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Magnetic anistropy energy (MAE) is one of the important property in the field of
magnetism, which determines the prefered orientation of the magnetization. In the
nanostructure scale, it has been succesfully controlled by magnetic field or current.
In a basis of that concept, the application in electronic device also can be realized,
such as magnetic random acces memory (MRAM). The magnetization switching
corresponds to the switching of binary ”0” and ”1”. Recently, a new mechanism to
control MAE by using electric field (EF) has been proposed. This new concept has
advantages such as lower energy consumption. However, up to now, this research
field still remaining a great challenge. In the real application, materials with high
EF coefficient are reqiured. To fulfill this requirement, a comphrehensive study to
investigate the origin of MAE, mechanism of EF control MAE and search for the
new materials is strongly needed.

In this dissertation, the first topic keep focused on the investigation of the al-
loying, strain, and EF effect to the MAE in the system which contains Fe/MgO
interface with Cr underlayer in the basis of a first-principles electronic structure
calculations. In the calculations, we considered two kinds of contribution to MAE,
namely magnetocrystalline anisotropy energy (MCAE) originating from spin-orbit
coupling (SOC) and shape magnetic anisotropy energy (SMAE) originating from
magnetic dipole-diole interaction (MDI). The MCAE was calculated using the
methods of the total energy (TE) and grand canonical force theorem (GCFT). In
the GCFT scheme, we performed the atom-resolved and k-resolved contributions
to the MCAE. For the SMAE contribution, we used a continuum approach (CA),



discrete approach (DA), and spin density approach (SDA). In the SDA, we inves-
tigated components from atomic multipole spin-density, such as the quadrupole
component.

We found that alloying Fe/Cr can promote the perpendicular MAE (PMAE) in the
Cr/Fe/MgO structure. Furthermore, different alloying condition can lead to an
opposite sign in the EF coefficient (γ). The alloying effect can induce a substantial
rearrangement in the electronic structure due to proximity effect of Fe and Cr. The
proximity effect is associated with Cr-Fe hybridization and electrons transfer from
Cr to Fe atoms due to a smaller electronegativity of Cr. Consequently, the number
of 3d electrons on the Fe at Fe/MgO interface may increase. By introducing strain
effect in the alloying system, the enhancement of MAE and γ were achieved. From
the atom-resolved MCAE calculation, we found that the positive contribution to
the MCAE mainly comes from Fe at Fe/MgO interface. From k-resolved MCAE
calculation, we found that positive and negative contributions are observed only
at certain regions in the two dimensional first Brillouin zone. That contribution
can be related to the certain pair coupling of states above and below the Fermi
energy by considering the second-order perturbation theory.

The second topic studied was an investigation of SMAE in the ferromagetic slabs
Fe/MgO and antiferromagnetic MnX with (X: Pt, Ir, Pd, Ni) L10 structure. We
found that a quadrupole component of Fe atomic spin density suppresses SMAE
in the ferromagnetic slabs with Fe/MgO interface. In the antiferromagnetic MnPt
slabs, which have a perpendicular favor originating from the crystalline magnetic
dipole interaction, a surface effect at the Mn edge appears as an enhancement of
SMAE.
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Chapter 1

Introduction

1.1 Research Background and Motivation

Magnetic anisotropy (MA) is one of the important properties of magnetic materi-
als. MA quantifies a preferred orientation of magnetization i.e either perpendicular-
to-plane or in-plane. Experimentally, MA is determined from the information
provided by a field-dependent measurement along two orthogonals directions of
magnetic field relative to the sample. In bulk materials, MA tends to be relatively
small, but it can markedly change in thin film or multilayer. This is due a the
present of symmetry breaking elements such as surfaces and interfaces [5].

Microscopically, there are two main origins of MA. The first one is magnetic dipolar
interaction. Due to its property of long range, the dipolar interaction generally
results in shape-dependent contribution to the anisotropy, which is of particular
importance in thin films and is largely responsible for an in-plane magnetization
that is usually observed. This kind of origin can not explain a perpendicular MA
(PMA). The second one is spin-orbit interaction. This origin can be interpreted
as a coupling between the electron spin and the magnetic field created by its
own orbital motion around the nucleus. As the orbital motion itself is directly
coupled to the lattice via electric potential of the ion (nucleus), this term provides
a contribution to a magnetocrystalline anisotropy (MCAE).

Technology to grow a thin film of nanostructure has lead to materials with novel
magnetic properties. At a nanoscale region, control of magnetization direction by
magnetic field was demonstrated. By controlling magnetization direction in the

1



Chapter 1. Introduction 2

thin film, a large change in the resistance was observed. This discovery is called
giant magnetoresistance (GMR) invented by Albert Fert [6] and Peter Grünberg
[7], which was awarded with the Nobel prize for physics in 2007. Due to the
discovery, a real application has been made as a magnetic storage hard disk drive
(HDD) [8, 9]. The binary information ”0” and ”1” is recorded on the two opposite
orientations of the magnetization.

The stability of written information in HDD is determined by energy barrier ∆E

(∆E = KuV ), where Ku is anisotropy energy and V is volume. Energy barrier
∆E should be high enough to overcome thermal fluctuation (kBT ). For exam-
ple, typical HDD for 10-years retention, ∆E = KuV > 54kBT must be fullfilled
[10]. The next generation in term of storing data by magnetism is using solid
state memories known as magnetic random access memory (MRAM). It start by
observed of tunnelling magnetoresistance (TMR) phenomenon in magnetic tunnel
junction (MTJ) at room temperature [11, 12] which was originally discovered for
the first time by Julliere in 1975 [13]. Later, it became a kicked off new and ongo-
ing research on TMR, followed by result in giant TMR MgO-based MTJ [14–17].
A MTJ consists of a thin insulating layer (tunnel barrier) sandwiched between two
ferromagnetic (FM) metal layers (the electrode). For the insulator layer, materials
such as MgO, Al2O3, HfO2, ZrO2, and MgAl2O4 are commonly used, while for the
FM layer magnetic metals or alloys are used, such as Fe, Co, Ni, Co/Ni, Co/Pd,
Fe-Ga, FePt, FePd, CoFe, CoPd, NiFe, and CoFeB. Electron can tunnel through
the barrier when a bias voltage is applied between the two ferromagnetic layers.
The resistance of MTJ depends on relative alaligment of the magnetic moment of
electrodes, which can be control either by pulse of magnetic field or by using spin
transfer torque (STT) phenomenon [18–20]. To date, STT-MRAM is already com-
mercialized, for example by Everspin in 2012 with capacity 64-Mbit and in 2016
PMTJ STT-MRAM with capacity 256-Mbit. Even recently, Hynix/Toshiba an-
nounced for 4-Gbit STT-MRAM chip, but still in preparation for fully commercial.
STT-MRAM has an advantage compared to the first generation MRAM (Stoner-
Wolfrath and toggle MRAM) which need large current to generate field-induced
magnetization switching.

Nowadays, in STT-MRAM device memory, two critical issues have indeed dis-
cussed in detail due to a better performance, i.e critical current and thermal
stability. To these issues, later, PMA STT-MRAM became more acceptable in
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application. The property of perpendicular STT-MRAM can be discussed as fol-
lows. The critical current for switching is define by

IC0 =
2e

ℏ
αAtµ0Ms

η
Heff, (1.1)

where A is the area of magnetic element, e is the electron charge, ℏ is the reduced
Planck constant, µ0 is the vacuum permeability, α is the Gilbert damping coeffi-
cient, Ms and t are the saturation magnetization and thickness of storage layer,
η is the STT efficiency that depends on the relative orientation of the magnetiza-
tion (θ=0 or π) and the polarization P , and Heff is the effective switching field.
In magnetic junction with out-of plane magnetization, the effective field acting on
the storage layer magnetization is define by

Heff = HK⊥ −Ms, (1.2)

where HK⊥ is the perpendicular anisotropy field which pulls the magnetization
out of plane. Therefore, the critical switching current can be reduced to much
smaller compared to in-plane STT-MRAM [21].

In the past six years, a new scheme for STT-MRAM based on spin-orbit torque
(SOT) has been developed [22–26]. The additional heavy metal (HM) such as Pt,
Ta, Hf, W, which has a large spin hall angle, will generate a spin polarized current
near the HM/FM interface. The spin current will produce a damping torque and
induce a magnetization switching [27, 28].

Although remarkable applications have been achieved by controlling magnetization
direction, a remaining challenge to reduce a power consumptions still needed.
Especially, the recent initiative in internet of things (IoT), artificial intelligence
(AI), big data, cloud computing, and advanced safety vehicle (ASV) require a high
density, high speed, and low power storage device.

One of solutions to overcome this problem is to use electric field (EF) instead of
current. The new type of MRAM controlled by EF called Magnetoelectric (ME)-
RAM. In the ME-RAM, EF can be generated by voltage, therefore unwanted
energy consumption due to ohmic dissipation of the electric-current flow can be
reduced. First observation of the EF control magnetic properties (magnetization
saturation and Curie temperature) have been done in ferromagnetic semiconduc-
tor [(In,Mn)As] [29, 30]. Later, the voltage control magnetic anisotropy (VCMA)
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in a magnetic metal for the first time was reported by Wesheit et al [31]. They
demontrated that magnetocrytalline anisotropy of ordered FePt and FePd can be
reversibly modified by an applied EF when they immersed in the system in an
electrolyte. Inspired by this observation, a large number of experimental works
and theoretical investigations on EF control magnetism has been devoted, driving
both an urge to understand the mechanism and demand for better peformance.
The VCMA effect with a whole all solid state structure was soon reported [32],
and extended to full MTJ structure [33–38]. The anisotropy changes were ob-
served around 8.4 µJ/m2 [32], 15 µJ/m2 [33], and 50 µJ/m2 [37]. The mechanism
of VCMA here was discussed along a charge-doping induced anisotropy change.
Several early theoretical results also proposed possible microscopic origins such
as EF induced charge density change on the surface of the film [39], EF induced
change in band structure (p orbitals coupled to the d orbital) [40], and modifica-
tion in the electron filling of each 3d orbital by EF, resulting in the accumulated
charge at the magnetic layer [41]. Later, another theoretical group also proposed
possible origin that includes a modulation of Rasbha parameter [42, 43] and EF
induced orbital hybridization changes [44].

The VCMA coefficient (the change of MA respect to the EF) is one of the most
important paramater in the design of ME-RAM. For example, in the case of PMA
in the range of 0.6 mJ/m2 to 1.5 mJ/m2, the required VCMA coeficient is in
the range of 600 fJ/Vm to 1500 fJ/Vm. Due to this request, many effort have
been devoted from both experiment and theory. Since the EF is screened at the
metal/oxide layer, the most effective way to enchance the VCMA coefficient is to
make enggineering of the interface. But, in the same time, there are some disad-
vantages such as reductions in PMA and TMR ratio. Another choices is to use
alloying effect [45], underlayer effect [46, 47], and strain effect [48, 49]. Nozaki etal
showed that such alloying between Fe/Cr in the underlayer region of Cr/Fe/MgO,
which possibly happens when an annealing is used during the deposition process,
makes a large effect on the quantities of PMA and VCMA coefficient. In this
experiment, the PMA and VCMA coefficient reach the values of 2.1 mJ/m2 and
290 fJ/Vm, respectively [2]. Furthermore, for the 3d/5d-multilayer FM metal, for
example, L10-FePt, the discussion of possible origin of VCMA was extended to
a modification of electric quadrupole mechanism [50]. Recently, VCMA in anti-
ferromagnetic (AFM) materials also reported [51, 52]. AFM materials with spin
moments in antiparallel configuration produce no stray field and are insensitive to
external magnetic field perturbations. Another advantage is a ultrafast dynamics,
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which is an ideal property for future candidate memory, storage, and spintronics
applications [53].

Although large amount significant works have been done in the area of VCMA,
it is still a developing and energetic research topic and with a lot of open ques-
tions in fundamental mechanism, performance, and practical application. Further
experimental and theoretical investigations may be strongly needed to accelerate
the development of ME-RAM based on VCMA.

