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1 Introduction

Fluid flow and heat transfer in porous media have received considerable attention in many kinds of
applications such as in geophysics, petroleum engineering, and geothermal engineering. In geother-
mal engineering, simulation of fluid flow and heat transfer in porous media is a useful tool not only
for the pre-exploration process but also during the exploration process. For the pre-exploration pro-
cess, the simulation can be used to predict how much electricity can be generate and to determine
how long the reservoir can be explored by using the physical parameters such as pressure, temper-
ature, density, porosity, size of the reservoir, and the type of reservoir obtained from seismic data
as an input parameter. From this simulation, we can also determine the feasibility of a reservoir to
be explored. During the exploration, simulation is used to predict the pressure and temperature
changes in the reservoir because of the injection and extraction processes. The injection is needed
to maintain the balance of the mass in the reservoir and to supply the water, which will be heated
by the reservoir. In the extraction process, the fluid and steam are exploited from the reservoir
and used to generate electricity. Because of its process, the flow in the geothermal reservoir is not
a steady flow, so we can not deal with the Darcy equations to approaches such kind of phenomena.
To deal with the phenomena in the geothermal reservoir, we applied the non-steady flow equations
in the porous media proposed by C.T.Hsu and P. Cheng.

C.T.Hsu and P. Cheng in (1989) applied the volume averaging technique introduced by S.
Whitaker [10] into the Navier-Stokes equations [4]. In the process of the derivation, they got the
expression of total drag force per unit volume due to the presence of solid particles in the integral
boundary form. To overcome the difficulty, they adopted the Darcy-Brinkmann-Forchheimer model
of the drag force [9, 6]. In this model, it consists of two-terms, the first term is related to Darcy
term and the second term is connected to the Forchheimer term. The Forchheimer term plays an
essential role to establish the stability energy estimate of the model proposed by C.T.Hsu and P.
Cheng in our study.

C.T. Hsu and P. Cheng have proposed the equations of non-steady flow in the porous media.
However, any mathematical and numerical analysis for their model has not been studied. The
aims of this thesis are to prove the L2-stability estimate of the model, to propose an appropriate
numerical method and to perform some simulation of fluid flow in simple and complex structures
of the porosity. The key idea to establish the energy stability estimate is to control the nonlinear
term with the non-homogeneous porosity φ (convection term) by using the Forchheimer term. As a
numerical scheme, we proposed a characteristic finite element method (Lagrange-Galerkin scheme).
We extended the idea of the characteristics method and introduced the macroscopic average velocity
w to overcome the difficulty which comes from the convection term with the non-homogeneous
porosity φ.

2 Statement of the Problem

In this section, we introduce a mathematical framework and state the problem that we will work
on. The detail of the derivation of the model we can find in [4].

The notation to be used in this paper is as follows. For d = 2, 3, let Ω ⊂ Rd be a bounded
domain, Γ the boundary of Ω, and T a positive constant. The boundary Γ is divided into three
parts, Γi, i = 0, 1, 2, which satisfy Γ̄ = Γ̄0 ∪ Γ̄1 ∪ Γ̄2 and Γi ∩ Γj = ∅ for all i 6= j. We suppose
that Γ is a Lipschitz boundary, and that, for each i ∈ {0, 1, 2}, Γi is piecewise smooth, where the
total number of the smooth boundaries of Γi is finite. The Lebesgue space on Ω for p ∈ [1,∞] is
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denoted by Lp(Ω) and the Sobolev space W 1,2(Ω) is denoted by H1(Ω) with the norm

‖u‖H1(Ω) ≡
(
‖u‖2L2(Ω) + ‖∇u‖2L2(Ω)

)1/2
.

The vector- and matrix-valued function spaces corresponding to, e.g., L2(Ω) are denoted by L2(Ω)d

and L2(Ω)d×d, respectively. The inner products in L2(Ω), L2(Ω)d, and L2(Ω)d×d are all represented
by (·, ·).

