U) ,p(W))B)

and the Euler-Poincare characteristic of the complex is equal to the multiplicity of the ideal(z,...,z)of B,
hence equal to i(X ; U - W). Let g{U)be the intersection of all p(U), j¥ i.Then p(U) N q(U)=p(U, JR*,
dim(p(U), g(U))<dim p(U)R *. By considering certain exact sequences associated with

R*p(U) N q(U), R*Ip(U), R*Iq(U) and R*/(p(U),q(U)),etc.,
we have, letting E(LJ)=3(— 1Y length Tor] (R¥ILR*/J),
iX ;U - W)=E(p(U)R*p(W)R*)=E(p(U),p(W)R*) +E(q(U),p(W)R*)
=2 E(p(U),p(W))R*)=3, E(p{U).p{W))
fromylong exact sequences of Tor functors. Here we remark that E((p(U), q{U)), p(W)R *)=0, etc. Since
E(p(U),p{W))is equal to e, the intersecion multiplicty-of analytic branches U; and W, the assertion is proved
again.

(d) Finally we discuss some expressions of m(ultiplicities of local rings.

For simplicity, let(R,M )Ybe a local ring of dimensin d>0 with iﬁﬁnite residue field k=R /M and let J=(ay,...,as)
be a reduction of an M -primary ideal I. We give here some elementary remarks on reductions of ideals and
superficial elements. ‘ .

(4) Let R(J)= @J". Then R(J)MR(J)= k[X.,....XJ), and hence, MR(J)is a unique minimal prime divisor of
JR(J). In particular, if R is Cohen-Macaulay, JR(J) is a MR(J) -primary ideal and a,,...,a. are superficial ele-
ments of J(cf:[21,22).

Clearly, R(I)is integral over R(J) .Further, there is-an element a € J which is a superficial element of 7 and
is a menber of a minimal basis for J. In this case, letting T= R[Ja '], T/MT is isomorphic to a polynomial
ring k[Z;,....Z4-/].

Letting Xi=a; mod MJ , the first asertion is clear since a;,...,a. are analytically independent. If R is Macaulay,
as,...,as is a regular sequence and hence, R(J)/JR(J); RiIY,....Y (Yi =a; mod J*).Thus R(J)/M R(J)-:-(R/
JYn . YW (M 1T [V, Ya]), and hence JR(J)is MR(J) -primary and a,...,as are superficial elements of J. Let P

~be a prime divisor of IR(I) with It ZP. Then Jt £ P N R(J)since(Jt)(It)"=(It)*" for all large n. Let O.,...,Q0:
be the set of all prime divisors of JR(J)and restrictions of prime divisors P of IR(I)as stated above. Then
each Q,ﬂ Jt is properly contained in Jf and hence, Q:() Jr+M.Jt/MJt are proper subspaces of Jt/MJt. Since k
is infinite, after a usual argument, we find an ar € Jr with atZ QN Jt+MJt. Then a € J is a required ele-
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ment(cf.[2],22). Now let a=f(ay,...,as) with f(X,,...,X.) a linear form over R. Clearly, T/MT is the degree zero
part of R [Jt][1/at)/MR [Jt][1/at] and is canonically isomorphic to k[(X,,...,Xd)()_‘ Y] k[ ZpyerZa1].

As stated ébove, let I be an M -primary ideal and J be an reduction of . Let L(resp. L.)be the set of superfi-
cial elements(resp. supetficial elements of degree 5) of 7. By R’ we denote the first neighbourhood ring of R
with respect to I (cf.[3]), that is, the set of elements a/b with @ € I° and b € L, in the localization L™'R.

(5) For simplicity, suppose that (RM) is a local ring of an algebraic variety along some subvariety. Let
P.,...,P, be the prime divisors P of IR such that trans.deg. R'/P=d — 1. Let R be the localization S 'R’ with
S=N(R'—P) and let R,=(R')uw .

Then the residue field k,=k(Ro)is a purely transcendental extensin of degree d-1 overk, and

ex(I)=lengths, R"/IR*"= 3 en (IA)IK(A) : k)|, where A=(R" ), i=1,...,t.

We note that R/M is infinite in this case, and we can use an [-superficial element of degree 1 for the con-
struction of R”,R,, R, etc. Clearly, trans.degi R'/P< d — 1, where P tuns over all prime divisors of IR’, and
the equality holds just for P,...,P.. From (4) and our discussions above, we conclude that R < is integral over
its subring R, which is a 1-dimensional local ring. Since R(J)/MR(/J, )= k[X,,....X.], we see that the multiplicity
of J. is equal to that of the principal ideal JR, of R, by a usual dicussion of degree zero localizations. Then the
first assertion is clear. Since J is a reduction of I, their multiplicities are equal and the extension law of multi-
plicities(cf.[2],23) implies the second assertion.-

In particular, if ex(I)=ez<- (IR <), then each quotient field of R'/P; is purely transcendental of degree d — 1

over k. For a general local ring, the similar assertions in (5) may be also proved by a certain technical device.
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