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Abstract

In this work, the stability of the shallow water equations (SWEs) with a transmission boundary

condition is studied theoretically and numerically using a suitable energy. In the theoretical

part, using a suitable energy, we begin with deriving an equality which implies an energy

estimate of the SWEs with the Dirichlet and the slip boundary conditions.

For the SWEs with a transmission boundary condition, an inequality for the energy

estimate is proved under some assumptions to be satisfied in practical computation. In the

numerical part, based on the theoretical results, the energy estimate of the SWEs with a trans-

mission boundary condition is confirmed numerically by a finite difference method (FDM)

and Lagrange–Galerkin method (LGM). The choice of a positive constant c0 used in the trans-

mission boundary condition is investigated additionally. Furthermore, we present numerical

results by a LGM, which are similar to those by the FDM.

The computation of the SWEs with the transmission boundary condition are also made for

the Bay of Bengal by a LGM with the triangular mesh. To see the performance of the LGM

we have investigated the experimental order of convergence for the LGM with a suitable

choice of exact solutions for five different cases of boundary setting for the norms l∞ −L2,

l∞−H1
0 , l∞−H1, l2−L2, l2−H1

0 and l2−H1. The experimental order of convergence of u1

and u2 is O(h) for all the six norms and experimental order of convergence of η is O(h) for

the norms l∞−L2 and l2−L2 and for the other four norms experimental order of convergence

is not O(h) but confirmed to be convergent.
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In order to see whether the transmission boundary condition is independent of its position

or not, simulations are made in the Bay of Bengal, setting the transmission boundary condition

in two different places. We have computed the mass and L2-norm of η and the results shows

that the transmission boundary condition works well numerically it is almost independent of

its position.

The theoretical results along with the numerical results strongly recommend that the

transmission boundary condition is suitable for the boundaries in the open sea.

In this work, we have succeeded to give some theoretical results and this is the first step

of mathematical foundation of the SWEs with the transmission boundary condition.
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Chapter 1

General introduction

Most of the natural phenomena are expressed by partial differential equations or a system of

partial differential equations. The Navier-Stokes equations are a system of partial differential

equations which expresses a lot of real world phenomena related to fluid flow problems.

According to [24], the equations (Navier-Stokes equations) cannot be solved analytically in

most cases due to complicated geometries, initial conditions, boundary conditions or source

terms. For this reason, numerical methods are applied, which can be very time consuming.

But under the assumption of a hydro-static pressure distribution one space dimension of

the Navier-Stokes equations can be eliminated without much loss of accuracy. This can be

done if the fluid is at rest, but in many cases it is sufficient that the horizontal scales are

much larger than the vertical scales. The resulting system of partial differential equations

is called shallow water equations (SWEs). The reduction of one space dimension reduces

the computational cost of numerical solutions greatly. It is pertinent to mention here that

the SWEs were first formulated by the mathematician Adhémar Jean Claude Barré de Saint-

Venant for one-dimensional unsteady open channel flows (see [46] ), and the 1D equations

are therefore also known as the Saint-Venant system. After that a lot of developments of

the SWEs are done by many researchers for various purpose. The derivation of one-layer

viscous SWEs can be found in [21] and two-layers SWEs are derived in [20] for Tsunami

simulation purpose. It is of interest to note here that the SWEs are used for the simulation



2 General introduction

of Tsunami/storm surge in the bay, e.g., [7, 9–18, 20, 29–33, 35–37, 40–44, 47, 49, 50].

In such simulation there are some boundaries in the open sea (see Figure 1.1). In a real

situation, if wave propagates towards such boundaries in the open sea, then there should not

be any reflection on these boundaries. Therefore, in the simulation a special type of boundary

condition should be imposed on these boundaries which has capability of removing the

artificial reflection. In this study, following [20] a transmission boundary condition has been

used on the boundaries in the open sea which is capable to remove these kinds of artificial

reflection and on the closed boundaries (boundaries in the coast) zero Dirichlet boundary

condition is used. Figure 1.2 gives an idea of wave propagation in the Bay of Bengal with

the transmission and Dirichlet boundaries.

Fig. 1.1 The northern part of Bay of Bengal including the coast of Bangladesh, east coast of
India and west coast of Myanmar.
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Fig. 1.2 Simulation of SWEs in the Bay of Bengal with transmission and Dirichlet bound-
ary conditions, here ΓT and ΓD represent the transmission and the Dirichlet boundaries,
respectively
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It is of interest to note here that our final goal is to develop a storm surge prediction

model for the Bay of Bengal region (see Figure 1.1). The reason of choosing this problem is

discussed below.