We consider the following problem of the C.T Hsu and P. Cheng model with non-homogeneous
porosity [4]; find (u, p) : Ω× [0, T ]→ Rd × R such that

ρ
[∂u
∂t

+ (u · ∇)
u

φ

]
−∇ · [2µD(u)] +∇p = f +B(u, φ) in Ω× (0, T ), (1a)

∇ · u = 0 in Ω× (0, T ), (1b)

u = g on Γ0 × (0, T ), (1c)

2µD(u)n− pn = 0 on Γ1 × (0, T ), (1d)

[2µD(u)n− pn]× n = 0 on Γ2 × (0, T ), (1e)

u · n = 0 on Γ2 × (0, T ), (1f)

u = u0 in Ω, at t = 0, (1g)

where u is the Darcy velocity, p is the pressure, µ > 0 is a dynamic viscosity, u0 : Ω → Rd is a
given initial velocity, f : Ω× (0, T )→ Rd is a given external force, g : Γ0 × (0, T )→ Rd is a given
boundary velocity, φ : Ω→ (0, 1] is a given porosity, n : Γ→ Rd is the outward unit normal vector,
D(u) : Ω× (0, T )→ Rd×dsym is the strain-rate tensor define by

D(u) ≡ 1

2

[
∇u+ (∇u)T

]
,

and B(u, φ) : Ω×(0, T )→ Rd is the total drag force from the micro pore structures per unit volume
defined by

B(u, φ) = B(u, φ;µ, ρ, dp) := − µφu

K(φ)
− ρF (φ)φ |u|u√

K(φ)
, (2)

where F : (0, 1]→ (0,∞) and K : (0, 1]→ (0,∞] are functions defined by

F (φ) :=
b√
aφ3

, K(φ) :=
d2
pφ

3

a(1− φ)2
, (3)

which correspond to Forchheimer constant and Kozeny–Carman absolute permeability, respectively.
The constant dp is a particle diameter, and the values of a and b are empirically given by a = 150
and b = 1.75 in [6]. The first term and the second term (non-linear term) in equation 2 is called
Darcy term and Forchaimmer term, respectively.

On the boundary, we impose the Dirichlet boundary condition on Γ0, the stress free boundary
condition on Γ1, and the slip boundary condition on Γ2.

Throughout this thesis, the following two hypotheses are assumed to hold.

Hypothesis 3.2.1. We suppose that meas(Γ0) > 0, f ∈ C([0, T ];L2(Ω)d), g ∈ C([0, T ];H1(Ω)d),
and u0 ∈ L2(Ω)d.

Hypothesis 3.2.1. The porosity satisfies the following.
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(i) φ ∈W 1,∞(Ω), φ0 ≡ ess.inf
x∈Ω

φ(x) > 0.

(ii) |∇φ| ≤ 2b

dp
(1− φ) a.e. in Ω.

Let us introduce constants φ1 and α defined by

φ1 ≡ ess.sup
x∈Ω

φ(x) ≤ 1, α ≡ a(1− φ1)2

d2
pφ

2
1

≥ 0.

We note that

ess.inf
x∈Ω

φ(x)

K(φ(x))
≥ α ≥ 0. (4)

Remark 2.1. As an example the value of |∇φ| in Lavrans field, Halten Terrace, Norway [2] is
4.336×10−5 [cm−1]. In the real situation, the value of dp ≤ 0.02 [cm] and from the empirical study,
S. Ergun [3] suggested the value of b = 1.75. Then if we calculate the right hand side term in
Hypothesis 3.2.1-(ii), it resulted 157.5 [cm−1]. Obviously, the spatial derivative of the real porosity
∇φ(x) satisfies |∇φ| � 157.5 [cm−1]. By this fact, Hypothesis 3.2.1-(ii) is not restrictive.

For a function g0 ∈ H1/2(Γ0)d, let us introduce function spaces V (g0), V , and Q defined by

V (g0) ≡
{
v ∈ H1(Ω)d; v = g0 on Γ0, v · n = 0 on Γ2

}
, V ≡ V (0), Q ≡ L2(Ω),

respectively. We define bilinear forms a0, b, and c0, and trilinear forms a1 and c1 by

a0(u, v) ≡ 2µ
(
D(u), D(v)

)
, b(v, q) ≡− (∇ · v, q), c0(u, v) ≡ µ

( φ

K(φ)
u, v
)
,

a1(u,w, v) ≡ ρ
(
(u · ∇)w, v

)
, c1(θ, u, v) ≡ ρ

(
F (φ)φ θu√

K(φ)
, v

)
.