1.2 Research Objectives

By taking advantage of first-principles approach, associated with a deeper in-
sight and an extended understanding of the underlying mechanisms of magnetic
anisotropy and electric field (EF) effect on magnetic anisotropy, this research will
focus on two main goals. The first goal of is to investigate the effect of electric
field, strain, and alloying to the magnetic anisotropy energy (MAE) in metal/oxide
heterostructure. The MAE originating from spin-orbit interaction and magnetic
dipolar interaction will be involved in the calculation. The possible origin of
the enhancement of MAE and EF control MAE will be discussed with details of
the electronic structure. The second goal is to investigate the shape magnetic
anisotropy energy (SMAE) in the structure with ferromagnetic and antiferromag-
netic spin magnetic configuration. In the evaluation of SMAE, several methods
will be used and compared to each other.

1.3 Research Outline

This dissertation is structured as follows:

Chapter 2 contains a theoretical background of magnetic anisotropy energy (MAE).
In particular, two main origin of MAE introduced, namely, spin-orbit coupling and
magnetic dipole-dipole interaction. The general introduction to density functional
theory is briefly discussed. Chapter 3 explains the computational method that we
used in the calculation. The detail of MAE and EF effect on MAE calculation will
be described. In Chapter 4, the results followed by discussions are reported. It will
start by the result and discussion on MAE Cr/Fe/MgO structure. The alloying,



Chapter 1. Introduction 6

strain, and EF effect on MAE will be presented simultaneously. Next, we continue
to discuss the results on magnetic dipole-dipole interaction in ferromagnetic and
antiferromagnetic systems. Finally, in Chapter 5, we summarize all results and
an outlook how this work can be continued is given to expected future problems
(issues).



Chapter 2

Theoretical Background

This chapter gives a basic theory appearing in this disertation. In Sec. 2.1, we
briefly explain the theory of spin-orbit coupling. Two main origin contributions to
the magnetic anisotropy energy (MAE) will be summarized in Sec. 2.2.1 and Sec.
2.2.3. A brief review of density functional theory will be introduced in Sec. 2.2.4.

2.1 The spin-orbit coupling

The spin-orbit coupling in atom arises as follows. In the classical picture, it arises
from the orbital motion around the nucleus. Consider that electron has a circular
motion around the nucleus as in the Bohr model of atom shown in the Fig. 2.1(a).
In the electron rest frame, the nucleus also has a circular motion with the same
periode as shown in Fig. 2.1(b) . As a nucleus carries a positive charge +Ze on its
circular orbit, it represents a current I. The magnetic field generated by current
I seen by electron is

B = − 1

c2
v ×E, (2.1)

where

E = −∇V (r) = −r
r

dV (r)

dr
(2.2)

7



Chapter 2. Theoretical Background 8

Nucleus rest frame

Electron rest frame

Figure 2.1: (a) Orbital motion of an electron in the nucleus rest frame, and
(b) Orbital motion of nucleus in the electron rest frame.

is the electric field created by nucleus and V (r) is the corresponding potential
energy. c is the speed of light (c = (ϵ0µ0)

−1/2, where ϵ0 and µ0 are vacuum
permittivity and vacuum permeability, respectively).

The equation (2.1) comes from the transformation of electric and magnetic fields
in the special relativity. The electron has an intrinsic magnetic moment due to its
spin, µe = − eℏ

2m
σ, where σ is the vector of Pauli matrices and m is the mass of

the electron. This magnetic moment interacts with a magnetic field through the
Zeeman interaction,

ESOC = −µe · B

= − eℏ
2m2c2

σ · (p × E), (2.3)

where we introduce the momentum of the electron p = mv. By substituting the
expression of electric field in Eq. 2.2 together with the classical definition of the
angular momentum L = r × p, finally we can get

ESOC =
e

m2c2
1

r

dV (r)

dr
S ·L, (2.4)
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with S = ℏ
2
σ is the electron spin. Eq. (2.4) clearly shows that the spin couples to

the angular momentum of the electron due to its orbital motion, and hence, ESOC

is named spin-orbit coupling (SOC).

2.2 Magnetic Anisotropy Energy

For theoretical description of the basic properties of ferromagnetic materials, it is
sometimes sufficient to use non-relativistic quantum mechanics. Non-relativistic
quantum mechanics leads to a description of ferromagnetism in which the free en-
ergy of the system is independent of the direction of the magnetization (isotropic).
However, this contradics with the experience, that the magnetization generally lies
in some preferred directions with respect to the crystalline axes and/or to external
shape of the body. This property is known as magnetic anisotropy. Rotating the
magnetization from the direction of lower energy (easy axis) to a high energy (hard
axis) is typically of the order in energy 10−6 to 10−3 eV/atom. This anisotropy
energy is thus very small corection to the total energy, which usually arise from rel-
ativistic corecction to the Hamiltonian. The main contribution is taking account
from magnetic dipole-dipole interaction and spin-orbit coupling (SOC).

2.2.1 Magnetocrystalline Anisotropy: arise from spin-orbit
coupling (SOC)

In the section 2.1, we introduce the SOC from the classical picture point of view.
However, SOC is purely relativistic effect, and therefore not inherent in the frame
of the non-relativistic Schrodinger equation or even the scalar relativistic effect.
The SOC effect can be included automatically by solving the fully relativistic
effect. In the limit of low velocities (order of v2

c2
), the Dirac equations is reduce to

the Pauli equation, which is essentially a Schrödinger equation with the relativistic
correction. The Pauli Hamiltonian can be written as

HPauli =
p2

2m
− eΦ− p4

8m3c2
+

eℏ2

8m2c2
∇ · E +

eℏ
4m2c2

σ · (E × p). (2.5)
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In Eq. (2.5), the first two terms are the non-relativistic kinetic energy and the elec-
trostatic potential energy, respectively. These two terms form the non-relativistic
Hamiltonian. The third term is the relativistic mass-velocity correction. The
fourth term is the Darwin correction, which accounts for the fact that, within the
relativistic theory, the electron is sensitive to the electric field E over a length-
scale of the order of the Compton wavelength λC = ℏ/(mc). The third and fourth
terms are independent of the spins S = σ/2. The combination of this two terms
with non-relativistic terms is called scalar-relativistic Hamiltonian. The last part
is the spin-orbit coupling Hamiltonian, HSOC . This term can be interpreted as
the subsection 2.1.

The electric field E in HSOC term is created by nucleus and can be written as,

E = −r
r

dV (r)

dr
, (2.6)

then the spin-orbit Hamiltonian can be expresses as

HSOC = − eℏ
4m2c2r

dΦ

dr
σ · (r × p) (2.7)

= − eℏ
2m2c2r

dΦ

dr
S · L (2.8)

= ξ(r)S · L, (2.9)

where L = r × p is the orbital angular momentum operator and

ξ(r) = − eℏ
2m2c2r

dV (r)

dr
(2.10)

is the spin-orbit coupling constant. For the spherical potential V (r) = eZ
4πϵ0r

of a
hydrogen like atom, the expectation value of the SOC constant, with respect to
the non-relativistic eigenstates |n, l⟩, is

ξn,l = ⟨ξ(r)⟩ = | ⟨n, l|ξ(r)|n, l⟩ | = Z4α4mc2

2n3l(l + 1
2
)(l + 1)

, (2.11)



Chapter 2. Theoretical Background 11

Figure 2.2: Spin-orbit coupling constant, ξ, for d electrons as a function of
the square of the atomic number Z [1].

where Z is the atomic number, α = 1
4πϵ0

e2

ℏc is the fine structure constant and n and
l denote principle and angular momentum quantum numbers, respectively. From
this expression it is clear that SOC becomes particularly important for states with
low angular momentum in heavy atoms with large Z. The calculated spin-orbit
coupling constants of transition metal are shown in Fig. 2.2. It can be seen that
ξ increases with Z and the increment is approximately proportional to Z2.

2.2.2 SOC: perturbation theory analysis

As described in the section 2.2.1, the spin-orbit Hamiltonian is HSOC is ξL · S.
The term L · S can be decomposed according to

L · S = LxSx + LySy + LzSz. (2.12)
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By using the definition of ladder operators

L± = Lx ± iLy (2.13)

S± = Sx ± iSy, (2.14)

the Eq. (2.12) can be written as

L · S =
1

2
(L+S− + L−S+) + LzSz. (2.15)

The z-component of the spin operator measures along a strength the direction of
spin, thus

Sz |↑⟩ = +
1

2
ℏ |↑⟩ (2.16)

Sz |↓⟩ = −1

2
ℏ |↓⟩ , (2.17)

where |↑⟩ and |↓⟩ represent the eigenstates of the spin operator with the spin
oriented in ’up’-direction and ’down’ direction, respectively. Different from Sz,
the operators S+ and S− change the spin state according to

S− |↑⟩ = |↓⟩ , (2.18)

S− |↓⟩ = 0, (2.19)

S+ |↓⟩ = |↑⟩ , (2.20)

S+ |↑⟩ = 0. (2.21)

(2.22)

In matrix form, the Eq. (2.15) can be rewritten as
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(
(L · S)↑↑ (L · S)↑↓

(L · S)↓↑ (L · S)↓↓

)
=

1

2

[(
0 0

L+ 0

)
+

(
0 L−

0 0

)]
+

1

2

(
Lz 0

0 −Lz

)

=
1

2

(
Lz L−

L+ −Lz

)
, (2.23)

where, in the basis set of spherical harmonics, L+, L− and Lz are the matrices of
the size 2l + 1.

In the case of the transition metal 3d-electron magnetism, the SOC constant ξ is
less than 100 meV. This value is much smaller than the band width (several eV).
As a consequence, one can treat the SOC in subsection. 2.2.1 as a perturbation. A
study based on the perturbation theory has been done long time ago, for example,
the seminal work by Brooks [54], Kondorskii and Straube [55], Bruno [56], and
Wang et al [57].

Considering the perturbation theory, the energy shift of eigenvalue En up to second
order term due to SOC can be written as

δEn = ξ ⟨n|L · S|n⟩+ ξ2
∑
k ̸=n

| ⟨n|L · S|k⟩ |2
En − Ek

, (2.24)

where |n⟩ and |k⟩ represent eigenstates of the unperturbed Hamiltonian and En

and Ek are the associated energy eigenvlaues. The unperturbed states have a well
defined spin character (in contrast to the perturbed ones) and it is suitable to
consider states such as

|n⟩ =
∑
i

cn,i |k, dn,i, σn⟩ , (2.25)

where σ denotes the spin, the index i runs over the d-orbitals (d3z2−r2 , dxz, dyz, dxy,
and dx2−y2) and in the case of a periodic system k denotes a point in the 1st
Brillouin zone. In the ten-dimensional space which is a direct product of the two
dimensional spin space and the five-dimensional space of d-states, the spin-orbit
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coupling operator is a 10×10 hermitian matrix with elements which are evaluated
and listed in Table 2.1. The angles θ and ϕ are the angular spherical coordinates
describing the spin quantisation axis and this dependence on magnetization di-
rection of the spin-orbit coupling matrix is the source of the magnetocrystalline
anisotropy energy. All diagonal elements in Table 2.1 are zero, as well as that
⟨di|Lz|di⟩ = 0 (i = xy, x2 − y2, xz, yz, and3z2 − r2), one finds that the first or-
der perturbation contribution of the SOC is zero. Consequently, the spin-orbit
coupling is at least a second order perturbation, and it can be writtten as

δEn = ξ2
∑
k ̸=n

| ⟨n|L · S|k⟩ |2
En − Ek

. (2.26)

In the Eq. 2.26, the contribution can be separated in to two parts, that is SOC
between the parallel spin states and SOC between the opposite spin states. In
the case of strong exchange splitting that the spin-up band almost fully occupied
and all empty states belong to spin-down bands, the only SOC between spin-
down states will be considered. The approximation of MCAE from SOC between
spin-down states can be written as