The coast of Bangladesh is affected by various environmental hazards. Storm surge is

one of them, which causes a tremendous loss of lives and properties every year. Table 1.1

lists the number of deaths associated with several deadly disasters occurred in the Bay of

Bengal region. The track of different storm surges are presented in Fig. 1.3 for making

understand of frequent visiting. As in [34], every year on an average 5–6 storms form in this

region, which causes 80% of global casualties. The coastal region of Bangladesh is the most

vulnerable because of the shallowness of the coastal water, high density of population in

low-lying islands, high bending of the boundaries of the coasts and islands, discharge from

river, high range of astronomical tide and favorable track of cyclones (see [8]). In addition,

the rates of erosion and accretion are very high in this region. The discharge of sediment is

the highest and the discharge of freshwater is the third highest from the river Meghna among

all river systems in the world (see [26]). Bangladesh, is situated at the northern tip of the Bay

of Bengal between 20◦N to 26◦N Latitudes and 88◦E to 92◦E Longitudes. It is bordered on

the west, north and east by India, on the south-east by Myanmar, on the south by the Bay

of Bengal. A proper warning system for the region can mitigate the sufferings of its people

and live stocks resulting from these storm surges. Though, Bangladesh Meteorological

Department (BMD) has a warning system which was bought from IIT, by which they can

predict the information of landfall time, sea level rising in a certain accuracy as well as they

can predict the storm track but not unique with actuality. Thus an effective storm surge

prediction model is highly desirable for the coastal region of Bangladesh which can minimize

the resulting damage from storm surges.
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Fig. 1.3 The northwest corner of Bay of Bengal, and track of several cyclones (source:
http://en.banglapedia.org/index.php?title=Cyclone).
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Table 1.1 Storm surge locations and losses of life (data sources: [6, 8] and NASA website).

Year Location Death
1970 Bangladesh 500,000
1737 India 300,000
1897 Bangladesh 175,000
1991 Bangladesh 140,000
1876 Bangladesh 100,000
1864 India 50,000
1833 India 50,000
1822 Bangladesh 40,000
1839 India 20,000
1789 India 20,000
1965 Bangladesh 19,279
1963 Bangladesh 11,520
1961 Bangladesh 11,468
1977 India 10,000
1960 Bangladesh 5,149
2007 Bangladesh 3,376
2009 India 275
2016 Bangladesh 24
2017 Bangladesh 18

Many analyses have been made in prediction of water level during storm surges as well

as in development of warning system on the basis of operational forecasting model all over

the world, among them worth mentioning studies are [10–15, 47, 50].

A limited number of studies have been done over the Bay of Bengal region considering

the west coast of India along with the coast of Bangladesh. Among them some worth

mentioning studies are [7, 9, 16–18, 29–33, 35–37, 40–44, 49].

Almost all of the of the studies mentioned here have been conducted using radiation

type boundary condition for the boundaries in the open sea, which is very similar to the

transmission boundary condition (1.2). Also these studies are about the development of nu-

merical computation without ensuring the stability of the model with this kind of boundaries

mathematically. It is of interest to note here that for linearized SWEs, the existence and

uniqueness of solutions are studied in [22] and the convergence of a finite element scheme
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for that linearized SWEs is studied in [23]. As far as we know, there is no theoretical results

for the existence, uniqueness or regularity for the SWEs with the transmission boundary

condition. It is to be noted here that the energy estimate of the SWEs have been studied

theoretically in [21] considering u ·n = 0. However, as far as we know, there is no theoretical

results on the energy estimate of the SWEs with the transmission boundary condition. In

this study, we have intended to investigate the stability of the SWEs with the transmission

boundary condition both theoretically and numerically through suitable energy estimates.

The SWEs can be considered as a coupled system of a pure convection equation for the

function φ of total wave height and a simplified Navier–Stokes equation for the velocity

u=(u1,u2)
T obtained by averaging function values in x3-direction. Let Ω ⊂R2 be a bounded

domain and T a positive constant. We consider the problem : find (φ ,u) : Ω × [0,T ]→R×R2

such that



∂φ

∂ t
+∇ · (φu) = 0 in Ω × (0,T ),

ρφ

[
∂u
∂ t

+(u ·∇)u
]
−2µ∇ · (φD(u))+ρgφ∇η = 0 in Ω × (0,T ),

φ = η +ζ in Ω × (0,T ),

(1.1)

The explanation about u, φ , η and ζ can be found in Chapter 3 and in the Figure 2.1. It

is known that a boundary data for φ is necessary on the so-called inflow boundary, where

u · n < 0 is satisfied for the outward unit normal vector n. We can easily know whether

the Dirichlet data for φ is required or not on the Dirichlet and the slip boundaries for u,

since the sign of u · n is known a priori. On the transmission boundary ΓT , however, the

boundary condition for u and φ is mysterious and problematic from both computational and

mathematical view points. The transmission boundary condition of the form

u = c
η

φ
n on ΓT × (0,T ), (1.2)



8 General introduction

is often used on ΓT , where c(x) is a given positive function and η(x, t) = φ(x, t)−ζ (x) is the

elevation from the reference height for a given depth function ζ . It is of interest to note here

that including wind stress, bottom friction and Coriolis force in (1.1) a storm surge prediction

model can be developed (see (2.11) and (2.12) in Chapter 2). For the theoretical study we set

each of them as zero to make the problem simple.

