Power series ring

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/543

Power series rings

Ryoichi NAGASAWA

In this note, we mainly consider a one-dimensional complete local domain R such that R has a coefficient field which is extendable to a certain coefficient field of its derived normal ring.

Let R be a complete local ring containing a field. Then R contains a coefficient field k. Suppose that a complete local ring R' is integral over R. If k is a perfect field then R' contains a coefficient field k' which has k as a subfield (cf.[3]). For a non-perfect k, R' does not necessarily contain such a field even though R' is the derived normal ring of R. In fact, suppose that k is a field of characteristic p > 0 and that there exists an element a in k with $a \not\equiv k^p$. Consider the polynomial ring k[z] in a variable z. Let R be the completion of k[z] at the prime ideal (t) where $t = z^p - a$, as in Cohen [1]. The residue field of R is isomorphic to $k(a^{1/p})$, and R contains the formal power series ring k[[t]], over which R is finite integral. Let S be the subring k[[t]] of R. Then R is the derived normal ring of S, but k is not contained in a coefficient field of R.

Now we consider some elementary examples of complete local domains. An example of such a local domain may be found as the completion of the local ring at a unibranched point on some algebraic curve. Suppose that $f(X,Y) = h(X,Y) + g(X,Y) \in k[X,Y]$ is an irreducible element in k[[X,Y]], where h(X,Y) is the non-zero homogeneous part of degree m>0 and $g(X,Y) \in (X,Y)^{m+1}$. By Hensel's Lemma, h is a power of a linear form, and we may assume that $h=Y^m$. Let C be the affine curve defined by the equation f(X,Y)=0 and let R be the local ring of the origin on C. Then R is an analytically irreducible local domain with dimR=1, e(R)=m and $embdimR \leq 2$, where e denotes the multiplicity. Let x and y be the canonical images of X and Y in R respectively. Since $(x,y)^n=x(x,y)^{n-1}$ for $n\geq m$, x is a superficial element of the ideal (x,y) in R. Then the first neighbourhood ring of R is equal to R[y/x], which is the localization of k[x,y/x] with respect to the maximal ideal (x,y/x).

Generally, it may be easy to check the irreducibility of f(X,Y) in the power series ring k[[X,Y]]. As a simple example, consider the case when $f(X,Y) = Y^m + X^{mn+1}$. The origin is a heigher order cusp of multiplicity m. In fact, after n successive blowings up we get the increasing sequence of neighbourhood rings terminated in a discrete valuation ring, which is the localization of $k[yx^{-n}]$ with respect to the maximal ideal (yx^{-n}) , and hence, we conclude that the polynomial $Y^m + X^{mn+1}$ is analytically irreducible, i.e., an irreducible element in k[[X,Y]].

Of course, the situation does not change if the above f(X,Y) is replaced by f(X,Y) + q(X,Y) with $g(X,Y) \in (X,Y)^{mn+2}$.

Next put $f(X,Y) = Y^p + X^{2p} + X^{(n+1)p+1}$, where char(k) = p. Letting Z = Y/X, we have a transformed polynomial $(Z+X)^p + X^{pn+1}$, and hence f(X,Y) is analytically irreducible by the same reason as above. Generally, let m and n be relatively prime integers with $m,n \ge 2$. Then the equation: $Y^m - X^n = 0$ defines a irreducible rational curve, which has one higher oder cusp at the origin.

Conversely, if a singularity at the origin is resolved in the similar way as above, then the defining polynomial may be analytically irreducible, and it can be stated as the following:

(1) Suppose that f(X,Y)=h(X,Y)+g(X,Y) satisfies the above situation, that is, $h(X,Y)=V^m$ with V=aX+bY a linear form and $g(X,Y)\in (X,Y)^{m+1}$, and letting $\tilde{f}(U,V)=V^m+g(U,V)$ be a transformed polynomial after a suitable non-singular linear change, $\tilde{g}(U,V)$ is regular in U. Let $f_1(X_1,Y_1)$ be the strict quadratic transformation of $\tilde{f}(U,V)$ with $X_1=U$ and $Y_1=V/U$. If the curve $f_1(X_1,Y_1)=0$ has a singular point at the origin O_1 , we assume that the situation for the polynomial $f_1(X_1,Y_1)$ is the same as that of f(X,Y). Then the above process may be applied to the polynomial $f_1(X_1,Y_1)$. Continuing the similar process, if we arrive at a curve C': $f_n(X_n,Y_n)=V_n+g_n(X_n,Y_n)=0$ with V_n a linear form $\neq 0$, then we may conclude that the defining polynomial f(X,Y) is irreducible in k[[X,Y]]. Thus, a polynomial f(X,Y) is an irreducible element in k[[X,Y]] if and only if the above procedure can be taken for the polynomial f(X,Y).