MCAE ≈ ξ2
∑
ko,u

| ⟨ko|ℓ̂z|ku⟩ |2 − | ⟨ko|ℓ̂x|ku⟩ |2

εku − εko
, (2.27)

where ko and ku indicate the occupied and unoccupied states with the wave vector
k and ℓ̂z, ℓ̂x are the angular momentum operators. εku and εko indicate the
energies of unoccupied and occupied states. The SOC between occupied and
unoccupied state with the same (different) in magnetic quantum number through
to the ℓ̂z (ℓ̂x and ℓ̂y) operators give positive (negative) contribution to MCAE.
The nonvanishing angular momentum matrix elements between d states are listed
in Table. 2.2.
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Table 2.2: Nonvanishing angular momentum matrix elements between d states

Matrix elements ⟨Lσ⟩ value
⟨xz|Lz|yz⟩ 1
⟨x2 − y2|Lz|xy⟩ 2

⟨z2|Lx|yz⟩
√
3

⟨xy|Lx|xz⟩ 1
⟨x2 − y2|Lx|yz⟩ 1

⟨z2|Ly|xz⟩
√
3

⟨xy|Ly|yz⟩ 1
⟨x2 − y2|Ly|xz⟩ 1

2.2.3 Magnetocrystalline Anisotropy: arise from magnetic
dipole-dipole interaction (MDI)

Suppose mi and mj are two magnetic moments separated by a distance of rij in
space, the magnetic dipole-dipole interaction contribution can be written as,

EMDI =
µ0

8π

∑
i̸=j

1

r3ij
[Mi · Mj − 3

(rij · Mi)(rij · Mj)

r2ij
], (2.28)

where µ0 is the magnetic constant and the magnetic moment is in units of the
Bohr magneton (µB). If the magnetization distributions within each atomic cell is
not spherical, then its expansion in multipoles includes not only dipolar moment,
but also higher multipoles like quadropoles, octupoles, etc. The second term in
dipolar contribution shows clearly that dipole energy depends on the orientation
of the magnetic moments Mi and Mj with respect to rij. In the ferromagnetic
case, which all magnetic moments are parallel, Edip can be rewritten as,

EMDI =
µ0

8π

∑
i ̸=j

MiMj

r3ij
(1− 3cos2θij), (2.29)

where θij is the angle between direction of the magnetic moment and vector conect-
ing atoms i and j. Then, if the magnetization points parallel to rij, the EMDI has
the lowest energy. On the other hand, difficult to rotate the two dipole moments
perpendicular to the rij.
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2.2.4 System Many-Body Problem

Since our aim is to describe the properties of solid, so that first, we will define
the Hamiltonian of interacting electrons and nuclei. In this derivation, the atomic
unit will be used, that is ℏ = me = e2 = 1, and energy will be given in the unit of
Hartree. Hamiltonian of the system can be written as,

H =
∑
i

−1

2
∇2

i −
∑
I

1

2MI

∇2
I −

∑
i,I

ZI

|r⃗i − R⃗I |

+
1

2

∑
i̸=j

1

|r⃗i − r⃗j|
+

1

2

∑
I ̸=J

ZIZJ

|R⃗I − R⃗J |
(2.30)

In Eq. (2.30), the first and second term associated with the kinetic energy of
electrons (Te) and nuclei (Tion), respectively. The third one, associated with the
interaction between the electrons and nuclei (Ve−ion). The fourth and the last one,
associated with the inter electronic (Ve) and inter nuclei (Vion) interaction. r⃗ and
R⃗ represented the position vector of electrons and nuclei, and ZI is charge associ-
ated to the nuclei. To reduce the complexity in Eq. (2.30), the first approximation
was proposed by Born and Oppenheimer which called Born-Oppenheimer approx-
imation or adiabatic approximation. The consideration is raised in the following.
Because mass of the nuclei much larger compared to the mass of electron, the
nuclei moves much slowly compared to the electron movement. As a consequence,
the kinetic energy of the nuclei can be neglected. Beyond this approximation, we
can rewrite the Eq. (2.30) as

H = Te + Ve−ion + Ve, (2.31)

where the term of inter-nuclei is omitted.

2.2.5 Density Functional Theory

Since the number of electrons in the solid is a huge number (N ∼ 1024e−/cm3 ),
then solving the Schorodinger equation HΦk = EkΦk whose H is given by the
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Eq. (2.31) is a difficult task. The many body wavefunction Φk and many body
eigenvalue Ek are difficult to obtained. The density functional theory (DFT) [58]
changes the perspective from the wave function to the electron density. This is
a huge simplification for a system with many body electrons, since it reduces the
problem dealing with a wave function depending on 3N spatial coordinates, to a
problem dealing with density depending on three spatial coordinates.

2.2.6 Hohenberg-Kohn Theorem

We rewrite again the Hamiltonian of many-body electron as,

H = −1

2

∑
i

∇2
i +

∑
i

Vext(r⃗i) +
1

2

∑
i ̸=j

1

|r⃗i − r⃗j|
. (2.32)

The first key ingredients of DFT to solve the Eq. (2.32) are the Hohenberg-Kohn
theorems [59], which allow us to focus on electron densities, rather than wave
functions. To establishing the DFT, they proposed two theorems.

Theorem 1 Vext is determined uniquely, except for a constant, by no(r⃗) (the
ground state particle density).

Proof Suppose two external potential V (1)
ext and V

(2)
ext which differ more than a

constant, and result in two different Hamiltonian H1 and H2 with the ground
state wave function given by Ψ(1) and Ψ(2), respectively. Suppose that Ψ(1) and
Ψ(2) lead to an equal density n0(r⃗). In this case, we are assuming that these states
are non-degenerate. From the definition of the ground state we have that,

E(1) = ⟨Ψ(1)|H(1)|Ψ(1)⟩ < ⟨Ψ(2)|H(1)|Ψ(2)⟩ . (2.33)

By defining H(1) = H(2) +H(1) −H(2), we have
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E(1) = ⟨Ψ(1)|H(1)|Ψ(1)⟩ < ⟨Ψ(2)|H(1)|Ψ(2)⟩+ ⟨Ψ(2)|H(1) −H(2)|Ψ(2)⟩ (2.34)

E(1) < E(2) +

∫
d3r[V

(2)
ext (r⃗)− V

(1)
ext (r⃗)]n0(r⃗). (2.35)

By doing the same way, but starting with E(1), we will get

E(2) < E(1) +

∫
d3r[V

(2)
ext (r⃗)− V

(1)
ext (r⃗)]n0(r⃗). (2.36)

If we add together Eq. (2.35) and (2.36), one can get

E(1) + E(2) < E(1) + E(2), (2.37)

which leads to the contradiction, therefore denying the proposition and proving
the theorem.

Theorem 2. A universal functional for the energy E[n] in terms of the den-
sity n(r⃗) can be defined for any Vext. The exact ground states of the system is
the global minimum and the density that minimizes this functional is the exact
ground state density.

Proof. Consider a system with ground state density n(1)(r⃗) corresponding to
the V (1)

ext (r⃗), then the correspondent ground state energy can be written as

E(1) = E[n(1)] = ⟨Ψ(1)|H(1)|Ψ(1)⟩ . (2.38)

Now, consider a different density, n(2)(r⃗), which necessarily corresponds to a dif-
ferent wave function, Ψ(2). It follows that the energy of this state, E(2) greater
than E(1), since
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E(1) = ⟨Ψ(1)|H(1)|Ψ(1)⟩ < ⟨Ψ(2)|H(1)|Ψ(2)⟩ , (2.39)

thus, the energy E[n(1)] is lower than the value for any other density. By applying
a minimization procedure to the energy functional Eq. (2.39), one can obtain the
ground state density.

The second theorem asserts the existence of the total energy functional of the
density E[n] which is minimizes, globally, by the ground state density

E[n] = F [n] +

∫
Vext(r⃗)n(r⃗)d

3r (2.40)

where, F [n] = T [n] + Ve[n]. F [n] was introduce being universal which is indepen-
dent of the external potential Vext(r⃗).

2.2.7 Kohn-Sham equations

Hohenberg and Kohn have transformed the tough problem of finding the minimum
of ⟨Ψ|Ĥ|Ψ⟩ with respect to the 3N -dimensional trial wave function Ψ into the
problem of finding the minimum of E[n]. However, since the explicit form of
the functional E[n] in Eq. (2.46) is unknown, so in practical difficult to use.
To solve this problem, Kohn and Sham [58] proposed the variational principle
implied by the minimal properties of the energy functional to derive single-electron
Schrodinger equations. Their basic idea is to introduce a fictitious auxilary system
of non-interacting particles with an effective external potential Veff(r⃗) constructs
such as that the density of the auxiliary non-interacting system equals the density
of the interacting system of interest. The one-to-one correspondence between
the densities and the effective potentials is guaranteed by the Hohenberg-Kohn-
theorems applied for Vee=0. In this case, the universal functional F [n] reduces to
the single-particle kinetic energy functional Ts[n], and the total-energy functional
results in
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Es[n] = Ts[n] +

∫
Veff(r⃗)n(r⃗)d

3r. (2.41)

Application of the variational principle to Theorem 2 (Hohenberg-Kohn) in section
2.2.6, then leads to

δ

δn(r⃗)

[
Es[n] + µ

[
N −

∫
n(r⃗)d3r

]]
=
δTs[n]

δn(r⃗)
+ Veff(r⃗)− µ = 0, (2.42)

where we have introduced the Lagrange parameter µ so that conservation of the
particles

∫
n(r⃗)d3r = N is guaranteed.

Using single-particle wavefunction ψ(r⃗) allows to constract the density n(r⃗) as well
as the kinetic energy functional Ts[n] in the form:

n(r⃗) =
N∑
i=1

|ψi(r⃗)|2 (2.43)

and

Ts[n] =
N∑
i=1

∫
d3r∇ψ∗

i (r⃗) · ∇ψi(r⃗). (2.44)

The index i denotes both the orbotal (spatial) as well as the spin quantum num-
bers, and N is the number of electrons. Variation of E[n] with respect to the
single-particle wavefunctions ψi(r⃗) then give the N equations:

[−1

2
∇2 + Veff(r⃗)]ψi(r⃗) = εiψi(r⃗), (2.45)

which is often called the Kohn-Sham equation.
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For solving the Kohn-Sham equations, it is necessary to find a useful expressionof
the effective potential Veff(r⃗), which is still unknown. Therefore, Kohn and Sham
suggested the following splitting of the functional E[n]

E[n] = Ts[n] +

∫
d3rVext(r⃗)n(r⃗) +

1

2

∫ ∫
d3rd3r′

n(r⃗)n(r⃗ ′)

r⃗ − r⃗ ′ + Exc[n], (2.46)

where the third term represents the Hartree-functional and the fourth term is the
so-called exchange-correlation energy functional. Exc[n] define as

Exc[n] = F [n]− Ts[n]−
1

2

∫ ∫
d3rd3r′

n(r⃗)n(r⃗ ′)

|r⃗ − r⃗ ′|
. (2.47)

Application of the variational principles to Eq. (2.46) results in

δTs[n]

δn(r⃗)
+ Vext(r⃗) +

∫
d3r′

n(r⃗ ′)

|r⃗ − r⃗ ′|
+
δExc[n]

δn(r⃗)
− µ = 0. (2.48)

By comparing Eq. (2.48) with Eq. (2.42), one can find the expression of the
effective potential Veff(r⃗)

Veff(r⃗) = Vext(r⃗) +

∫
d3r′

n(r⃗ ′)

|r⃗ − r⃗ ′|
+ Vxc(r⃗) (2.49)

with

Vxc(r⃗) =
δExc[n]

δn(r⃗)
. (2.50)

The Kohn-Sham Eq. (2.45), (2.43) and (2.49) are probably the most important
equations in density-functional theory. Although they are principally exact, their
practical solution requires approximations, since the exchange-correlation poten-
tial is not known explicitly. The whole problem constitutes a self-consistent field
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problem, since the effective potential depends on the density which, obviously, is
directly connected to the wave functions (see Eq. (2.43)).