Let φ k
h and uk

h be the approximations of φ k : = φ(·, tk) and uk : = u(·, tk), respectively,

where tk : = k∆t (k ∈ Z) for a time increment ∆t. In our computation we get φ
k+1
h by using

uk
h, and then uk+1

h by using the condition (1.2) as the Dirichlet boundary condition for u. But

at the same time we should consider (1.2) as the boundary data for φ
k+1
h if the position is on

inflow boundary, i.e., uk+1
h ·n < 0. In fact, if uk+1

h ·n < 0, we need to give the value of φ
k+1
h

which is unknown.

It is known that the finite difference method (FDM) is suitable for a domain of rectangular

or square shape, but the real domain is not usually of rectangular or a square shape. It is also

known that the finite element method (FEM) is more appropriate for a domain of irregular

shape. It is to be noted here that both rectangular and triangular mesh are used for FEM but

triangular mesh is more suitable for a domain of complex shape. Considering this fact into

account the computation of the SWEs with the transmission boundary condition are also

made by a Lagrange–Galerkin method (LGM) with the triangular mesh (see Figure 1.4).

The LGM is a FEM based on the time discretization of the material derivative,

φ k+1(x)−φ k(x−uk(x)∆t)
∆t

.

The LGM is a powerful numerical method for the Navier-Stokes equations in fluid flow

problems. The study of LGM for the Navier-Stokes equations can be found in , e.g.,[1–

4, 27, 28, 38, 39, 48]. In this study we have used LGM for SWEs.

It is to be noted here that the position x−uk(x)∆t is the so-called upwind point of x with

respect to uk. In the computation the “nearest” boundary value of φ k is used if the upwind



9

Fig. 1.4 A triangular mesh for the Bay of Bengal

point places outside the domain, and the LGM works without boundary data for φ k+1 even if

uk+1 ·n < 0. In the LG method the problem on the transmission boundary seems to be solved

numerically, but it is still problematic mathematically.

In this work, in order to understand the transmission boundary condition mathematically,

we study the stability of the SWEs in terms of a suitable energy, and confirm the stability

numerically by both FDM and LGM. It is to be noted here that we can show a (successful)

energy estimate of the SWEs, when only the Dirichlet and the slip boundary conditions are

employed, cf. Corollary 3.2.3-(ii), where such discussions have been done under the periodic

boundary condition, e.g., [5, 25].

The stability is considered theoretically with respect to the energy as follows. Introducing

a suitable energy, we begin with deriving an equality that the time-derivative of the energy

consists of four terms, where three terms are line integrals over the boundary and the other

term is an integral over the whole domain which is always non-positive, cf. Theorem 3.2.1.

Since the three line integrals vanish over the Dirichlet and the slip boundaries, as a result, we

have the three line integrals over the transmission boundary and the integral over the domain,
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cf. Corollary 3.2.3-(i). An energy estimate is obviously obtained if there is no transmission

boundary, cf. Corollary 3.2.3-(ii). In addition, we obtain that a sum of two line integrals

over the transmission boundary is non-positive under some conditions to be satisfied in real

computations, cf. Theorem 3.2.4. Although, at present, the mathematical results do not

derive the stability estimate of the SWEs with the transmission boundary condition directly,

we have good information and can study the stability numerically by using the theoretical

results.

Though our final goal is to develop a storm surge prediction model for the Bay of Bengal

region, until now we are not succeeded, but we have some good results, which we believe

can help to develop an appropriate storm surge prediction model for that region. We have a

theoretical (successful) energy estimate of the SWEs, with the Dirichlet and the slip boundary

conditions and a numerical (successful) energy estimate of the SWEs, with the Dirichlet and

the transmission boundary conditions by both FDM and LGM. To see the performance of

the LGM we have investigated the experimental order of convergence for the LGM with a

suitable choice of exact solutions for five different boundary setting (see Section 4.1) for the

norms l∞ −L2, l∞ −H1
0 , l∞ −H1, l2 −L2, l2 −H1

0 and l2 −H1. The experimental order of

convergence of u1 and u2 is O(h) for all the six norms and experimental order of convergence

of η is O(h) for the norms l∞ −L2 and l2 −L2 and for the other four norms experimental

order of convergence is not O(h) but confirmed to be convergent. In order to see whether the

transmission boundary condition is independent of its position or not, simulations are made

in the Bay of Bengal, setting the transmission boundary condition in two different places.

We have computed the mass and L2-norm of η and the results shows that the transmission

boundary condition is almost independent of its position.