For example, let C_m be the projective plane curve defined by the equation $X_2^m X_2^0 - X_1^{m+1} X_0 + X_2^{m+2} = 0$. On $X_0 \neq 0$, the affine form of C_m is given by $f(X,Y) = Y^m - X^{m+1} + Y^{m+2} = 0$. Then f(X,Y) satisfies the above situation, and hence it is irreducible in k[[X,Y]]. Clearly, C_m is an irreducible curve with an m-fold point at P(1,0,0). Since C_m has one simple point in its first neighbourhood, the genus $g(C_m) = (m+1)m/2 - m(m-1)/2 = m$. Let v be the valuation centered at P on C_m , and let I be the ideal generated by the canonical images of f_X and f_Y in the affine coordinate ring of C_m . Calculating the analytic branch at P, we have v(I) = (m+1)(m-1), and hence the class of $C_m = (m+2)(m+1) - v(I) = 3m+3$ (char (k) = 0, m > 1).

(2) The curve C_m is a hyperelliptic curve of genus m and class 3m+3. It has one sigular point P, an m-fold simple cusp, and hence just one blowing up P already resolves the singularity of C_m . The linear system cut out by the lines through P defines a degree 2 morphism: $\tilde{C}_m \rightarrow P^1$

In general, the value v(I) should be replaced by v(J), where J is the conductor at P. Fortunately, the singularity at P is resolved by only one blowing up, and hence $J = M_p^{m-1}$, where M_p is the maximal ideal of the local ring at P, i.e., $v(J) = (m-1)v(M_P) = (m-1)(m+1)$.

Now we consider the following example. The surface F defined by $ZX^m - Y^m + X^{m+1} = 0$ contains the line L: X = Y = 0 as a singular subvariety with multiplicity m. Let R be the local ring of this subvariety L on F. Then R is localization of k(z)[x,y] at the maximal ideal (x,y), where x,y and z are the canonical images of X,Y and Z respectively in the coordinate ring

of the surface F, and the first neibourhood ring of R is $R_1 = R[y/x]$. Since $z = v^m - x$ with y = vx, R_1 is a regular local ring with maximal ideal xR_1 and residue field $k(z^{1/m})$. Define a flat morphism $F \to L$ by $(X, Y, Z) \to Z$. The fibre over $a \in k$ is an irreducible curve defined by $aX^m - Y^m + X^{m+1} = 0$. Let R_n be its local ring at the origin. Then we have the following:

(3) R is a 1-dimensional local domain with multiplicity e(R) = m, and its associated graded ring is an integral domain. Associated with R, there is an infinite family of 1-dimensional local domains R_a with $e(R_a) = m$ for all $a \in k$. If char (k) = 0, then R_a is unibranched only at a = 0. If char (k) = m, then R_a is unibranched at all a.

In what follows, R will denote a 1-dimensional Macaulay local ring with maximal ideal M. Then we have the following:

(4) The associated graded ring of R is an integral domain if and only if its first neighbourhood ring \tilde{R} is a discrete valuation ring with maximal ideal $\tilde{M} = M\tilde{R}$ and $M^nR \cap R = M^n$ for all n. In this case, R is analytically irreducible, and the multiplicity e(R) is equal to $|\tilde{R}/\tilde{M}|$: R/M.