The Kohn-Sham equations can be solved iteratively, starting from a trial density
which is inserted into Eq. (2.49) to obtain a first effective potential. This used to
calculate the wave functions by using Eq. (2.45) and, finally, using Eq. (2.43), a
new density. The procedure is repeated, until the difference between the starting
density and the resulting one becomes sufficiently small.

After having solved the Kohn-Sham equations, the ground state density can be
used to calculate the energy of the ground state. Considering that

Ts[n] =
N∑
i=1

εi −
∫
Veff(r⃗)n(r⃗)d

3r, (2.51)

the energy functional in Eq. (2.46) becomes

E[n] =
N∑
i=1

εi −
∫
Veff(r⃗)n(r⃗)d

3r +
1

2

∫ ∫
n(r⃗)n(r⃗ ′)

|r⃗ − r⃗ ′|
d3rd3r′

+

∫
Vext(r⃗)n(r⃗)d

3r + Exc[n]. (2.52)

The total energy consists of the sum over the eigenvalues εi minus the so-called
double counting terms. Eq. (2.52) gives the ground state energy for the exact
exchange-correlation functional, provided that the inserted values for the density
and the effective potential are the results of the self-consistent solution.

2.2.8 Exchange and correlation functional

Although the density functional theory as presented in the last sections, i.e. the
Hohenberg-Kohn theorems as well as the Kohn-Sham equations, is formally exact,
its practical application requires to an approximation in the exchange-correlation
functional Exc[n], which is not known explicitly. In the following section we will
discuss the two most popular approximations for Exc[n].
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2.2.9 Local density approximation

The local density approximation (LDA) was proposed by Kohn and Sham [58] in
their original paper. It is defined as

Exc[n] =

∫
n(r⃗)ϵxc(n(r⃗))d

3r, (2.53)

where ϵxc is the exchange and correlation density of the homogeneous electron
gas. The exchange-correlation (XC) functional for a given density, in volume V , is
approximated by integrated XC density of the homogeneous electron density with
the same density. The XC density ϵxc(n(r⃗)) can be written as a sum of exchange
ϵx(n(r⃗)) and correlation ϵc(n(r⃗)):

ϵxc(n(r⃗)) = ϵx(n(r⃗)) + ϵc(n(r⃗)). (2.54)

For the homogeneous electron gas one can obtain the analytical solution for the
exchange term. The more complicated correlation term can be computed by quan-
tum Monte-Carlo (QMC) calculations and reacted in a parametrized form [60, 61].
One would expect that the LDA should not work for systems where the density
is rapidly varying, but even in this regime the LDA has proven to give very good
results. One can easily extend the above treatment for spin polarized systems,
and obtain the local spin density approximation (LSDA) [62].

2.2.10 Generalized gradient approximation

Another approach is the so called generalized gradient approximation (GGA)
where one includes non-local (semi-local) terms to take into account the inho-
mogeneity in the electronic density. The functional form of the GGA can be
written as
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Exc[n(r⃗), ∇⃗(n(r⃗)] =

∫
n(r⃗)fxc((n(r⃗), |∇⃗(n(r⃗)|)d3r. (2.55)

There are various forms to construct such a functional, such as Perdew-Wang
functional (PW91) [63] and Perdew-Burke-Ernzerhof functional (PBE) [64]. In
this thesis, we are mainly interested in calculating the magnetic properties of 3d
transition metals and their alloys and compounds. For these systems, the GGA
tends to accurately describe the desired properties [65–68].
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Computational Methods

This chapter provides a brief description of the computational methods in this
dissertation. Generally, we use spin density functional theory (SDFT) scheme im-
plemented in house code [69], which employs scalar and fully relativistic ultrasoft
pseudopotentials and planewave basis [70][71]. The generalized gradient approxi-
mation (GGA) is emploted for the exchange-correlation energy [72]. The detail of
total energy calculation will be described in Sec. 3.1. Since we are interested in
magnetic anisotropy energy (MAE), the scheme to evaluate the MAE is provided
in Sec. 3.2. Two kinds of contribution to the MAE will be considered, namely mag-
netocrystalline anisotropy energy (MCAE) and shape magnetic anisotropy energy
(SMAE). For the MCAE part will be evaluated on total energy (TE) difference
and grand canonical force theorem (GCFT). The detail of the calculation will be
described in Sec. 3.2.1 and Sec. 3.2.2, respectively. For the SMAE part, the spin
density approach (SDA) and discrete approach (DA) will be employed as described
in Sec. 3.2.3. Finally, the electric field effect on MAE calculation will be described
in Sec. 3.2.4.

3.1 Total energy calculation

The total energy difference between two different magnetization directions is a
magnetic anisotropy energy (MAE) of magnetic system. In addition to MDIE(EMDI)
in Eq. (2.28) , the SOC of electron provides a contribution in the MAE. This con-
tribution has been called magnetocrystalline anisotropy energy (MCAE). These

26
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two contributions of MDIE and MCAE may be important elements in MAE. In or-
der to evaluate the total energy originating from SOI [71, 73, 74] , we use a spin den-
sity functional theory (SDFT)[75]. In SDFT, the total energy ESDFT[n(r),m(r)]
is defined as a functional of electron density n(r) and spin density m(r), where

n(r) =
occ.∑
i

Φ∗
i (r)σ0Φi(r), (3.1)

m(r) =
occ.∑
i

Φ∗
i (r)σΦi(r). (3.2)

In these formula above, Φi is the i’s bi-spinor eigenfunction, and σ and σ0 is
Pauli matrix and unit matrix. The index i is a short notation of (n, k), where
n and k are band index and wavevecotor in the two-dimensional Brillouin zone,
respectively. The set of n(r) and m(r) can be denoted as a density matrix; ρ(r) =
n(r)σ0 + m(r) · σ. The densities are selfconsistently obtained by solving a Kohn-
Sham eqation;[58]

HSDFTΦi = εiΦi, (3.3)

where εi is the eigenvalue of energy band, and

HSDFT = −1

2
∇2σ0 + V̂eff. (3.4)

V̂eff is the effective electron potential which is determined self-consistently as a
functional of ρ (n and m). In V̂eff, the SOC potential can be included as a term
VSOC = ξL · σ, where ξ and L are a SOC constant and orbital angular moment
vector, respectively. Disregarding the SOC, Φi and εi does not depend on the
direction of magnetization vector. ESDFT is given by

ESDFT =
occ.∑
i

∫
drΦ∗

i (r)
(
−1

2
∇2σ0

)
Φi(r) +

∫
drn(r)Vext(r)

+
1

2

∫ ∫
drdr′n(r)n(r

′)

|r − r′| + EXC[n,m] + U, (3.5)

where Vext is a potential from nuclei and inner core states and EXC is an exchange-
correlation energy which is a functional of n and m. U represents the interaction
energy between nuclei and inner core states. The KS equation can be derived by
minimizing Eq.(3.5) to the subject of orthonormal relation

∫
drΦ∗

i (r)Φj(r) = δij.
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Using εi, ESDFT is presented as follows:

ESDFT =
occ.∑
i

εi +∆E[n,m] + U. (3.6)

∆E[n,m] = −1

2

∫∫
drdr′n(r)n(r

′)

|r − r′|

−
∫
dr
[
δEXC

δn(r)n(r) +
δEXC

δm(r)m(r)
]
+ EXC[n,m]. (3.7)

∆E[n,m] is a functional of electron density matrix (n and m). ESDFT and εi

depend on the magnetization direction of system, while they are independent of
the direction when neglecting the SOC (VSOC).

Within the combination of EMDI and ESDFT, a new total energy functional Etot is
defined as

Etot[n,m] = ESDFT[n,m] + EMDI[m]. (3.8)

This energy can be used in the evaluation of MAE.

3.2 Magnetic anisotropy energy calculation

We evaluated the MCAE in two schemes. First, the MCAE is calculated including
spin-orbit interaction (SOI) based on the total energy (TE) difference between the
magnetizations along in-plane and perpendicular to the plane. Second, we calcu-
lated the MCAE based on grand canonical force theorem (GCFT). The GCFT
calculation involves two steps. At the first step, a density ρ(r) is generated in
self-consinstent field (SCF) calculation without taking into account SOI. At the
second step, fixing ρ(r) at the SCF, two calculations are performed, including SOI
with the magnetizations pointing toward in-plane and perpendicular to the plane,
respectively. The sets of resulting eigenvalues ε̃m̂

nk are used as discussed in later
part.

3.2.1 Total energy difference

The total energy (TE) depends on the magnetization direction. The direction is
denoted by m̂ ( presented as [001], [100] or [010]). In this thesis, we consider the
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MAEs of total energy difference, as follows:

MAE = E
[100]
tot − E

[001]
tot = MCAE + MDIE, (3.9)

MCAE = E
[100]
SDFT − E

[001]
SDFT, (3.10)

MDIE = E
[100]
MDI − E

[001]
MDI . (3.11)

[001] (z-direction) indicates the magnetization direction perpendicular to the slab
plane. The direction [100] (x-direction) was taken to be perpendicular to a mirror
plane forming by the directions of [001] and [010] (y-direction). Along the approach
of TE difference, it may be difficult to separate the MCAE into atom-resolved or
k-resolved contributions.

3.2.2 Grand-canonical force theorem

Alternatively, the MCAE can be estimated in a different procedure. That proce-
dure is based on magnetic force theorem (FT) [76]. This approach has successfully
been used in the evaluation of MAE, such as several cubic/tetragonal bulk sys-
tems. However, we need an additional treatment for an accurate MAE of 2D or
1D system [77]. That is based on a grand-canonical force theorem (GCFT). In
this work we take an approach similar to the GCFT. As a result we may discuss
the atom-resolved and k-resolved contributions of MCAE reasonably.

The total energy of simple FT is given by

Ef,m̂
SDFT =

occ.∑
i

ε̃m̂
i +∆E[n,m] + U, (3.12)

Ef,0
SDFT =

occ.∑
i

ε0i +∆E[n,m] + U (3.13)

Ef,m̂
SDFT =

occ.∑
i

ε̃m̂
i −

occ.∑
i

ε0i , (3.14)

δEf,m̂
SDFT =

occ.∑
i

ε̃m̂
i (3.15)

where ε̃m̂
i and ε0i are the eigenvalues for the potentials (Veff) with and without

SOC, respectively. ∆E[n,m] employs the densities of n(r) and m(r) which are
determined self-consistently without the potential of SOC.
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The MCAE is evaluated as the total energy difference between the different mag-
netizations. Considering the magnetization directions of m̂1 and m̂2, the MCAE
is given by

MCAE =
occ.∑
i

ε̃m̂1
i −

occ.∑
i

ε̃m̂2
i . (3.16)

In the analysis of nanomaterials, atom-resolved or k-resolved MCAE has been
effective. However, it has been found that the simple procedure of FT give a
physically unreasonable result in the system that we investigated before. For
examples, in an atom-resolved analysis, a large atomic MCAE appears on the
atom which may have a small SOC, and in a k-resolved analysis, there is a k-
space local contribution which cannot be connected to the involving eigenvalues.
This is basically caused by the fact that the physical quantity of MCAE is sensitive
to the electron occupation around the Fermi level. In the previous work, it was
found that the MCAE atomic contribution tends to deviate from a reasonable
value at the material edges [77].

Let us consider effect of the electron occupation in the total energy. From Eq.
(3.14), introducing a set of electron occupations, we may suppose the following
extension:

Egf,m̂
SDFT =

∑
i

f m̂
i (ε̃m̂

i − µm̂)−
∑
i

f 0
i (ε

0
i − µ0), (3.17)

where f m̂
i and f 0

i are electron occupations with and without SOC, and µm̂ and µ0

are chemical potentials. f 0
i and µ0 may be determined self-consistently in a usual

process when solving the KS equation. However, the relation between f m̂
i and

µm̂ is not determined a priori because ε̃m̂
i is evaluated not from a self-consistent

potential, but from the potential calculated with using the densities (n and m)
determined self-consistently without the SOC. In this extension, f m̂

i and µm̂ are
assumed to be independent of each other and f m̂

i is a function of the set of {ε̃m̂
i }

values.