As far as we know, there is not a single model using LGM, for the prediction of storm

surge in the Bay of Bengal, therefore we strongly believe that our results will be helpful to
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develop an appropriate storm surge prediction model using LGM for the Bay of Bengal in

the near future.

The rest of the thesis is organized as follows:

Derivation of the model equations is presented in Chapter 2. Theoretical study of the

energy estimates is presented in Chapter 3. Numerical results obtained by FDM is presented

in chapter 4. Numerical results obtained by LGM is presented in chapter 5. In Chapter 6,

Instability on the transmission boundary and some future works are given. In Chapter 7,

conclusion is given. Finally, the total bibliography that has been needed for completing this

thesis is presented.





Chapter 2

Derivation of the model equations

In this Chapter we have derived our model equations following [19] by considering one-layer

viscous SWEs.

2.1 SWEs

For any atmospheric or oceanic phenomenon, if the horizontal length scale is much larger than

the vertical scale, then the x3 component of the momentum equation may be approximated

by the hydro-static equation. The water depth is considered very smaller than the horizontal

length scale and there is the shallow-water low-frequency flow. First, we will derive the

viscous SWEs. we consider orthogonal coordinates [m], where the directions in the horizontal

plane are represented by x1 and x2, respectively , and the vertical direction is represented

by x3 ( see Fig. 2.1). Here t represents time [s]. We have formulated the system using the

Navier-Stokes equations assuming hydro-static pressure and gravity in the x3 direction, and

Coriolis forces occurring in the x1 and x2 directions.

3

∑
j=1

∂

∂x j
u j = 0, (2.1)
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Fig. 2.1 Shallow water model domain

∂u1

∂ t
+

3

∑
j=1

u j
∂

∂x j
u1 =− 1

ρ

∂ p
∂x1

+
1
ρ

3

∑
j=1

∂

∂x j
τ1 j + f u2, (2.2)

∂u2

∂ t
+

3

∑
j=1

u j
∂

∂x j
u2 =− 1

ρ

∂ p
∂x2

+
1
ρ

3

∑
j=1

∂

∂x j
τ2 j − f u1, (2.3)

0 =−ρg− ∂ p
∂x3

. (2.4)

In the xi (i = 1, 2, 3) direction velocity [m/s] is represented by ui(x1,x2,x3, t) , pressure

[N/m2] is denoted by p(x1,x2,x3, t), density [kg/m3] is denoted by ρ , stress [N/m2] in the

direction xi acting on the x j plane is denoted by τi j(x1,x2,x3, t), the Coriolis coefficient [1/s]

is denoted by f and the acceleration [m/s2] due to gravity is denoted by g. In addition, the

free surface elevation is denoted by η(x1,x2, t), and −ζ (x1,x2) represents the ordinate the

bottom boundary surface of the water.
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2.2 Surface and bottom boundary conditions

There is no velocity component in the normal direction on the water’s free surface plane, and

water bottom plane, and so the following conditions are used for u3.


u3 =

∂η

∂ t
+

2

∑
j=1

u j
∂η

∂x j
, (x3 = η(x1,x2, t))

u3 =−
2

∑
j=1

u j
∂ζ

∂x j
, (x3 =−ζ (x1,x2)) .

(2.5)

2.3 Vertically integrated equations

We integrate each of the equations (2.1), (2.2) and (2.3) with respect to x3 , from the ocean

floor −ζ (x1,x2) to the water surface η(x1,x2, t). Then, the viscous shallow water equations

are derived that express averaged rates for the fluid layer. Thus, the velocity component in

the xi (i = 1, 2) direction averaged over the fluid layer is taken as Ui(x1,x2, t). The thickness

of the fluid layer is denoted by φ(x1,x2, t). We consider fluids with the constant density

represented by ρ . φ and Ui are represented by the following equations;

φ(x1,x2, t) = η(x1,x2, t)+ζ (x1,x2),

Ui(x1,x2, t) =
1
φ

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
uidx3.

The integration of (2.1) from ζ (x1,x2) to η(x1,x2, t) in the x3 direction yields

0 =
3

∑
j=1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂

∂x j
u jdx3

=
2

∑
j=1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂

∂x j
u jdx3 +

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂

∂x3
u3dx3
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=
2

∑
j=1

∂

∂x j

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
u jdx3 −

2

∑
j=1

u j(x1,x2,x3, t)|x3=η(x1,x2,t)

∂

∂x j
η(x1,x2, t)

+
2

∑
j=1

u j(x1,x2,x3, t)|x3=−ζ (x1,x2)

∂

∂x j
−ζ (x1,x2)+u3(x1,x2,x3, t)|x3=η(x1,x2,t)

−u3(x1,x2,x3, t)|x3=−ζ (x1,x2)

=
2

∑
j=1

∂

∂x j

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
u jdx3 −

2

∑
j=1

u j(x1,x2,x3, t)|x3=η(x1,x2,t)