The weak formulation for problem (1) is to find {(u, p)(t) ∈ V (g(t))×Q; t ∈ (0, T )} such that, for
t ∈ (0, T ),

ρ
(∂u
∂t
, v
)

+ a0(u, v) + a1

(
u,
u

φ
, v
)

+ b(v, p) + b(u, q) + c0(u, v) + c1

(
|u|, u, v

)
= (f(t), v) , ∀(v, q) ∈ V ×Q, (5a)

u(0) = u0 in L2(Ω)d. (5b)

3 Stability Estimates

To obtain the stability estimates of the model, we used Lemma 3.4 to compute the convection term
with the non-homogeneous porosity, then control this term using the Forchaimmer term, then we
have :

Theorem 3.2.1. Suppose that Hypotheses 3.2.1 and 3.2.1 hold true. Assume g = 0. Suppose that
(u, p) ∈ (C1([0, T ];L2(Ω)d) ∩ L2(0, T ;V ))× L2(0, T ;L2(Ω)) satisfies (5). Then, it holds that

d

dt

(ρ
2
‖u(t)‖2L2(Ω)

)
+
ρ

2

∫
Γ1

|u(t)|2

φ
u(t) · nds+ µβ2

0‖u(t)‖2H1(Ω) + µα‖u(t)‖2L2(Ω)

≤ 1

4µβ2
0

‖f(t)‖2L2(Ω), (6)

where β0 > 0 is a positive constant to be defined in (9) below.
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Corollary 3.2.2. In addition to the same assumptions in Theorem 3.2.1, suppose that u · n ≥ 0
on Γ1 × [0, T ]. Then, we have the following.

(i) It holds that

√
ρ‖u‖L∞(0,T ;L2(Ω)) +

√
µβ0‖u‖L2(0,T ;H1(Ω))

≤ 2
(√

ρ‖u0‖L2(Ω) +
1
√
µβ0
‖f‖L2(0,T ;L2(Ω))

)
. (7)

(ii) It holds that, for any t ∈ [0, T ],

‖u(t)‖L2(Ω) ≤ exp
(
−µα
ρ
t
)
‖u0‖L2(Ω) +

1√
2ρµβ0

‖f‖L2(0,t;L2(Ω)). (8)

Lemma 3.2.3 (Korn’s inequality, [5, 1]). Let Ω be a bounded domain with a Lipschitz-continuous
boundary ∂Ω, and let Γ0 be a part of ∂Ω and piecewise Lipschitz-continuous. Assume meas(Γ0) > 0.
Then, there exists a positive constant β0 such that

β0‖u‖H1(Ω) ≤ ‖D(u)‖L2(Ω), ∀u ∈ {v ∈ H1(Ω)d; v = 0 on Γ0}. (9)

Lemma 3.2.4. Suppose Hypothesis 3.2.1-(i) holds true. Assume u ∈ H1(Ω)d and ∇ · u = 0 in Ω.
Then, it holds that (

(u · ∇)
(u
φ

)
, u
)

=
1

2

∫
Γ

|u|2

φ
u · nds+

1

2

(
|u|2, (u · ∇)

1

φ

)
. (10)

Proof of Theorem 3.2.1. Substituting (u,−p) ∈ V ×Q into (v, q) in (5), we have

ρ
(∂u
∂t
, u
)

+ a0(u, u) + a1

(
u,
u

φ
, u
)

+ c0(u, u) + c1(|u|, u, u) = (f, u). (11)

We evaluate each term in (11) as follows:

ρ
(∂u
∂t
, u
)

= ρ

∫
Ω

∂

∂t

(
1

2
uiui

)
dx,

=
d

dt

(
ρ

2

∫
Ω
|u|2
)
dx,

=
d

dt

(ρ
2
‖u‖2L2(Ω)