In the present GCFT,

MCAE =
∑
i

f m̂1
i (ε̃m̂1

i − µm̂1)−
∑
i

f m̂2
i (ε̃m̂2

i − µm̂2) (3.18)

=
∑
i

f m̂1
i ε̃m̂1

i −
∑
i

f m̂2
i ε̃m̂2

i −Ne
∑
i

(µm̂1 − µm̂2), (3.19)
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where Ne is the number of electrons in the system, resulting from
∑

i f
m̂1
i =∑

i f
m̂2
i = Ne. Introducing a common chemical potential µ to µm̂1 and µm̂2 ,

namely, µm̂1 = µ+ δµm̂1 and µm̂2 = µ+ δµm̂2 . Substituting these and neglecting
the δ terms,

MCAE =
∑
i

f m̂1
i (ε̃m̂1

i − µ)−
∑
i

f m̂2
i (ε̃m̂2

i − µ) (3.20)

=
∑
i

f m̂1
i ε̃m̂1

i −
∑
i

f m̂2
i ε̃m̂2

i (3.21)

From the last term of Eq. (3.19), the change in MCAE is sensitive to the difference
between µm̂1 and µm̂2 due to a largeness of Ne. Thus, in the later practical appli-
cation for atom-resolved MCAE and k-resolved MCAE, we assume these chemical
potentials to be the same, as derived in Eq. (3.20).

In order to separate the total MCAE to atom-resolved or k-resolved contributions,
we consider a total energy related to Eq. (3.20):

δEgf,m̂
SDFT =

∑
i

f m̂
i (ε̃m̂

i − µ). (3.22)

Using the explicit notation of i = (n,k),

δEgf,m̂
SDFT(k) =

∑
n

f m̂
nk(ε̃

m̂
nk − µ), (3.23)

δEgf,m̂
SDFT(I) =

∑
n

∑
k

∑
a

f m̂
nk(ε̃

m̂
nk − µ)|⟨χIa|Φnk⟩|2, (3.24)

δEgf,m̂
SDFT(I,k) =

∑
n

∑
a

f m̂
nk(ε̃

m̂
nk − µ)|⟨χIa|Φnk⟩|2, (3.25)

where χIa is the a’th atomic orbital on the atom I. As indicated in Eqs. (3.23) –
(3.25), the k-resolved or atom-resolved contribution depends on µ and f m̂

nk as well
as ε̃m̂

nk. Both of the k-space distribution δEgf,m̂
SDFT(k) and the atomic distribution

may be sensitive to µ. Nevertheless the main feature of these distributions may
come from ε̃m̂

nk. Therefore, the k-variation of δEgf,m̂
SDFT(k) will has a symmetry of

system.
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The k-resolved or atom-resolved MCAE is given by the energy difference between
the magnetization directions of m̂1 and m̂2 using Eq. (3.23) or Eq. (3.24):

MCAE(k) = δEgf,m̂1

SDFT(k)− δEgf,m̂2

SDFT(k), (3.26)

MCAE(I) = δEgf,m̂1

SDFT(I)− δEgf,m̂2

SDFT(I), (3.27)

MCAE(I,k) = δEgf,m̂1

SDFT(I,k)− δEgf,m̂2

SDFT(I,k). (3.28)

In this thesis, results for m̂2 = [001] and m̂1 = [100] or [010] will be presented.

3.2.3 Magnetic dipole interaction energy calculation

The magnetic dipole interaction energy (MDIE) among electrons, resulting in a
shape magnetic anisotropy in magnetic materials, may be represented by the in-
tegral of the dipole-dipole interaction between the spin moment densities m(r) =
[mx(r),my(r),mz(r)] at different real-space positions. The energy can be written
in the Hartree unit as follows [76, 78]:

ESDA
MDI =

1

8c2

∫∫
drdr′

[
m(r) · m(r′)
|r − r′|3 − 3

{(r − r′) · m(r)} {(r − r′) · m(r′)}
|r − r′|5

]
,(3.29)

where c = 137.0370 and m(r) is given in the unit µB/a
3
B (µB: Bohr magneton,

aB: Bohr radius). The contribution to EMDI at r = r′ should vanish due to the
self-interaction of electrons, and the explicit treatment of this exclusion is usually
necessary in a practical calculation. To evaluate EMDI, one can use a spin density
of electron, m determined by a non-empirical approach, such as a spin density
functional approach.[75] In a slab system, the two-dimensional Ewald method is
applied to evaluate EMDI [79]. We also use the discrete (atomic moment) model
approach (DA) for a purpose of comparison. The real-space distribution near the
atomic site in m(r) tends to have spherical symmetry. The actual shape of the
magnetic moment density distribution with such symmetry does not contribute to
EMDI or the MAE in the atomic region. Therefore, the simplified formula, given
as follows, is considered [78]:

EDA
MDI =

1

8c2

∑
R,t,t′

′
[

mt · mt′

|R + t − t′|3 − 3
{(R + t − t′) · mt} {(R + t − t′) · mt′}

|R + t − t′|5

]
,(3.30)
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where R indicates the translational lattice vector, mt is the atomic magnetic
moment integrated in a given atomic sphere with m(r), and the sum with the
prime

∑′ means that the cases of R + t − t′ = 0 are excluded.

In addition to the SDA and DA approach, we also evaluated MDIE by using
continuuum approach (CA) [80]. In CA calculation, data of total magnetization
and a parameter of the slab thickness will be used. The MDIE from CA can be
calculated as,

ECA
MDI =

µ0M
2

2Ω
(3.31)

where µ0, M , and Ω are the vacuum permeability, total magnetic moment, and
slab volume, respectively. In this formula, a uniform spin density is assumed in
the magnetic slab.

3.2.4 Electric field effect on MAE calculation

In order to impose the electric field (EF), we have applied the scheme of effective
screening medium (ESM) method along the z-axis ([001]) [81]. Here, a short
summary about this method is explained as follows. The ESM method provides
the electrostatic potential (Hartree potential VH):

VH(r) =
∫
G(r, r′)n(r′)dr′, (3.32)

where G(r, r′) and n(r′) are Green’s functions and charge density, respectively.
The Fourier component of G is given by

G(g∥, z, z
′) =

4π

2g∥
e−g∥|z− z′| − 4π

2g∥
e−g∥(2z1−z− z′), (3.33)

where the g∥ and g∥ are the two-dimensional reciprocal vector and its modulus,
and z1 specifies the place of ESM. The first term of equation (2) means the kernel
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function of simple Coulomb interaction and the second one is introduced for effects
of the mirror charge raised by the ESM of ideal conductor. In addition, the
boundary conditions are imposed as follows:

VH(g∥, z)|z=z1 = 0, (3.34)
∂

∂z
VH(g∥, z) |z=−∞ = 0. (3.35)

In the application, the minus infinity (z=−∞) of the z-coordinate is replaced by
a finite practical value far from the other artificial surface in the slab model. The
ESM, as shown in Fig. 4.1, is placed away from the slab system at the distance
of 0.79 nm. Some tiny number of electrons is substracted from or added to the
systems for the induction of positive and negative EF respectively. The strength
of EF (ε) is estimated from the slope of the electrostatic potential at the front
of ESM as seen in Fig. 3.1. The effective EF in the MgO layer was determined
by dividing the above EF with dielectric constant (εr= 9.8). The Kohn-Sham
equation, which contains the electrostatic potential given above, is solved in the
framework of the slab model. The detail of similar application on ESM method
can be found in the previous reports [41, 82, 83].
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Chapter 4

Results and Discussions

4.1 Magnetic Anisotropy and Electric Field Con-
trol Magnetic Anisotropy at Fe/MgO inter-
face

4.1.1 MAE and EF effect on MAE in Fe/Cr alloying

For a practial application of a new type of MRAM that is controlled by volt-
age (voltage-torque MRAM), a large perpendicular MAE and large EF effect are
needed for the smaller-size magnetic layer element and the accurate dynamic mag-
netization switching [2]. Among this purpose, many effects were proposed such
as a strain effect [84], and an underlayer effect [46]. The underlayer effect be-
comes important, for example, in the case of alloying during the fabrication of
samples. Nozaki et al suggested that an Fe/Cr alloying in the Cr/Fe/MgO sys-
tem possibly happens when an annealing is used during the deposition process [2].
They discussed that the annealing makes a large effect in the quantities of the
perpendicular magnetic anisotropy (PMA), saturation magnetization, and voltage
control magnetic anisotropy (VCMA). Later, such alloying in the same system
was clearly observed by using the conversion electron Mössbauer spectroscopy
(CEMS) measurement [85]. Motivated by the experimental results, we systemat-
ically investigated EF effect in Fe/MgO interface systems with Cr underlayer by
introducing the interchange of Cr and Fe layers [86]. We use slab system, vac-
uum (0.79 nm)/Cr (6ML)/Fe (1ML)/Cr (1ML)/Fe (3ML)/MgO (5ML)/vacuum

35
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MgO (001) substrate

Cr (30 nm) 

MgO (3 nm) 

Fe (tFe=0.3-1.0 nm)   
MgO (2.3 nm) 

Fe (10 nm) 

Ta/Ru cap layers

(a)

(b)

(c)

Fe1
Fe2

Figure 4.1: Schematic diagram of the computational model (a) system-A, (b)
system-B, and (c) experimetal structure from ref. [2]. The black arrows with
label E and E′ indicate the electric field in MgO and the vacuum respectively.

(0.79 nm) (system-A) and vacuum (0.79 nm)/Cr (5ML)/Fe (1ML)/Cr (1ML)/Fe
(1ML)/Cr (1ML)/Fe (2ML)/MgO (5ML)/vacuum (0.79 nm) (system-B) as shown
in Fig. 4.1. We carried out first-principles electronic structure calculations [69]
which employ fully relativistic and scalar relativistic ultrasoft pseudopotentials
and a plane wave basis by using the generalized gradient approximation (GGA)
for the exchange-correlation energy [71]. The magnetic anisotropy energy (MAE)
was evaluated by considering magnetocrystalline anisotropy energy (MCAE) and
shape mangetic anisotropy energy (SMAE). The MCAE calculated by using total
energy difference (TED) and grand canonical force theorem (GCFT), while SMAE
calculated by using discrete approach (DA) and spin density approach (SDA) .
We used a 32×32×1 k-mesh for both MCAE and EF calculations. Using the
scalar-relativistic level computation with a 24×24×1 k-mesh, we induced struc-
tural relaxation while keeping both the in-plane lattice constant and the atomic
coordinates of O(3). To apply an EF, we used the effective screening medium
(ESM) method [81]. To obtain the EF inside the MgO layer, we took into account
the dielectric constant εr (9.8 for MgO) [87].

The total MAE originated from MCAE(SOI) and SMAE for system-A and system-
B are summarized in Table 4.1. For the comparison, we also include the data of sys-
tem without alloying, with structure of Cr(6ML)/Fe(4ML)/MgO(5ML) (structure-
I) [88].
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Table 4.1: The MAE from MCAE and SMAE for
Cr(6MLs)/Fe(4MLs)/MgO(5MLs) (structure-I), system-A and system-B.
The MCAE evaluated based on total energy (TE). The MDIE evaluated from

discrete approach (DA) and spin density approach (SDA).

Structure a(Å) MCAE(SOI) mJ/m2 SMAE mJ/m2 MAE (SOI+SMAE) mJ/m2

DA SDA SOI+DA SOI+SDA
I 2.88 0.586 −1.353 −1.336 −0.763 −0.750

System-A 2.88 1.280 −1.097 −1.053 0.183 0.227
System-B 2.88 1.483 −0.829 −0.797 0.651 0.686

Table 4.2: The MCAE value calculated based on the total energy (TE) and
grand canonical force theorem (GCFT)

Structure MCAE(TE) (mJ/m2) MCAE(GCFT) (mJ/m2

I 0.586 0.584
System-A 1.280 1.261
System-B 1.483 1.483

From Table 4.1, the MCAE from SOI contribution is largely enhanced compared to
the structure-I [88]. In the structure-I, the MAE becomes negative after combining
with the SMAE contribution. This means, the easy axis is along the in-plane.
On the other hand, for system-A and system-B, after combining with the MDIE
contribution, they have a positive MAE values. Both results have same sign with
the experimental value [2]. In the experiment, for tFe=0.56 nm (corresponding to
the 4ML, because 1 ML≈0.14 nm), the MAE value is ≈ 0.5 mJ/m2.