∂

∂x j
η(x1,x2, t)

+
2

∑
j=1

u j(x1,x2,x3, t)|x3=−ζ (x1,x2)

∂

∂x j
{−ζ (x1,x2)}+

∂

∂ t
η(x1,x2, t)

+
2

∑
j=1

u j(x1,x2,x3, t)|x3=η(x1,x2,t)

∂

∂x j
η(x1,x2, t)

−
2

∑
j=1

u j(x1,x2,x3, t)|x3=−ζ (x1,x2)

∂

∂x j
{−ζ (x1,x2)}

=
∂

∂ t
η(x1,x2, t)+

2

∑
j=1

∂

∂x j

{
φU j(x1,x2, t)

}
Thus we have

∂

∂ t
η(x1,x2, t)+

2

∑
j=1

∂

∂x j

{
φU j(x1,x2, t)

}
= 0 (2.6)

Now, we integrate (2.4) in the x3 direction.

p(x1,x2,x3, t) = pa(x1,x2, t)+ρg{η(x1,x2, t)− x3} , (2.7)

where pa(x1,x2, t) is the atmospheric pressure.

The integration of (2.2) from −ζ (x1,x2) to η(x1,x2, t) in the x3 direction yields
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∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂u1

∂ t
dx3 +

3

∑
j=1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
u j

∂

∂x j
u1dx3

=− 1
ρ

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂ p
∂x1

dx3 +
1
ρ

3

∑
j=1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂

∂x j
τ1 jdx3 +

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
f u2dx3,

The left hand side can be written as

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂u1

∂ t
dx3 +

3

∑
j=1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

(
u j

∂

∂x j
u1 +u1

∂

∂x j
u j −u1

∂

∂x j
u j

)
dx3

=
∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂u1

∂ t
dx3 +

3

∑
j=1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂

∂x j

(
u1u j

)
dx3 −

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
u1

(
3

∑
j=1

∂

∂x j
u j

)
dx3

=
∂

∂ t

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
u1dx3 −u1(x1,x2,x3, t)|x3=η(x1,x2,t)

∂

∂ t
η(x1,x2, t)

+u1(x1,x2,x3, t)|x3=−ζ (x1,x2)

∂

∂ t
{−ζ (x1,x2)}+

2

∑
j=1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂

∂x j

(
u1u j

)
dx3

+
∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂

∂x3
(u1u3)dx3

=
∂

∂ t
(φU1)−u1(x1,x2,x3, t)|x3=η(x1,x2,t)

∂

∂ t
η(x1,x2, t)

+
2

∑
j=1

∂

∂x j

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

(
u1u j

)
dx3 −

2

∑
j=1

(u1u j)|x3=η(x1,x2,t)

∂

∂x j
η(x1,x2, t)

+
2

∑
j=1

(u1u j)|x3=−ζ (x1,x2)

∂

∂x j
−ζ (x1,x2)+(u1u3)|x3=η(x1,x2,t)

− (u1u3)|x3=−ζ (x1,x2)

=
∂

∂ t
(φU1)+

2

∑
j=1

∂

∂x j

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

(
u1u j

)
dx3

+u1(x1,x2,x3, t)|x3=η(x1,x2,t)

{
∂η

∂ t
+

2

∑
j=1

(u j)|x3=η(x1,x2,t)

∂η

∂x j
− (u3)|x3=η(x1,x2,t)

}
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+u1(x1,x2,x3, t)|x3=−ζ (x1,x2)

{
2

∑
j=1

(u j)|x3=−ζ (x1,x2)

∂b
∂x j

− (u3)|x3=−ζ (x1,x2)

}

=
∂

∂ t
(φU1)+

2

∑
j=1

∂

∂x j

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

(
u1u j

)
dx3

=
∂

∂ t
(φU1)+

∂

∂x1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
(u1)

2 dx3 +
∂

∂x2

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
(u1u2)dx3

=
∂

∂ t
(φU1)+

∂

∂x1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

{
(u1)

2 −2u1U1 +(U1)
2}dx3

+
∂

∂x2

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
(u1u2 −u1U2 −U1u2 +U1U2)dx3

+
∂

∂x1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

{
2u1U1 − (U1)

2}dx3 +
∂

∂x2

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
(u1U2 +U1u2 −U1U2)dx3

=
∂

∂ t
(φU1)+

∂

∂x1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
(u1 −U1)

2dx3

+
∂

∂x2

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
(u1 −U1)(u2 −U2)dx3

+
∂

∂x1

{
φ(U1)

2}+ ∂

∂x2
(φU1U2)

=
∂

∂ t
(φU1)+

∂

∂x1

{
φ(U1)2}+ ∂

∂x2
(φU1U2)

+
∂

∂x1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
(ũ1)