)
, (12a)

a0(u, u) = 2µ

∫
Ω
D(u) : D(u)dx,

= 2µ‖D(u)‖2L2(Ω) ≥ 2µβ2
0‖u‖2H1(Ω) (by Lem. 3.2.3), (12b)

a1

(
u,
u

φ
, u
)

= ρ((u · ∇)
u

φ
, u),

=
ρ

2

∫
Γ1

|u|2

φ
u · nds+

ρ

2

(
|u|2, (u · ∇)

1

φ

)
(by Lem. 3.2.4),

≥ ρ

2

∫
Γ1

|u|2

φ
u · nds−

(
|u|2, ρ|u|

2

∣∣∣∇ 1

φ

∣∣∣), (12c)

c0(u, u) = µ
( φ

K(φ)
, |u|2

)
≥ µα‖u‖2L2(Ω) (by (4)), (12d)
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c1(|u|, u, u) = ρ

(
F (φ)φ|u|u√

K(φ)
, u

)
,

=

(
|u|2, ρ|u| F (φ)φ√

K(φ)

)
, (12e)

(f, u) ≤ ‖f‖L2(Ω) ‖u‖L2(Ω) ,

≤ µβ2
0‖u‖2L2(Ω) +

1

4µβ2
0

‖f‖2L2(Ω)

≤ µβ2
0‖u‖2H1(Ω) +

1

4µβ2
0

‖f‖2L2(Ω). (12f)

Here, we note the fact that Hypothesis 3.2.1 yields

Gφ :=
1

2

∣∣∣∣∇ 1

φ

∣∣∣∣− F (φ)φ√
K(φ)

=
1

2φ2

[
|∇φ| − 2b

dp
(1− φ)

]
≤ 0 a.e. in Ω. (13)

Combining (12) with (11) and using (13), we obtain

d

dt

(ρ
2
‖u(t)‖2L2(Ω)

)
+
ρ

2

∫
Γ1

|u(t)|2

φ
u(t) · nds+ µβ2

0‖u(t)‖2H1(Ω) + µα‖u(t)‖2L2(Ω)

≤ 1

4µβ2
0

‖f(t)‖2L2(Ω) +
(
|u(t)|2, ρ|u(t)|Gφ

)
≤ 1

4µβ2
0

‖f(t)‖2L2(Ω).

Thus, we obtain (6).

4 Lagrange-Galerkin Scheme

We derive the Lagrange-Galerkin scheme by extending the method of characteristic and introduce
the macroscopic average velocity w : Ω × [0, T ] → Rd to overcome the difficulty comes from the
non-homogeneous porosity. Then for the Darcy velocity u and the porosity φ in problem (1); the
material derivative D/Dt with respect to w defined by

w ≡ u

φ
,

D

Dt
≡ ∂

∂t
+ w · ∇.

Then, we can rewrite ∂u/∂t+ (u · ∇)(u/φ) by

∂u

∂t
+ (u · ∇)

u

φ
= φ

[∂w
∂t

+ (w · ∇)w
]

= φ
Dw

Dt
. (14)

Let τ be a time increment, NT ≡ bT/τc the total number of time steps, and tk ≡ kτ for
k ∈ {0, 1, . . . , NT }. For a function ψ defined in Ω × [0, T ] or Γ0 × [0, T ], we denote ψ(·, tk) simply
by ψk. Let X : [0, T ]→ Rd be a solution of the following ordinary differential equation,

X ′(t) = w(X(t), t), t ∈ [0, T ], (15)

subjected to an initial condition X(tk) = x. Physically, X(t) represents the position of a fluid
particle with respect to the macroscopic average velocity w at time t. For a given velocity v : Ω→
Rd, let X1(v, τ) : Ω→ Rd be the mapping defined by

X1(v, τ)(x) ≡ x− v(x)τ, (16)
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which is an upwind point of x with respect to the velocity v and a time increment τ .
Now, we derive the second-order approximation of ∂u/∂t+(u·∇)(u/φ) at (x, tk) by the Adams–

Bashforth method as follows:[∂u
∂t

+ (u · ∇)
u

φ

]
(x, tk) = φ(x)