In addition to the MCAE from TE, the MCAE was calculated based on the GCFT.
The results are shown in Table 4.2. From Table 4.2, we can see that there is a
good agreement between these two methods.

Next, in the basis of the GCFT method, we performed the calculation of atom-
resolved MCAE as shown in Fig. 4.2. The positive and negative values in the
figure indicate a PMCAE and IPMCAE, respectively. We can see clearly that the
main positive contribution to the MCAE comes from Fe interfacing with MgO
(Fe1). The MCAE contribution from Fe1 in structure-I is suppressed compared to
the Fe1 in system-A and system-B. In addition, in structure-I, the Fe inside the
layer (Fe3 and Fe4) also contribute to the IPMCAE. As a final result, the MCAE
in structure-I becomes much suppressed.

To elucidate more the origin of the enhancement of MCAE in system-A and
system-B compared to the structure-I, we calculated the k-resolved MCAE in the
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Figure 4.2: Atomic resolved MCAE, (a) structure-I, (b) system-A and (c)
system-B, respectively.

two dimensional Brillouin zone (2DBZ) for each system. The results are shown
in Fig. 4.3. The energy range from red to blue indicates the positive to negative
contribution to the MCAE. We can see that, in the 2DBZ, only a certain region
contributes to the MCAE (the other regions almost vanish).

By considering the second-order perturbation theory, as discussed in the theoreti-
cal section (see. Eq. 2.24 in Sec. 2.2.2), may be the states near the Fermi energy is
important to discuss the origin of MCAE. To check the detail of pair coupling near
the Fermi energy, we plotted the band dispersion curve of minority 3d-orbitals of
each system as shown in the Fig. 4.6. Here, we focus on the minority spin-states
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Figure 4.3: k-resolved MCAE, (a) structure-I, (b) system-A and (c) system-B,
respectively.

Table 4.3: Positive and negative contribution to the MCAE in the 2DBZ for
the structure-I due to SOCs of d-orbital states. o and u represent occupied and

unoccupied states, respectively.

Line in 1st-BZ Matrix elements
(3/8)Γ− M ⟨o, xy|ℓ̂z|u, x2 − y2⟩
(7/8)Y − Γ ⟨o, yz|ℓ̂z|u, xz⟩
(5/8)M − X ⟨o, xy|ℓ̂x|u, xz⟩

⟨u, xy|ℓ̂x|o, xz⟩
⟨u, xz|ℓ̂x|o, x2 − y2⟩
⟨u, yz|ℓ̂x|o, 3z2 − r2⟩

contributions, since the majority spin-states are fully occupied (see Fig. 4.11).
The summary of the possible spin-orbit couplings (SOCs) of d-orbital states near
the Fermi energy is listed in Table 4.3, 4.4, and 4.5 for structure-I, system-A, and
system-B, respectively.
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Table 4.4: Positive and negative contribution to the MCAE in the 2DBZ for
the system-A due to SOCs of d-orbital states. o and u represent occupied and

unoccupied states, respectively.

Line in 1st-BZ Matrix elements
(2/8-4/8)Γ− Y ⟨o, yz|ℓ̂z|u, xz⟩

⟨u, yz|ℓ̂z|o, xz⟩
(5/8)M − X ⟨o, xy|ℓ̂x|u, xz⟩

⟨u, xy|ℓ̂x|o, xz⟩
⟨u, xz|ℓ̂x|o, x2 − y2⟩

Table 4.5: Positive and negative contribution to the MCAE in the 2DBZ for
the system-B due to SOCs of d-orbital states. o and u represent occupied and

unoccupied states, respectively.

Line in 1st-BZ Matrix elements
(2/8-4/8)Γ− Y ⟨o, yz|ℓ̂z|u, xz⟩

⟨u, yz|ℓ̂z|o, xz⟩
⟨o, x2 − y2|ℓ̂z|u, xy⟩

(2/8)X − Y ⟨o, x2 − y2|ℓ̂z|u, xy⟩
(6/8)X − Y ⟨o, x2 − y2|ℓ̂z|u, xy⟩
(2/8)X − Y ⟨o, xz|ℓ̂z|u, yz⟩
(6/8)X − Y ⟨o, yz|ℓ̂z|u, xz⟩
(4/8)M − X ⟨u, yz|ℓ̂x|o, 3z2 − r2⟩
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Figure 4.7: (a) MCAE and (b) orbital moment differences as EF dependence
in system A (blue triangles) and system B (red squares).

Next, we calculated the electric field (EF) effect on MCAE for the system-A and
system-B. The results are shown in Fig. 4.7(a). By imposing EF, we observed
a different behavior in changes of MCAE. MCAE increases and decreases as EF
increases for system A and B, respectively. This behavior leads to an opposite
sign in EF coefficient (γ) i.e +89 fJ/Vm and −92 fJ/Vm. This result qualitatively
agrees with an orbital moment calculation of Fe/MgO interface (Fe1), as shown in
Fig. 4.7(b). MCAE is comparable to the orbital moment as in the Bruno’s formula
[56], MCAE = ξ∆mo/4µB where ∆mo = mo[001]−mo[100] (difference between the
out-of-plane and in-plane orbital moments), µB is Bohr magneton and ξ is the spin
orbit coupling (SOC) constant.

Furthermore, γ value in system-A has the same sign with γ value observed in
the experiment [2] , but different sign with system-B. This indicate that, the
Cr possible intermix with Fe at the Fe/Cr interface. However, our γ value still
underestimated about three times. In the experiment, γ is about 270 fJ/Vm.
The possible origin of the difference may come from several factors, such as strain
effect, atomic displacement, and complex alloying in the sample.

In order to explain the possible origin of the opposite sign of γ, we investigated
the band filling effect for both system-A and system-B. The band filling effect here
is refers to the changes of the Fermi level by reducing or increasing the number
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Figure 4.8: MCAE as a function of bandfilling. The numbers of valence
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(b) system-B.

of valence electrons (simple rigid-band picture). The results are shown in Fig.
4.8. For the system-A, the MCAE increases with adding the hole to the system,
while in the system-B, it decreases. This behavior has a good agreement with the
EF effect on MCAE. The behavior in system-A is consistent with the previous
calculation [40]. By assumming the number of changes of valence electrons is
comparable to the electric field, we estimate the γ from the slope of the curve. By
reducing number of valence electron 0.02, the slope estimated to be 16.33 fJ/Vm
and −25.48 fJ/Vm for system-A and system-B respectively. The lower γ estimated
from the band filling compared to the γ in Fig. 4.7 indicates that EF effect can
not fully captured by a simple rigid-band.

To check the change of MCAE for each atom as EF effect, we calculated the atomic
MCAE for both zero and under EF. The results are shown in Fig. 4.9. The EF
effect almost dominated by Fe1. This is due to strong screening effect in the surface
of metals, so the EF can not deeply penetrate into the bulk of metal [39, 89].
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Figure 4.9: Atomic resolved MCAE for zero (red bar) and under EF (blue
bar), (a) system A and (b) system B.

In addition to the atom resolved MCAE, we also calculate the difference of k-
resolved MCAE in zero and under EF. Fig. 4.10(a) and (b) show the k-resolved
difference for system-A and system-B, respectively. The discussion of enhancement
or suppression of MCAE will be connected to the perturbation analysis in Eq. 2.27
and matrix elements in Table. 2.2 as follows. In system-A, the main enhancement
of the MCAE is located at M-X line. At zero EF, as in Table 4.4, there is a
negative contribution along the M-X line. By imposing EF, dx2−y2 goes up to the
higher energy and become unoccupied. This changes may reduce the SOCs of
⟨o, xy|ℓ̂x|u, xz⟩, and thus increase the MCAE. On the other hand, for system-B
(Fig. 4.10(b)), the reduction of MCAE primarily along the X-Y line. We notice
that, it can be related to the modulation SOCs of positive contribution as in the
Table 4.5. In detail, at the X-Y line, after imposing EF, states of dx2−y2 , dxz, and
dyz go upward and become unoccupied. This change may decrease the SOCs of
⟨xy||x2 − y2⟩ and ⟨yz||xz⟩) through to ℓ̂z operator and thus decrease the MCAE.

In comparison of the electronic structures of structure-I, system-A and B in Fig.
4.6, we notice that there are three kinds of important characteristics. The first one
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Figure 4.10: k-resolved MCAE difference at E=0V/nm and E=0.436V/nm
for (a) system A and (b) system B at respectively.

is that the d3z2−r2 keeps away from the Fermi level. This is due to the orbital hy-
bridization between Fe-3d3z2−r2 and O-2pz. This hybridization is important origins
to get the perpendicular anisotropy [90, 91], since the SOCs d3z2−r2 contributes to
the IPMCAE in the case of large exchange splitting for majority spin state [57].
The second one is, the orbital hybridization between Fe1 and Fe second layer. As
the hybridization raised, the 3dxz and 3dyz in Fe1 become split to the lower and
higher energies at M point. This condition much differ from the case of Fe 1ML,
where those states just sit near the Fermi level. The third one is the proximity
effect of Fe and Cr. We can see that there is a substantial rearrangement of elec-
tronic structure for [Fe/Cr]n (n=1 and 2). Such change can be clearly seen in the
partial density of states (PDOS) as shown in Fig. 4.11. d-orbital component of
|ml| = 2 and |ml| = 1 which the peak is unoccupied in system-A, become shifted
to the lower energy and sit just in the Fermi level for system-B. The proximity
effect here is associated with two mechanisms. At first, the hybridization with
Cr: Fe d-states are shifted to the lower energy since Cr d-states are located in the
higher energy [92]. At second, electrons can transfer from Cr to Fe atoms due
to a smaller electronegativity of Cr. Consequently, the number of 3d electrons
on the Fe of Fe/MgO interface may increase. This increase strongly depends on
the vicinity of Cr next to Fe/MgO interface. In addition, we also notice that the
number of electrons (NOE) in d-orbital for system-B is increased by 0.052 from
that for system-A. This larger NOE may be an origin of sign change in γ. Exper-
imentally, an opposite sign in voltage control magnetic anisotropy (VCMA) was
also observed between Ta and Ru underlayers [93]. Discussion of this opposite
sign was related to a different spin-orbit coupling in the underlayer, a difference
in crystallinity etc., but the origin is still an open question .
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Figure 4.11: Projected density of states, (a) system A and (b) system B,
respectively.
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Figure 4.12: (a) MCAE and (b) electric-field induced MCAE coefficient (γ)
in system B as strain depedence.

4.1.2 MCAE and EF control MCAE in Fe/Cr Intermixing
as Strain Dependence

For further exploration at vicinity of the Fermi level, we calculated MCAE as strain
dependence for system-B, as shown in Fig. 4.12(a). In this work, the variation
of strain is taken in the range of −8.0% to 3.8% for the ratio with respect to
Fe lattice constant (2.87Å). As a result, MCAE increases with increasing tensile
strain (increase in lattice constant) and increasing compressive strain (reduce in
lattice constant) with the maximum value of 2.43 mJ/m2.
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Figure 4.13: k-resolved MCAE in system B for (a) ηFe=3.8%, (b) ηFe=0.3%,
(c) ηFe=−3.1%, and (d) ηFe=−8%.

To elucidate the mechanism of strain on the enhancement of MCAE at zero EF,
we calculate the k-resolved MCAE, as shown in Fig. 4.13. We can see that the
main change of MCAE located at Γ point and along the X-Y line. Furthermore,
the atom k-resolved MCAE shows that the enhancement at X-Y line comes from
Fe1, while the enhancement Γ point originates from Fe atoms inside (Fe2, Fe3,
and Fe4).