2dx3 +
∂

∂x2

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
ũ1ũ2dx3,

where ũi = ui −Ui. Now sending
∂

∂x1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
(ũ1)

2dx3 +
∂

∂x2

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
ũ1ũ2dx3 on

the right hand side, we have
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∂

∂ t
(φU1)+

∂

∂x1

{
φ(U1)2}+ ∂

∂x2
(φU1U2)

=− 1
ρ

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂ p
∂x1

dx3 +
1
ρ

3

∑
j=1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂

∂x j
τ1 jdx3

+
∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
f u2dx3 −

∂

∂x1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
(ũ1)

2dx3

− ∂

∂x2

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
ũ1ũ2dx3 (2.8)

Now, the left hand side of the (2.8) becomes

∂

∂ t
(φU1)+

∂

∂x1

{
φ(U1)2}+ ∂

∂x2
(φU1U2)

= φ
∂

∂ t
(U1)+U1

∂

∂ t
(φ)+U1

∂

∂x1
(φU1)+φU1

∂

∂x1
(U1)

+U1
∂

∂x2
(φU2)+φU2

∂

∂x2
(U1)

= φ

(
∂U1

∂ t
+U1

∂U1

∂x1
+U2

∂U1

∂x2

)
+U1

{
∂

∂ t
(η −b)+

∂

∂x1
(φU1)+

∂

∂x2
(φU2)

}

= φ

(
∂U1

∂ t
+

2

∑
j=1

U j
∂U1

∂x j

)
+U1

{
∂

∂ t
(η)+

∂

∂x1
(φU1)+

∂

∂x2
(φU2)

}

= φ

(
∂U1

∂ t
+

2

∑
j=1

U j
∂U1

∂x j

)
(from (2.6))
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Now, we change the right hand side of (2.8). For the pressure term, since we have,

by (2.7)

∂ p
∂x1

=
∂ pa

∂x1
+ρg

∂η

∂x1

∴− 1
ρ

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂ p
∂x1

dx3 =− 1
ρ

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

(
∂ pa

∂x1
+ρg

∂η

∂x1

)
dx3

=− 1
ρ

φ

(
∂ pa

∂x1
+ρg

∂η

∂x1

)

Also we have

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
f u2dx3 = f φU2For the stress terms, it holds that

1
ρ

3

∑
j=1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

∂

∂x j
τ1 jdx3 −

∂

∂x1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
(ũ1)

2dx3

− ∂

∂x2

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
ũ1ũ2dx3

=
1
ρ

2

∑
j=1

∂

∂x j

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
τ1 jdx3 −

1
ρ

2

∑
j=1

(τ1 j)|x3=η(x1,x2,t)

∂

∂x j
η(x1,x2, t)

+
1
ρ

2

∑
j=1

(τ1 j)|x3=−ζ (x1,x2)

∂

∂x j
−ζ (x1,x2)+

1
ρ
(τ13)|x3=η(x1,x2,t)

− 1
ρ
(τ13)|x3=−ζ (x1,x2)

− ∂

∂x1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
(ũ1)

2dx3 −
∂

∂x2

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
ũ1ũ2dx3
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=
1
ρ

∂

∂x1

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

{
τ11 −ρ(ũ1)

2}dx3 +
1
ρ

∂

∂x2

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
(τ12 −ρ ũ1ũ2)dx3

+
1
ρ

{
(τ13)|x3=η(x1,x2,t)

−
2

∑
j=1

(τ1 j)|x3=η(x1,x2,t)

∂

∂x j
η(x1,x2, t)

}

− 1
ρ

{
(τ13)|x3=−ζ (x1,x2)

−
2

∑
j=1

(τ1 j)|x3=−ζ (x1,x2)

∂

∂x j
−ζ (x1,x2)

}

Here, set

τ̃11 =
1
φ

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)

{
τ11 −ρ(ũ1)

2}dx3

τ̃12 =
1
φ

∫ x3=η(x1,x2,t)

x3=−ζ (x1,x2)
(τ12 −ρ ũ1ũ2)dx3

S1 =

{
(τ13)|x3=η(x1,x2,t)

−
2

∑
j=1

(τ1 j)|x3=η(x1,x2,t)

∂

∂x j
η(x1,x2, t)

}

B1 =

{
(τ13)|x3=−ζ (x1,x2)

−
2

∑
j=1

(τ1 j)|x3=−ζ (x1,x2)

∂

∂x j
−ζ (x1,x2)

}

Hence, integrating (2.2) from −ζ (x1,x2) to η(x1,x2, t) in the direction x3, we have

φ

(
∂U1

∂ t
+

2

∑
j=1

U j
∂U1

∂x j

)
=− 1

ρ
φ

(
∂ pa

∂x1
+ρg

∂η

∂x1

)

+
1
ρ

{
∂

∂x1
(φ τ̃11)+

∂

∂x2
(φ τ̃12)

