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Power series rings

Ryoichi NAGASAWA

In this note, we mainly consider a one-dimensional complete local domain R such that R
has a coefficient field which is extendable to a certain coefficient field of its derived normal
ring.

Let R be a complete local ring containing a field. Then R contains a coefficient field 4.
Suppose that a complete local ring R’ is integral over R. If % is a perfect field then R’ contains
a coefficient field %2 which has & as a subfield (cf.[3]). For a non-perfect 2, R’ does not
necessarily contain such a field even though R’ is the derived normal ring of R. In fact, suppose
that % is a field of characteristic p>0 and that there exists an element « in & with ek’ .
Consider the polynomial ring £[z] in a variable z. Let R be the completion of 2[z] at the prime

ideal (t) where t=2” —a, as in Cohen [1]. The residue field of R is isomorphic to £ (a”?)

, and
R contains the formal power series ring 2[[#]], over which R is finite integral. Let S be the
subring k[[z£#]] of R. Then R is the derived normal ring of S, but % is not contained in a
coefficient field of R.

Now we consider some elementary examples of complete local domains. An example of
such a local domain may be found as the completion of the local ring at a unibranched point
on some algebraic curve. Suppose that (X, Y)=h(X,Y)+g(X,Y)=k[X,Y] is an irreducible
element in 2{[ X, Y]], where 2(X,Y) is the non-zero homogeneous part of degree m >0 and
gXY)E(X, V)™ By Hensel’s Lemma, % is a power of a linear form, and we may assume
that 2=Y™. Let C be the affine curve defined by the equation 7 (X,Y) =0 and let R be the
local ring of the origin on C. Then R is an analytically irreducible local domain with dimR =
1, e(R) =m and embdimR <2, where e denotes the multiplicity. Let x and y be the canonical
images of X and Y in R respectively. Since (xy)” =x(xy)" " for n>m, x is a superficial
element of the ideal (x,y) in B. Then the first neighbourhood ring of R is equal to R[v/x],
which is the localization of k[x,y/x] with respect to the maximal ideal (x,y/x).

Generally, it may be easy to check the irreducibility of f{(X,Y) in the power series ring
E[[X Y]]. As a simple example, consider the case when f (X,Y)=Y"+X""! The origin
is a heigher order cusp of multiplicity m. In fact, after » successive blowings up we get the
increasing sequence of neighbourhood rings terminated in a discrete valuation ring, which is the
localization of k[yx "] with respect to the maximal ideal (yx™”), and hence, we conclude that
the polynomial Y™+ X™ %! is analytically irreducible, i.e., an irreducible element in £[ [ X, Y]].
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Of course, the situation does not change if the above f (X|Y) is replaced by f (X Y) +¢q (X,
Y) with ¢ (X V) e (X, Y)™"?

Next put f (X, Y)=Y? + XZ+ X" ¥ where char (k ) =p. Letting Z=Y /X, we have a
transformed polynomial (Z+X)? +X?"" and hence f (X,Y) is analytically irreducible by the
same reason as above. Generally, let m and # be relatively prime integers with #,% >2. Then
the equation: Y™ — X" =0 defines a irreducible rational curve, which has one higher oder cusp
at the origin.

Conversely, if a singularity at the origin is resolved in the similar way as above, then the
defining polynomial may be analyticaly ireducible, and it can be stated as the following:

(1) Swuppose that f (X, Y)=h (X,Y)+g (X, Y) satisfies the above situation, that is, h(X,Y) =
V™ with V=aX+bY a linear form and g (X, Y)= (X, YY", and letting F(UV)=V"+
(U V) be a transformed polynomial after a suitable non-singulay linear change, £(U V) is
vegular in U. Let f,(X,, Y,) be the strict quadratic transformation of (U, V) with X,=U
and Y, =V/U. If the curve f (X ,, Y ) =0 has a singular point at the origin O,, we assume
that the situation for the polynomial f (X, Y ) is the same as that of f(X,Y). Then the above
process may be applied to the polynomial f (X, Y ,). Continuing the similar process, if we
arrvive at a curve C': f (X, Y )=V +g,(X,,Y,)=0 with V, a linear formZ0, then we
may conclude that the defining polynomial f(X)Y) is irveducible in k([ X, Y]]. Thus, a
polynomial F(X,Y) is an irveducible element in k[ X,Y]) if and only if the above procedure
can be taken for the polynomial f (X,Y).