This MCAE is strongly related to the SOCs of d-orbital component on the interface
Fe, especially those of eigen-states near the Fermi level. The behavior is shown
in the partial DOS (Fig. 4.14). By increasing compressive strain, dx2−y2 and part
of dxz, dyz gradually shifted to the lower energy and become below the Fermi
level while dxy and part of dxz, dyz stay above the Fermi level (Fig. 4.14(a) and
4.14(b)). This kind of coupling may increase the MAE due to SOC of ⟨xy||x2 − y2⟩
and ⟨yz||xz⟩ through to the ℓ̂z operator. On the other hand, by increasing tensile
strain such mechanism also appears, but it is a reverse. At X-Y line, dxy and part
of dxz, dyz, are also push down to the lower energy and become occupied while
dx2−y2 and part of dxz, dyz stay above the Fermi level (Fig. 4.14(d)). Again, such
coupling may also increase the MCAE through to ℓ̂z operator as in the previous
one. These changes mainly appear at X-Y line as shown in the Fig. 4.15.
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line.

The total number of 3d electrons (NOE) as a strain dependence is shown in Fig.
4.14(a). Generally, the total NOE decreases (increases) by increasing tensile (com-
pressive) strain. In more detail, the NOE of each d-orbital component is shown
in Fig. 4.14(b). The behavior of total NOE as a strain dependence is related
to NOEs of dyz+xz and dx2−y2 . The increase of in-plane lattice constant may re-
duce the interlayer distance along z-direction. This mechanism may enhance the
hybridization between Fe, resulting in a strong bonding which leads to the delo-
calization of electrons and finally reduces the NOE of d-orbital.
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Figure 4.16: NOE of 3d on the Fe/MgO interface as a strain dependence. (a)
Total-NOE and (b) partial NOE of each orbital.

Furthermore, the electric field (EF) coefficient (γ) as strain dependence is shown
in Fig. 4.12(b). The maximum absolute value of γ is 170 fJ/Vm at ηFe=−3.1%.
To discuss such a maximum value, we calculate the atomic resolved at zero and
under EF as shown in Fig. 4.17(a). We found the main change of MCAE induce
by EF appear at Fe1. The behavior of MCAE changes also can captured by band
filling calculation as shown in Fig. 4.17(b).

Large γ at ηFe=−3.1% may be related to a large amount of d-orbital states around
the Fermi level. As shown in Fig. 4.18(a), at zero EF, dx2−y2 and part of dxz,
dyz occupy and form states just at the Fermi level. After applying EF, these
states are shifted to the higher energy and become unoccupied. This change may
reduce the SOCs of ⟨xy||x2 − y2⟩ and ⟨yz||xz⟩ through to ℓ̂z operator. Due to this
reduction the MCAE may reduce significantly, resulting in a larger MCAE change.
Such remarkable changes clearly observed at k-resolved difference (∆MCAE(k))
as shown in the Fig. 4.18(b).

4.2 Shape Magnetic Anisotropy From Spin Den-
sity in Nanoscale Slab Systems

Another important contribution to the MAE as well as spin orbit coupling is shape
anisotropy. Both contribution should be consider in the design of materials fo the
application such as memory or sensor [2, 94], or for emerging new phenomena [95,
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96]. In this section, we investigate the shape magnetic anisotropy energy (SMAE)
using the continuum approach (CA) [80], discrete approach (DA), and soin density
approach (SDA) [79]. The CA uses the data of total magnetization and parameter
of the slab thickness. The SMAE fron CA given by SMAE(CA)= µ0M

2/2Ω,
where µ0, M , and Ω are the vacuum permeability, total magnetic moment, and
slab volume, respectively. The DA uses the data of the atomic magnetic moments
extracted from the spin density. The SDA reflects the shape of the general spin
density distribution. The formula for DA and SDA are written in the theoretical
framework.

4.2.1 SMAE in Ferromagnetic Slabs

We investigated the MAE of MgO(5ML)/Fe(xML)/ MgO(5ML) (x=1–10) slab
with the in-plane lattice constant extracted from MgO. This slab has vacuum
layers of 0.9 nm thick on both the sides of the layer. The structure is shown in
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Figure 4.18: (a) Band dispersion curve and densities of states (DOS) for
ηFe=-3.1% for zero EF (solid curve) and 0.436 V/nm (dotted curve). In the
zero EF (0.436 V/nm), the predominant components of Fe 3d orbitals (dxz, dyz,
dx2−y2 , dxy) for minority spin-states are marked as, orange-red filled (dark-blue
empty) triangels, gold filled (cyan empty) circles, dark-green filled (magenta
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shaded (gray) curves and solid (red) lines of DOS indicate zero and under EF
respectively. (b) ∆MCAE(k) of E=0V/nm and E=0.468V/nm for ηFe=-3.1%.

Fig. 4.19(a). After the relaxation of layer distances, we estimated the SMAEs for
CA, DA, and SDA. The midpoint-to-midpoint layer distance between the Fe/MgO
interfaces was taken as layer thickness. In order to identify the difference between
the surface and interface effects, we also evaluated the MAE of a Fe(xML) slab
obtained by deleting the MgO layers from the MgO/Fe(xML)/MgO slab. The
structure is shown in Fig. 4.19(b).

The results of SMAEs for CA, DA, and SDA of MgO(5ML)/Fe(xML)/MgO(5ML)
(x=1−10) and Fe(xML) (x=1−10) are shown in 4.20(a) and (b), respectively.
From Fig. 4.20(a) and (b), we extract the interface/surface effect (intersection of
the fitted line) and the bulk-like property (slope of the fitted line). The results
are summarize in Table. 4.6 and Table. 4.7, respectively.
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Figure 4.19: Model structure for shape anisotropy calculation. (a)
MgO/Fe/MgO systems, (b) Fe-systems, and (c) MnX systems (X: Pt, Pd, Ir,

and Ni).

Table 4.6: Interface/surface effect (intersection of fitted line). CA, DA, and
SDA represent continuum approach, discrete approach, and spin density ap-
proach. In the case of CA, we use t:exp (Fe thickness extracted from the experi-
ment) and t:theo (Fe thickness from the optimized structure). The experimental

data was taken from ref. [2]. CA, DA, and SDA are in the unit of mJ/m2.

System CA(t:exp) CA(t:theo) DA SDA
MgO/Fe/MgO 0.220 0.002 0.056 −0.107

Fe 0.278 0.011 0.104 −0.062

Our results are similar to the data of demagnetization energy in the previous work
[91]. As shown in Table. 4.20, the CA tends to provide larger values of MAEs
(ECA), namely, a stronger in-plane anisotropy. In contrast, ESDA is reduced by
the surface/interface effect. This reduction is estimated by the difference between
the intersections of linear fitting lines to be 0.163 and 0.166 mJ/m2 for the slabs
of MgO/Fe(xML)/MgO and Fe(xML), respectively. Similarity between these val-
ues tends to hide the difference between the interface effect of Fe/MgO and the
surface effect of Fe layer. When comparing the intersections of the DA and SDA,
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Table 4.7: Bulk-like property (slope of the fitted line). CA, DA, and SDA
represent continuum approach, discrete approach, and spin density approach.
In the case of CA, we use t:exp (Fe thickness extracted from the experiment)
and t:theo (Fe thickness from the optimized structure). The experimental data

was taken from ref. [2]. CA, DA, and SDA are in the unit of mJ/m2/Å.

System CA(t:exp) CA(t:theo) DA SDA
MgO/Fe/MgO 0.238 0.238 0.234 0.233

Fe 0.241 0.238 0.237 0.236
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Figure 4.20: SMAE of (a) MgO/Fe(xML)/MgO and (b) Fe(xML) (x=1−10)
for CA, DA, and SDA. The CA with the experimental thickness (0.14 nm/FeML)
is also plotted. The lines are deduced from the least square fitting using the

data of x=3−10.

the corresponding differences are 0.109 and 0.073 mJ/m2, indicating the differ-
ence between the interface and surface effects. The increasing rate of MAE with
respect to the thickness, namely, the slope of linear fitting line in Fig. 4.20 and
summarized in Table. 4.7 does not vary with a large amount among the results of
CA, DA, and SDA. This is due to the fact that the spin density distribution on the
magnetic atom inside the layer (not at the interface/surface) has few quadrupole
components.

Such quadrupole contribution is only observed in the interface layer. In Fig.
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Figure 4.21: Radial atomic spin density distribution [in(Bohr)−3] in (a)
MgO/Fe(5ML)/MgO and (b) Fe(5ML). Fe1 indicate the interface/surface
atoms, and Fe3 indicate the atoms inside the layer. All the quadrupole compo-

nents are magnified 20 times.

4.21(a) and (b) the radial spin density distributions of spherical and quadrupole
components are shown for the atoms on the interface and inside the layer. On
the inside, the quadrupole component is reduced significantly compared with
that on the interface. In addition, from Fig. 4.21(a) and (b), we can see that
MgO/Fe(xML)/MgO has larger quadrupole component compared to the Fe(xML).
As a result, the reduction of SMAE(SDA) from SMAE(CA) in MgO/Fe(xML)/MgO
becomes larger.

4.2.2 SMAE in Antiferromagnetics Slabs

Next, we investigated the MAE originating from the magnetic dipole interaction
in a MnX slabs (X=Pt, Ir, Pd, and Ni) extracted from the bulk with L10 ordered
alloy. Assuming that an antiferromagnetic configuration is the same as in the bulk,
where the total magnetization in the same Mn-atom layer vanishes and the atomic
magnetic moments are parallel to those of the nearest-neighboring Mn layers, the
DA and SDA were applied to several thicknesses (tML) with a (001) surface. The
structure are shown in the Fig. 4.19(c). The CA provides no contribution of
MAE due to no magnetization. In the evaluations of EDA and ESDA, a

√
2×

√
2

magnetic unit cell was taken for an in-plane periodicity with the lattice constant
of 7.56 Bohr, 7.28 Bohr, 7.69 Bohr, 7.07 Bohr for MnPt, MnIr, MnPd, and MnNi,
respectively. These were an experimental bulk value.
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Table 4.8: Interface/surface effect (intersection of fitted line) for antiferro-
magnetics MnX systems (X: Pt, Ir, Pd, Ni). DA, and SDA represent discrete
approach, and spin density approach. DA, and SDA are in the unit of mJ/m2.

System DA SDA
MnPt (odd) −0.088 −0.228
MnPt (even) 0.041 −0.012
MnIr (odd) −0.143 −0.317
MnPd (odd) −0.068 −0.178
MnNi (odd) −0.124 −0.295

Table 4.9: Bulk-like property (slope of the fitted line) for antiferromagnetics
MnX systems (X: Pt, Ir, Pd, Ni). DA, and SDA represent discrete approach

and spin density approach. The values are in the unit of mJ/m2/ML.

System DA SDA
MnPt (odd) −0.085 −0.092
MnPt (even) −0.088 −0.095
MnIr (odd) −0.069 −0.058
MnPd (odd) −0.087 −0.103
MnNi (odd) −0.096 −0.114

The results of SMAE calculation from DA and SDA for each system are shown
in the Fig. 4.22. As shown in Fig. 4.22, the negative signs indicate a perpen-
dicular magnetic anisotropy. This perpendicular anisotropy is attributed to the
antiferromagnetic spin alignment in each Mn layer. Furthermore, from Fig. 4.22,
we extract the interface/surface effect and bulk-like property. The results are
summarized in Table. 4.8 and Table. 4.9.

The absolute of ESDA is larger than of EDA for each system. Surface effects on
the spin density distribution are clearly shown at the intersections of fitted linear
lines between EDA and ESDAsho as listed in Table. 4.8. For all systems, MnIr has
the largest intersection constant. The reason why the absolute of ESDA is larger
than of EDA is that the quadrupole component of atomic spin density distribution
on the surface magnetic atom enhances the MAE. Such quadrupole component of
atomic spin density distribution on the surface Mn atom (Mn2) for each system
is shown in Fig. 4.23.