}
+

1
ρ
(S1 −B1)+ f φU2 (2.9)

Similarly. integrating (2.3) from −ζ (x1,x2) to η(x1,x2, t) in the direction x3, we have
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φ

(
∂U2

∂ t
+

2

∑
j=1

U j
∂U2

∂x j

)
=− 1

ρ
φ

(
∂ pa

∂x2
+ρg

∂η

∂x2

)

+
1
ρ

{
∂

∂x1
(φ τ̃21)+

∂

∂x2
(φ τ̃22)

}
+

1
ρ
(S2 −B2)− f φU1 (2.10)

The equation system can be presented in the following way:

∂

∂ t
η(x1,x2, t)+

2

∑
j=1

∂

∂x j

{
φU j(x1,x2, t)

}
= 0, (2.11)

φ

(
∂Ui

∂ t
+

2

∑
j=1

U j
∂Ui

∂x j

)
=− 1

ρ
φ

(
∂ pa

∂xi
+ρg

∂η

∂xi

)

+
1
ρ

2

∑
j=1

∂

∂x j
(φ τ̃i j)+

1
ρ
(Si −Bi)+(−1)i+1 f φUi+1, (2.12)

Where

Si = θρaWi {(W1)
2 +(W2)

2}
1
2

Bi =
ρg
C2 Ui {(U1)

2 +(U2)
2}

1
2

τ̃i j = µH

(
∂Ui

∂x j
+

∂U j

∂xi

)
U3 =U1

Here, τ̃i j represents the stress in the xi direction acting on the x j surface, Si represents

the stress in the xi direction acting on the top surface, and Bi represents the stress in the
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xi direction acting on the bottom surface. µH represents the horizontal viscosity constant

[Ns/m2], θ represents the wind effect constant, ρa represents the air density, Wi represents

the wind speed in the xi direction, and C represents the Chezy constant [m1/2/s].





Chapter 3

Theoretical results

In this Chapter theoretical results of the energy estimates for our model is presented. For

simplicity, we set Si = Bi = 0, i = 1,2, Ui = ui, i = 1,2, and neglect the Coriolis force. Taking

all the essential parts we have considered the following mathematical problem which is to be

considered in this work.

3.1 Statement of the problem

Let Ω ⊂ R2 be a bounded domain and T a positive constant. We consider the problem : find

(φ ,u) : Ω × [0,T ]→ R×R2 such that



∂φ

∂ t
+∇ · (φu) = 0 in Ω × (0,T ),

ρφ

[
∂u
∂ t

+(u ·∇)u
]
−2µ∇ · (φD(u))+ρgφ∇η = 0 in Ω × (0,T ),

φ = η +ζ in Ω × (0,T ),

(3.1)
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with boundary conditions

u = 0 on ΓD × (0,T ), (3.2)

(D(u)n)×n = 0, u ·n = 0 on ΓS × (0,T ), (3.3)

u = c
η

φ
n on ΓT × (0,T ), (3.4)

and initial conditions

u = u0, η = η
0 in Ω , at t = 0, (3.5)

where φ is the total height of wave, u = (u1,u2)
T is the velocity, η : Ω × [0,T ] → R is

the water level from the reference height, ζ (x)> 0 (x ∈ Ω) is the depth of water from the

reference height, see Figure 2.1, D(u) : =
(
∇u+(∇u)T)/2 is the strain-rate tensor, n is the

unit outward normal vector to the boundary of Ω , Γ : = ∂Ω is the boundary of Ω , we

assume that Γ consists of non-overlapped three parts, ΓD, ΓS and ΓT , i.e., Γ = Γ D ∪Γ S ∪Γ T ,

ΓD∩ΓS =∅, ΓS∩ΓT =∅, ΓT ∩ΓD =∅, the subscripts “D”, “S”, and “T ” mean Dirichlet, slip,

and transmission boundaries, respectively, ρ > 0 is a constant which represents the density

of water, µ > 0 is a constant which represents the viscosity, g > 0 is the acceleration due to

gravity, and c(x) : = c0
√

gζ (x) with a positive constant c0. In the rest of paper, we assume

ζ ∈C1(Ω). It is of interest to note here that [22] studied about the existence, uniqueness

and [23] studied about the convergence of a finite element scheme for linearized SWEs but

there is no theoretical results, as far as we know, for the existence, uniqueness or regularity

for the model (3.1)–(3.5) yet. Also it is pertinent to point out here that φ(x, t) > 0 for all

x ∈ Ω and t ∈ [0,T ] can not be shown theoretically for (3.1)–(3.5), but for this problem with

ΓT = /0, we have the following Remark.