In fact, let G=R[Mt]/MR[Mt] be the associated graded ring, and assume that G is an integral domain. Then R is an integral domain, and since (0) is the unique relevant prime divisor of the zero ideal in G, M^s-M^{s+1} is equal to the set of surperficial elements of degree s (cf.[2]). Applying the theory of degree 0 localization to the blowup algebra R[Mt], $M\tilde{R}$ is the unique maximal (principal) ideal of \tilde{R} , and hence \tilde{R} is a discrete valuation ring. Finally, we have $M^nR\cap R=M^n$ for all n=1,2,..., since $M\tilde{R}$ has no irrelevant prime divisor. Conversely, assume that these conditions are satisfied for R. Since $M^n\tilde{R}\cap R=M^n$ for all n=1,2,..., the ideal (0) is unmixed of height 0, and since $M\tilde{R}$ is prime, so is MR[Mt] also. Thus G is an integral domain. Since the associated graded ring of R is isomorphic to that of the completion R^* of R, R^* is an integral domain, hence an analytically irreducible local domain. The last assertion is obvious since $e(R) = length_R \tilde{R}/M\tilde{R} = length_R \tilde{R}/\tilde{M}$.

Now assume that R contains a field and satisfies the conditions stated above, and also assume that the residue field is a perfect field. Then the completion R^* satisfies the similar conditions. It is integral and contains a coefficient field k which is perfect. The integral closure V of R^* is a complete discrete valuation ring with the unique coefficient field K which contains k. The completion of \tilde{R} is identified with V, and V itself is the first neighbourfood ring of R^* . In particular, we have the following:

- (5) In the situation as above, assume that R is complete. Then R contains a transcendental element t and a finite k-module $L \subseteq K$ with $k \subseteq L$ such that
- (a) $R=k[[f_1,f_2,...,f_r]]\subseteq K[[t]]$, where $f_i=a_i\ t+\cdots\in tK[[t]]$ and a_i , $1\leq i\leq r$ are linearly independent over k.
- (b) Letting $L = ka_1 + \cdots + ka_r$, we have k(L) = K, and hence $L^c = K$, $L^{c-1} \neq K$ for some $c \geq 0$.
- (c) The associated graded ring is isomorphic to k [Lt], and the multiplicity e = e(R) is equal to |K:k|.

In fact, since \tilde{R} contains a unique coefficient field K with $k \subseteq K$ and is complete with $\tilde{M} =$

 $M\tilde{R}$, we have $\tilde{R} = K[[t]]$ for some $t \in R$ and $k[[t]] \subseteq R \subseteq K[[t]]$. Let L be the set of elements $a \in K$ with $f = at + \cdots \in R$. Since K is finite algebraic over k, L is a finite-dimensional k-module with $k \subseteq L$. Since $M/M^2 \cong M/t^2 K[[t]] \cap R \cong M + t^2 K[[t]]/t^2 K[[t]] \cong L$ by (4) and G is integral, R is equal to a power series ring stated as in (a), and G is isomorphic to a polynomial ring $k[Lt] = k + Lt + L^2t^2 + \cdots$. Thus the proof is complete.

As a corollary to (5), we have the following:

Let K be a finite extension field of a field k, and let L be a k-module contained in K with k(L) = K and $k \subseteq L$. Let $f_i = a_i \ t + \cdots \in tK[[t]]$, $1 \le i \le r$ be such that the coefficients a_i generate L over k. Then the following are equivalent for the power series ring $R = k[[f_1, f_2, \cdots, f_r]]$:

- (a) The associated graded ring of R is an integral domain.
- (b) For any $f = at^n + bt^{n+1} + \dots \in R$ with n > 0, $a \in L^n$.

For example, let $f = t, g = (\sqrt{2} + \sqrt{3})t$ and $h = t + \sqrt{3}t^2$. Then Q[[f,g,h]] does not satisfy the above condition.

Let R be a complete local domain as in (5). If $dim_k L=2$, then R is Gorenstein. Generally we have the following:

(6) Let d_i denotes $\dim_k L^i$, $i=0,1,\cdots,c-1$ ($d_0=1$). With the notation as in (5), R is Gorenstein if and only if the following equality holds: ec=2 ($d_0+d_1+\cdots+d_{c-1}$). ($d_{-1}=0$)

In fact, the conductor between R and $\tilde{R} = K[[t]]$ is equal to the ideal $D = t^c K[[t]]$, and hence $\operatorname{length}_R R/D = d_0 + d_1 + \cdots + d_{c-1}$, since $M^i/M^{i+1} \cong L^i$ for $i = 0, 1, \cdots, c-1$ and $M_c = D$. On the other hand, $\operatorname{length}_R K[[t]]/R = \operatorname{length}_R K[[t]]/D - \operatorname{length}_R R/D = \operatorname{ec} - \operatorname{length}_R R/D$, and hence the assertion is proved.