Dw

Dt
(x, tk) = φ(x)

d

dt
(w(X(t), t))|t=tk

=
φ(x)

2τ

[
3wk − 4wk−1 ◦X1

(
wk, τ

)
+ wk−2 ◦X1

(
wk, 2τ

)]
(x) +O(τ2) (17)

=
φ(x)

2τ

[
3wk − 4wk−1 ◦X1

(
w(k−1)∗, τ

)
+ wk−2 ◦X1

(
w(k−1)∗, 2τ

)]
(x) +O(τ2)

=
1

2τ

[
3uk − φ

[
4wk−1 ◦X1(w(k−1)∗, τ)− wk−2 ◦X1(w(k−1)∗, 2τ)

]]
(x) +O(τ2),

where the symbol “◦” denotes the composition of functions,

[v ◦X1(v, τ)](x) = v(X1(v, τ)(x)),

and w(k−1)∗ is a second-order approximation of wk defined by

w(k−1)∗ ≡ 2wk−1 − wk−2.

The idea of (17) has been proposed and employed in [8].
Let Th ≡ {e} be a triangulation of Ω (= ∪e∈Th), he the diameter of e ∈ Th, and h ≡ maxe∈Th he

the maximum element size. We define the function spaces Xh,Mh, Vh and Qh by

Xh ≡
{
vh ∈ C(Ω)d; vh|e ∈ P2(e)d, ∀e ∈ Th

}
,

Mh ≡
{
qh ∈ C(Ω); qh|e ∈ P1(e), ∀e ∈ Th

}
,

Vh ≡ Xh ∩V , and Qh := Mh ∩Q = Mh, respectively, where Pk(e) is the (scalar-valued) polynomial
space of degree k ∈ N on e.

Let u0
h ∈ Xh and {gkh}

NT
k=1 ⊂ Xh, approximations of u0 and g, be given. Our new Lagrange–

Galerkin scheme of second-order in time for solving problem (1) is to find
{

(ukh, p
k
h)
}NT

k=1
⊂ Vh(gkh)×

Qh such that, for all (vh, qh) ∈ Vh ×Qh,

(initial step)(
u1
h − φ[w0

h ◦X1(w0
h, τ)]

τ
, vh

)
+ a0(u1

h, vh) + b(vh, p
1
h) + b(u1

h, qh)

+c0(u1
h, vh) + c1(|u0

h|, u1
h, vh) = (f1, vh), (18a)

(general step) (
1

2τ

[
3ukh − φ

[
4wk−1

h ◦X1(w
(k−1)∗
h , τ)− wk−2

h ◦X1(w
(k−1)∗
h , 2τ)

]]
, vh

)
+a0(ukh, vh) + b(vh, p

k
h) + b(ukh, qh) + c0(ukh, vh) + c1(|u(k−1)∗

h |, ukh, vh, )
= (fk, vh), k = 2, . . . , NT , (18b)

where wkh and w
(k−1)∗
h are defined by

wkh ≡
ukh
φ
, w

(k−1)∗
h ≡ 2wk−1

h − wk−2
h .

We compute (u1
h, p

1
h) by (18a) and {(ukh, pkh)}NT

k=2 by (18b). This idea on the initial step treatment
has been proposed for the Navier–Stokes equations, cf. [9], where the second-order convergence in
time in L2(Ω)-norm has been proved. Here, we apply it to problem (1).
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5 Numerical Results

5.1 Experimental Order of Convergence

To test our numerical scheme, for the solution (uh, ph) of scheme (18) we define errors Er1 and
Er2 by

Er1 ≡ max
n=0,...,NT

‖ unh − un ‖H1(Ω), Er2 ≡ max
n=0,...,NT

‖ pnh − pn ‖L2(Ω) .

Figure 1 shows the graphs of Er1 and Er2 versus h (= τ) in logarithmic scale. The values of Er1,
Er2 and slopes are represented in Table 1. We can see that both Er1 and Er2 are almost of second
order in h (= τ).