For example, let C,, be the projective plane curve defined by the equation X 7 X 5—
X7X,+X7"?=0. On X, 0, the affine form of C,, is given by f (X, Y)=Y"— X"+
Y™”*2=0. Then f(X,Y) satisfies the above situation, and hence it is irreducible in 2[[ X, Y ]].
Clearly, C,, is an irreducible curve with an m-fold point at P (1,0,0). Since C,, has one simple
point in its first neighbourhood, the genus g(C,,)) = (m+1)m/2—m(m—1)/2=m. Let v be
the valuation centered at P on C,,, and let I be the ideal generated by the canonical images of
fx and f in the affine coodinate ring of C,,. Calculating the analytic branch at P, we have
v (I)=(m+1)(m—1), and hence the class of C,,=(m+2) (m+1)—v()=3m+3(char
(k) =0, m>1).

(2) The curve C,, is a hyperelliptic curve of genus m and class 3m~+3. It has one sigular
point P, an m—fold simple cusp, and hence just one blowing up P alveady resolves the singularity
of C,,. The linear system cut out by the lines through P defines a degree 2 morphism: C,—
P’

In general, the value v (/) should be replaced by v(J), where J is the conductor at P.
Fortunately, the singularity at P is resolved by only one blowing up, and hence / =M ZH, where
M, is the maximal ideal of the local ring at P, ie,, v(J)=(m—Dv(Mp)=(m—1) (m+1I).

Now we consider the following example. The surface F defined by ZX"— Y™+ X" 1=
0 contains the line L: X =Y =0 as a singular subvariety with multiplicity m. Let R be the local
ring of this subvatiety L on F. Then R is localization of £(z) [x,y] at the maximal ideal (x,
y), where x,y and z are the canonical images of X,Y and Z respectively in the coordinate ring
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of the surface F, and the first neibourhood ring of R is R, =R[y/x]. Since z=v"—x with y=
ux, R, is a regular local ring with maximal ideal xR, and residue field % (/™). Define a flat
morphism F—L by (X,Y,Z)—Z. The fibre over a=k is an irreducible curve defined by aX ™ —
Y™+ X"1=0. Let R, Dbe its local ring at the origin. Then we have the following:

(3) R is a 1-dimensional local domain with multiplicity e(R) =m, and ils associated graded
ring is an integral domain. Associated with R, there is an infinite family of 1-dimensional local
domains R, with e(R,;) =m for all a€k. If char (k) =0, then R, is unibvanched only at a=
0. If char (k) =m, then R, is unibranched at all a.

In what follows, R will denote a 1-dimensional Macaulay local ring with maximal ideal M.
Then we have the following:

(4)  The associated graded ving of R is an integral domain if and only if iis first neighbour-
hood ving R is a discrete valuation ving with maximal ideal M=MR and M"RNR=M" for
all n. In this case, R is analytically irveducible, and the multiplicity e¢(R)is equal to | R/ M:
R/M|.

In fact, let G=R[Mt]/MR[Mt] be the associated graded ring, and assume that G is an
integaral domain. Then R is an integral domain, and since (0) is the unique relevant prime
divisor of the zero ideal in G, M° — M**’ is equal to the set of surperficial elements of degree
s (cf.[2]). Applying the theory of degree 0 localization to the blowup algebra R{Mt], MR is
the unique maximal (principal) ideal of I?, and hence R is a discrete valuation ring. Finally,
we have M" RN R=M" for all n=12,..., since MR has no irrelevant prime divisor. Conversely,
assume that these conditions are satisfied for R. Since M" RNR=M" for all n=1,2,.., the
ideal (0) is unmixed of height 0, and since MR is prime, so is MR[M¢] also. Thus G is an
integral domain. Since the associated graded ring of R is isomorphic to that of the completion
R* of R, R" is an integral domain, hence an analytically irreducible local domain. The last
assertion is obvious since e(R) =length, R/ MR = lengthy R/ M.

Now assume that R contains a field and satifies the conditions stated above, and also
assume that the residue field is a perfect field. Then the completion R* satisfies the similar
conditions. It is integral and contains a coefficient field £ which is perfect. The integral closure
V of R* is a complete discrete valuation ring with the unique coefficient field K which
contains 2. The completion of R is identified with V, and V itself is the first neighbourfood
ring of R*. In particular, we have the following:

(5) Im the situation as above, assume that R is complete. Then R contains a transcendental
element t and a finite k-module LC K with kC L such that
(@) R=k[lSf,.fs,...f,11C KI[[t]], where [, =qa, t+-< tK{[t]] and a,, 1 <i<r are
linearly independent over k.