In particular, we see that for a complete local domain R with K[[t]] as its derived normal ring, the value group of R may be closely related to the structure of R only in the case where the coefficient field of R is equal to K. Finally, we add an ementary example, different from the above type. Let R be a power series ring $K[[t^{e_1}, \cdots, t^{e_r}]]$ contained in V = K[[t]]. We assume that $1 < e_1 < e_2 < \cdots < e_r$ and these r integers are relatively prime. Then, by $H = < e_1$, \cdots , $e_r >$ we denote the semigroup which is generated by these r elements $(0 \subseteq H)$. Assume that they form a minimal set of generators of H. It contains all large integers, and hence V is the derived normal ring of R. By T(H) we denote the semigroup which is generated by H and all differences $e_i - e_1$. Let d(H) denote $e_2 - e_1$ if $r \ge 2$, 0 if r = 1 and R_n the n-th neighbourhood ring of R.

Then we have the following:

- (7) (a) The least integer n with $R_n = V$ is equal to the integer m with $d(T^{m-1}(H)) = 1$. $(T^0(H) = H)$
- (b) Suppose that $R_1=V$. Then the associated graded ring G of R is Macaulay, i.e., it has a regular homogeneous element of positive degree if and only if $\{e\in H\mid e\geq ne_1\}\subseteq H_n+H, n=1,2,\cdots$, where H_n is the set of elements z such that z is a sum of n elements in $\{e_1,\cdots,e_r\}$. In this case, $e_r<2e_1$.

Let M denotes the maximal ideal $(t^{e_I}, \cdots, t^{e_r})$, and let v denotes the associated valuation of V. The assertion (a) is easy. In fact, since V is finite over R, the multiplicity $e=e(M)=e_V(MV)=e_I=e_V(t^{e_I}V)=e(t^{e_I}R)=length_RR/t^{e_I}R$. Then $length_RM^{n+1}/M_nt^{e_I}=length_RR/M^nt^{e_I}-length_RR/M^nt^{e_I}-length_RR/M^{n+1}=length_RR/M^n+length_RM^n/M^nt^{e_I}-length_RR/M^{n+1}=en-r+e-(e(n+1)-r)=0$ for all large n.

Thus, we see that $M^{n+1}=M^n\,t^{e_I}$ for all large n. Hence t^{e_I} is a superficial element of M. This implies that the first neighbourhood ring of R is equal to $\tilde{R}=R[Mt^{-e_I}]$, and hence that T(H) is the semigroup attached to \tilde{R} . Now, suppose that $\tilde{R}=V$. Then, $R[t^{e_2-e_I}, \dots, t^{e_r-e_I}]=K[[t]]$. This implies $e_2-e_1=1$. Conversely, if this equality holds, then $t=t^{e_2}/t^{e_I}\in \tilde{R}$, and hence $\tilde{R}=V$. According to these results, we get the assertion (a).

As for (b), we note that G is Macauly if and only if $M^n V \cap R = M^n$ for $n = 1, 2, \cdots$. We can easily prove this by the theory of degree zero localization and primary decomposition, and we omit the proof. With the notation as in (b), M^n is the set of formal sums of elements at^e with $a \in K$ and $e \in H_n + H$, and $M^n V \cap R$ is equal to the set of formal sums of elements at^e in R such that $a \in K$, $e \in H$ and $e \ge ne_1$. Then the assertion (b) easily follows from these facts. It may be interesting to find some concrete types of the semigroup H which satisfies the condition (b).

References

- [1]I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Am. Math. Soc. 59 (1946), pp.54-106.
- $\hbox{\tt [2]E. Matlis, $\it{1-dimensional Cohen-Macaulay rings$, Lecture Notes in Math. 327$, Springer-Verlag (1973)}$
- [3] M. Nagata, Local Rings, Interscience, New York, 1962.