In addition, from the Table. 4.9, we can see that, there are a difference be-
tween the SDA and DA. In odd case, the differences are 0.007 mJ/m2/ML, 0.011
mJ/m2/ML, 0.016 mJ/m2/ML, and 0.018 mJ/m2/ML for MnPt, MnIr, MnPd and
MnNi, respectively. Those values are small but not negligible, originating from
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Table 4.10: The MAE of bulk antiferromagnetic MnX systems (X: Pt, Ir, Pd,
Ni). The MDIE evaluated from spin density approach (SDA). All the MAE

values are in the unit of meV/cell

System a(Å) c/a MAE MAE(SOI+SDA) MAE(SOI [97]
SOI SDA

MnPt 3.990 0.918 0.201 0.188 0.389 0.510
MnIr 3.885 0.945 −8.204 0.105 −8.100 −7.050
MnPd 4.070 0.880 −0.419 0.218 −0.202 −0.570
MnNi 3.740 0.941 −0.448 0.202 −0.46 −0.290

Table 4.11: The comparison of SDA in AFM MnX systems from the bulk
calculation and the bulk-like property estimated from the slope in Fig. 4.22.

System a(Å) SDA(Bulk calculation)
(meV/ML)

SDA (Bulk-like property)
(meV/ML)

MnPt 3.990 0.093 0.094
MnIr 3.885 0.053 0.052
MnPd 4.070 0.103 0.109
MnNi 3.740 0.098 0.101

the quadrupole component on Mn atom inside the layer (not on the surface). Such
quadrupole component of Mn inside the layer (Mn4) are shown in Fig. 4.23.

For the comparison, we also calculated the MAE for bulk antiferromagnetic MnX
systems (X: Pt, Ir, Pd, Ni) originated from SOI and MDIE. The structure is
shown in Fig. 4.24. The MDIE evaluated using the SDA approach. The results
are summarized in the Table. 4.10. The SDA in Table. 4.10 has a good agreement
with the bulk-like property from the slope summarized in Table. 4.9 and the result
is summarized in Table. 4.11.
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Figure 4.22: SMAE of antiferromagnetics MnX slabs (a) X=Pt, (b) X=Ir,
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Figure 4.23: Radial atomic spin density distribution [in(Bohr)−3] in antifer-
romagnetics MnX slabs for t=5MLs (a) X=Pt, (b) X=Ir, (c) X=Pd, and (d)

X=Ni.

Mn

X: Pt, Ir, Pd, Ni

Figure 4.24: Model structure bulk antiferromagnetic MnX systems (X: Pt, Ir,
Pd, Ni).



Chapter 5

Summary and Outlook

5.1 Summary

As was introduced in Section 1.2, the focus on this dissertation has been on in-
vestigation of magnetic properties, such as magnetic anisotropy energy (MAE)
based on the spin density functional theory (SDFT) scheme. In particular, two
topics have been considered. The first one is effect of alloying, strain, and electric
field (EF) on MAE and the second one is MAE contribution from shape mag-
netic anisotropy in the material which has a ferromagnetic and antiferromagnetic
structure.

In the calculation, we considered two kinds of contribution to the MAE, namely
magnetocrystalline anisotropy energy (MCAE) originating from spin-orbit cou-
pling (SOC) and shape magnetic anisotropy energy (SMAE) originating from mag-
netic dipole-dipole interaction (MDI). The MCAE part was calculated in the basis
of the total energy (TE) and grand canonical force theorem (GCFT). In the GCFT
scheme, we performed the atom-resolved and k−resolved contribution the MCAE.
For the SMAE contribution, we estimated by using the continuum approach (CA),
discrete approach (DA), and spin density approach (SDA). In SDA approach, we
evaluated the atomic multipole spin density, such as quadrupole component.

In the first topic, we studied the MAE in the Cr/Fe/MgO structure with intro-
ducing the Fe/Cr alloying. Such alloying is based on the suggestion from the
experimetal measurement [2]. An alloying of [Fe/Cr]n (n=1,2) has been consid-
ered. For n=1 and n=2, we called system-A and system-B, respectively. For a
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comparison, a structure without alloying was also considered (structure-I). From
the TE calculation, the MCAEs in system-A and system-B were largely enhanced,
compared to those of structure-I, as summarized in Table. 4.1, Sec. Section 4.1.1.
Next, Combining with the MDIE, the perpendicular MAE (PMAE) was observed
for system-A and system-B, respectively, while for structure-I showed in-plane
MAE (IMAE). The result in system-A or system-B has a qualitative aggrement
with the MAE observed in experiment [2]. To elucidate the possible origin of
enhancement of MAE, we systematically analyzed the MCAE in GCFT scheme.
At first, we confirm that the MCAE calculated from TE and GCFT has a good
agreement, as summarized at Table. 4.2, in Section 4.1.1. This aggrement allows
us for further analysis of atom resolved or k-resolved MCAE.

The atom-resolved MCAE showed that the main positive contribution to the
MCAE is originated from (Fe1). Furthermore, from k-resolved MCAE result,
we can clearly see the region in two dimensional first Brillouin zone (2DBZ) which
contributes to the positive or negative MCAE. In the basis of the analysis in Sec-
tion 2.2.2, we summarized the list of possible pair coupling of the d-orbitals near
the Fermi energy as shown in Tables 4.3, 4.4, and 4.5 for structure-I, system-A,
and, system-B, respectively.

Next, we calculated the EF effect for system-A and system-B. We observed an
opposite sign of MCAE coefficient (γ), which is positive and negative for system-A
and system-B, respectively (Fig. 4.7, section 4.1.1). The orbital moment and band
filling calculation also showed the same behavior. From atom resolved analysis,
we found that MCAE changes by EF mainly observed at Fe1. Moreover, from
different of k-resolved MCAE at zero and with EF (∆MCA(k)), we can clearly see
that the figure show a positive for system-A, while negative for system-B.

The enhacement of MCAE and opposite sign in γ maybe related to the impact
of Fe/Cr alloying whichs make a remarkable change in the electronic structure,
especially, Fe interface with MgO (Fe1). Here, we addres that such changes maybe
related to the proximity effect of Fe and Cr. The proximity effect is assosiated with
two mechanisms. At first, the hybridization with Cr: Fe d-states are shifted to the
lower energy since Cr d-states are located in the higher energy [92]. At second,
electrons can transfer from Cr to Fe atoms due to a smaller electronegativity of
Cr. Consequently, the number of 3d electrons on the Fe of Fe/MgO interface may
increase. This increase strongly depends on the vicinity of Cr next to Fe/MgO
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interface. In addition, we also notice that the number of electrons (NOE) in d-
orbital for system-B is increased by 0.052 from that for system-A. This larger
change in NOE may be an origin of sign change in γ.

In the vicinity of the Fermi energy, we calculated the MCAE in system-B as strain
dependence with respect to the Fe lattice constant (ηFe). The MCAE increases
with the increasing tensile strain (increase in lattice constant) and increasing com-
pressive strain (reduce in lattice constant) with the maximum value of 2.43 mJ/m2

at ηFe = 2%. (Fig. 4.12(a), section 4.1.2). To elucidate the possible origin, we
systematically analyzed the k-resolved MCAE and compared with the electronic
structure. We notice that the behavior of MCAE as strain depedence may be
related to the pair coupling of dx2−y2 and dxy along the X-Y line, as shown at Fig.
4.15. Furthermore, the larger MCAE at ηFe = −8% may be related to the large
amount of state in the Fermi energy and suitable pair coupling which promotes
to the PMCAE. In adition, in the basis of atom resolved MCAE, we found that,
by introducing compressive strain, the Fe inside the layer also contributes to the
PMCAE. Next, we calculated the EF effect on MCAE for each starin condition.
The maximum value of γ=170 fJ/Vm was achieved at ηFe = −3.1%. The Larger γ
at ηFe = −3.1% is related to the large amount of d-orbital states (dxz, dyz, dx2−y2 ,
dxy) along the X-Y (Fig. 4.18(a)). As a result, the small change in orbital occu-
pation induce by EF, may significantly change the MCAE. Such MCAE changes
is clearly observed at ∆MCA(k) (Fig. 4.18(b)).

For the second topic, we systematically investigated the SMAE in ferromagnetic
(FM) slabs of Fe, Fe/MgO and antiferromagnetic (AFM) slab of MnX L10 struc-
ture (X: Pt, Ir, Pd, Ni). In the case of FM Fe slab or Fe/MgO interface, there is a
reduction of ECA compared to the EDA and ESDA. This reduction originates from
quadrupole component of Fe at the surface/the interface Fe. Such quadrupole
component showed a prolate shape (Fig. 4.21). On the other hand, in the case
of AFM slab of MnX (X: Pt, Ir, Pd, Ni), the quadrupole component of Mn at
surface contribute to the enhancement of SMAE. The difference between EDA and
ESDA originating from the quadrupole component on Mn atom inside the layer
(Fig. 4.23). Furthermore, the bulk property of SMAE estimated from the slope of
the fitted line of ESDA result has a good agreement with the SDA calculation of
bulk structure (Table. 4.11).
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5.2 Outlook

The effects of alloying, strain, and electric feld to the magnetic anisotropy energy
(MAE) have been calculated and discussed in this thesis. We showed that alloy-
ing and strain can make a large impact to promote the perpendicular (PMAE).
However, for the EF coefficient (γ), it is still far from the requirement in the real
application. We systematically analyzed the mechanism of EF induces MAE by
taking the advantage of the current approach based on the grand canonical force
theorem (GCFT). In the GCFT scheme, we can clarify the possible origin in terms
of the details of the electronic structure. The atomic k-resolved MCAE showed
that EF only can modify the interface metal/oxide. But, in this work, we show
the interface electronic structure can be changed by introducing the alloying in the
underlayer region. In the future, alloying with a heavy element which has large
spin-orbit coupling may be effective to enhance γ value [46, 98]. In addition, in the
basis of GCFT method, other emerging phenomena at FM/oxide interface such as
Rasbha effect is possible to investigated. Rasbha effect at the interface is respon-
sible for generating effective field for the magnetization switching in STT-MRAM
device [99, 100] and spin-to-charge conversion [101].

Recently, many reports show that antiferromagnetic (AFM) materials have great
potential for the next generation of spintronic applications [96, 102, 103]. Within
our current SDFT, we was able to evaluate the MAE in the AFM elements, then,
as an emerging one, there may be a combination with AFM whose MAE can be
controlled by external perturbation such as strain [104], electric field [51, 95, 105],
and magnetic field [106].



Appendix A

Appendix Atom k-resolved
MCAE

A.1 Atom k-resolved MCAE in structure-I

Atom k-resolved for structure-I are shown in Fig. A.1.
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Figure A.1: Atomic k-resolved MCAE in structure-I at zero electric field.
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A.2 Atom k-resolved MCAE in system-A

Atom k-resolved for system-A are shown in Fig. A.2.
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Figure A.2: Atomic k-resolved MCAE in system-A at zero electric field.



67

A.3 Atom k-resolved MCAE in system-B

Atom k-resolved for system-B are shown in Fig. A.3.
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Figure A.3: Atomic k-resolved MCAE in system-B at zero electric field.



A.4 Atom k-resolved MCAE in system-B
for ηFe=−7%

Atom k-resolved in system-B for ηFe=−7% are shown in Fig. A.5.
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Figure A.4: Atom k-resolved MCAE in system-B at zero electric field for
ηFe=−7%.



A.5 PBAND as Strain Dependence

Partial band dispersions curve of Fe1 for minority spin states in system-B as strain
dependence are shown in Fig. A.5.
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Figure A.5: Partial band dispersions curve of Fe1 for minority spin states in
system-B. (a) ηFe=−7%, (b) ηFe=−2.1% and (c) ηFe=0.7%, and (d) ηFe=3.8%,
respectively. The predominant components of Fe 3d orbitals dxz, dyz, dx2−y2 ,
and dxy are marked as, orange-red filled triangles, gold filled circles, dark-green

filled triangles, and dark-blue circles, respectively.
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