(b) Letting L=ka, +---+ka,, we have k(L) =K, and hence L° =K, L“'#K for some c>0.
(c) The associated graded ring is isomorphic to k [Lt], and the multiplicity e=e(R)is equal to
| K: k.
In fact, since R contains a unique coefficient field K with #C K and is complete with M =
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MR, we have R=K[[t]] for some ¢t €R and k[[t]]JCR C KI[[t]]. Let L be the set of
elements a= K with f=at+:--ER. Since K is finite algebraic over &, L is a finite-dimensional
k-module with kL. Since M/M* =M/ K[[t]INR =M+ K[[¢t]1]/* K[[t]]=L by (4)
and G is integral, R is equal to a power series ring stated as in (a), and G is isomorphic to a
polynomial ring k[L¢]=k~+Lt+L? £* +---. Thus the proof is complete.

As a corollary to (5), we have the following:

Let K be a finite extension field of a field k, and let L be a k-module contained in K with
E(L)=K and k C L. Let f, =a, i+ tK[[t]], 1 <i <r be such that the coefficients a;
genevate L over k. Then the following are equivalent for the power sevies ving R=k[[f,.f2,
e f, 10
(@) The associated graded ving of R is an integral domain.

(b) For any f=at" +bt""'+--€ R with n>0, ac L".

For example, let f=tg=(y/ 2 +v 3)t and h=t+,/ 3t°. Then Q[[fgk]] does not
satisfy the above condition.

Let R be a complete local domain as in (5). If dim, L=2, then R is Gorenstein. Generally
we have the following:

(6) Let d; denotes dim, L , i=01,,¢c—1 (d,=1). With the notation as in (5), R is
Gorenstein if and only if the following equality holds: ec=2 (d,+d, +--+d,._). (d,=0)

In fact, the conductor between R and R=K[[¢ ]] is equal to the idealD=¢° K[[¢ 1], and
hence length,R/D=d,+d, +++d,, since M' /M""'=L" for i=0,1,,c-1and M, =D. On
the other hand, length, K[[t]]/R=lengthxK[[¢]]/D—lengthyR/D=ec—lengthyR/D, and
hence the assertion is proved.

In particular, we see that for a complete local domain R with K [[# 1] as its derived normal
ring, the value group of R may be closely related to the structure of R only in the case where
the coefficient field of R is equal to K. Finally, we add an ementary example, different from
the above type. Let R be a power series ring K[[#°,---,#°*]] contained in V=K[[¢]]. We
assume that 1< e ; <e,<---<e, and these 7 integers are relatively prime. Then, by H =<e,,
---,¢, > we denote the semigroup which is generated by these 7 elements (0&H ). Assume that
they form a minimal set of generators of H. It contains all large integers, and hence V is the
derived normal ring of R. By T (H) we denote the semigroup which is generated by H and
all differences ¢; —e,. Let d(H) denote ¢, —e, if »>2, 0if »=1 and R, the »n-th neighbour-
hood ring of R.

Then we have the following:

(7) (@) The least integer n with R,=V is equal to the integer m with d{T "I H)) =1
(T° (H)=H)

(b) Suppose that R, =V. Then the associated graded ving G of R is Macaulay, i.e., it has a
regular homogeneous element of positive degree if and only if {ecH | e>ne;} CH,+H,
n=12--, where H, is the set of elements z such that z is a sum of n elements in {e,,,
e,} . In this case, e, <Ze,.
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Let M denotes the maximal ideal (£°,---,#°~), and let v denotes the associated valuation
of V. The assertion (a) is easy. In fact, since V is finite over R, the multiplicity e=e (M) =
e, (MV)=e,=e,(t1 V) =e(t’1 R) =length, R/t’* R. Then lengthy M /M, t°1 = length, R/
M" t°1 —length, R/ M = length, R/ M" + length, M" / M" t°1 — lengthy, RIM" '=en—r+e—
(e (n+1)—»)=0 for all large #.

Thus, we see that M* 1= M"t*1 for all large n. Hence # is a superficial element of M.

This implies that the first neighbourhood ring of R is equal to R=R[M¢t*], and hence
that 7' (H)is the semigroup attached to #. Now, suppose that #=1. Then, R[¢27, -,
t*»°11=K[[#]]. This implies ¢, —e, =1. Conversely, if this equality holds, then ¢=¢°/t1 &€
R and hence R=7V. According to these results, we get the assertion (a).

As for (b), we note that G is Macauly if and only if M* VNR=M" for n=12,-~. We can
easily prove this by the theory of degree zero localization and primary decomposition, and we
omit the proof. With the notation as in (b), M” is the set of formal sums of elements at’ with
acK and eeH,+H, and M” VR is equal to the set of formal sums of elements at°in R
such that a=K, e H and e>#ne;. Then the assertion (b) easily follows from these facts. It
may be interesting to find some concrete types of the semigroup H which satisfies the condition

(b).
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