10−2 10−1

h

10−5

10−4

10−3

10−2

10−1

Er
1,
 E
r2

Er2
Er1
O(h2)

Figure 1: The order of convergence for scheme (18).

Table 1: Values of Er1 and Er2 and their slopes for the problem 1 by scheme (18).

N Er1 Er2 Slope of Er1 Slope of Er2 CPU times (s)
4 3.4× 10−1 1.6× 10−1 − − 0.96
8 7.1× 10−2 5.8× 10−3 2.2 4.8 5
16 1.4× 10−2 1.2× 10−3 2.3 2.3 15.1
32 3.5× 10−3 2.9× 10−4 2.0 2.0 69.7
64 1.0× 10−3 6.3× 10−5 1.80 2.2 550
128 2.8× 10−4 1.5× 10−5 1.84 2.1 24.570

5.2 Simulation of Flow in Two Layers of Porosity

This simulation motivated by the real condition of the geothermal reservoir which has porosity
function of the depth. In the top of the reservoir, the value of porosity is large, while in the
bottom, the value of porosity is small due to the existence of pressure which comes from the mass
of the soils and rocks. Figure 2-(a) is the initial condition of the simulation. From this figure, we
can see the profile distribution of velocity is symmetric. As long as the time increasing, the profile
distribution becomes asymmetric; this happens because of the difference of values of the porosity.
It can be understood that high porosity implies high permeability. High permeability means the
resistance of fluids to flow is small so that the fluid can flow faster rather than the area with small
porosity.
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(a) t = 0.0 [s] (b) t = 0.083 [s]

(c) t = 0.16 [s] (d) t = 0.33 [s]

(i) t = 3.3 [s] (j) t = 5.0 [s]

Figure 2: Time evolution of velocity magnitude.

5.3 Simulation of Flow in Complex Structure of Porosity

This simulation is motivated by the real condition of the porosity distribution in the rock structure,
such as in carbonate rock, where the value of porosity is irregular. Figure 3-(a) is the initial velocity

(a) t = 0.0 [s] (b) t = 0.083 [s]

(c) t = 0.16 [s] (d) t = 0.33 [s]

(i) t = 3.3 [s] (j) t = 5.0 [s]

Figure 3: Time evolution of magnitude velocity.

magnitude of the simulation. From Figure 3, we can see that the fluid is flowing faster in the area
which has a large porosity; for the area which has small porosity, the fluid is flowing slowly. In
the area which has small porosity, we can see the gradation motion of the fluid clearly; this fact
emphasizes us that scheme (18) can deal with the irregular pattern of porosity. Figure 3 has a good
agreement with the natural flow in the irregular design of porous media qualitatively.

6 Conclusions

To approaches the phenomena in the geothermal reservoir, we deal with the equations of non-
steady flow in the non-homogeneous porous media proposed by C.T. Hsu and P. Cheng. In this
work, we succeeded to prove the L2-stability estimates of the model by introducing Lemma 3.2.4
to extract the influence of the non-homogeneity of the porosity. To established the energy stability
estimates, we control this term with the Forchheimer term comes from the Darcy-Brinkmann-
Forchheimer model. As a numerical scheme, we proposed a characteristic finite element method
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(Lagrange-Galerkin scheme). We extended the idea of the characteristics method and introduced
the macroscopic average velocity w to overcome the difficulty which comes from the convection term
with the non-homogeneous porosity φ. To check the convergence order of the scheme, we compared a
simple problem with the analytical solution and showed that our scheme has second-order accuracy
both in space and in time. From the numerical simulation presented in Subsection 5.2 and 5.3,
our results have a good agreement with the natural flow in the simple and complex structures of
porosity qualitatively.

In this work, we succeeded to propose the Lagrange-Galerkin scheme for solving the model.
However the theoretical convergence of this scheme has not been proved yet. Another challenge
to improve the stability estimates of our results is to extend the Hypothesis 3.1.2.(i) to allow the
condition if φ has a jump.

For the next work, we plan to couple our system with the thermal energy to simulate the fluid
flow and heat transfer in the geothermal reservoir in 3D to predict the electrical generating capacity
and the life time of the reservoir.
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