Remark 3.1.1. If Γ ∈C2, u ·n ≥ 0 on Γ , φ(x,0)> 0 for all x ∈ Ω , then by the characteristic

method it can be shown that φ(x, t)> 0 for all x ∈ Ω and t ∈ [0,T ].
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3.2 Energy estimate

In this section, we define the total energy and study the stability of solutions to the problem

stated in Section 3.1 in terms of the energy. For a solution of (3.1) the total energy E(t) at

time t ∈ [0,T ] is defined by

E(t) : = E1(t)+E2(t), (3.6)

where E1(t) and E2(t) are the kinetic and the potential energies defined by

E1(t) : =
∫

Ω

ρ

2
φ |u|2dx, E2(t) : =

∫
Ω

ρg|η |2

2
dx.

Let symbols Ii(t;Γ ), i = 1, . . . ,3, and I4(t;Ω), t ∈ [0,T ], be integrals defined by

I1(t;Γ ) : =−ρ

2

∫
Γ

φ |u|2u ·nds, I2(t;Γ ) : =−ρg
∫

Γ

φηu ·nds,

I3(t;Γ ) : = 2µ

∫
Γ

φ
[
D(u)n

]
·uds, I4(t;Ω) : =−2µ

∫
Ω

φ |D(u)|2 dx.

These are used in the rest of this work. Let us assume

φ ∈C1(Ω × [0,T ] : R), u ∈C1(Ω × [0,T ] : R2), (3.7)

and

∂i∂ ju ∈C1(Ω × [0,T ] : R2) for i, j = 1,2. (3.8)
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Theorem 3.2.1. Suppose that a pair of functions (φ ,u) : Ω × [0,T ]→ R×R2 satisfies (3.1)

with (3.7) and (3.8). Then, we have

d
dt

E(t) =
3

∑
i=1

Ii(t;Γ )+ I4(t;Ω). (3.9)

We prove Theorem 3.2.1 after preparing a lemma.

Lemma 3.2.2. For the functions φ : Ω × [0,T ]→R and u : Ω × [0,T ]→R2 satisfying (3.7),

we have the following.

(i)
∂

∂ t
(φu)+∇ · [(φu)⊗u] =

(
∂φ

∂ t
+∇ · (φu)

)
u+φ

(
∂u
∂ t

+(u ·∇)u
)
,

(ii)
∫

Ω

(∇ · [(φu)⊗u]) ·udx =
1
2

∫
Γ

φ |u|2u ·nds+
1
2

∫
Ω

[∇ · (φu)]|u|2dx.

Proof. We prove (i). From the identity,

∇ · [(φu)⊗u] = [∇ · (φu)]u+φ [(u ·∇)u], (3.10)

we have

∂

∂ t
(φu)+∇ · [(φu)⊗u] =

∂φ

∂ t
u+φ

∂u
∂ t

+[∇ · (φu)]u+φ [(u ·∇)u]

=

(
∂φ

∂ t
+∇ · (φu)

)
u+φ

(
∂u
∂ t

+(u ·∇)u
)
,

which completes the proof of (i).

We prove (ii). Denoting the left hand side of (ii) by J and using the integration by parts

formula, we have

J =
∫

Γ

([(φu)⊗u]n) ·uds−
∫

Ω

[(φu)⊗u] : ∇udx

=
∫

Γ

φ |u|2u ·nds−
∫

Ω

φ(u ·∇)u ·udx, (3.11)
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where A : B = ∑
2
i, j=1 Ai jBi j. We, therefore, have

J =
∫

Ω

[∇ · (φu)|u|2 +(φ(u ·∇)u) ·u]dx (from (3.10))

=
∫

Ω

[∇ · (φu)]|u|2 dx+
∫

Γ

φ |u|2u ·nds− J (from (3.11)),

which implies the desired result of (ii).

Proof of Theorem 3.2.1. Differentiating (3.6) with respect to t, we get

d
dt

E(t) =
d
dt

E1(t)+
d
dt

E2(t). (3.12)

We compute d
dt E1(t) and d

dt E2(t) separately.

Firstly, d
dt E1(t) is computed as follows. From Lemma 3.2.2-(i) and the first equation

of (3.1), we have

φ

[
∂u
∂ t

+(u ·∇)u
]
=

∂

∂ t
(φu)+∇ · [(φu)⊗u],

which implies

ρ

[
∂

∂ t
(φu)+∇ · [(φu)⊗u]

]
−2µ∇ ·

[
φD(u)

]
+ρgφ∇η = 0. (3.13)

Multiplying (3.13) by u and integrating with respect to x over Ω , we get

ρ

∫
Ω

[
∂

∂ t
(φu)

]
·u dx+ρ

∫
Ω

[
∇ · [(φu)⊗u]

]
·u dx−2µ

∫
Ω

[
∇ · (φD(u))

]
·u dx

+ρg
∫

Ω

φ∇η ·u dx = 0. (3.14)
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From the equation (3.14) above and the next two identities:

ρ

∫
Ω

[
∂

∂ t
(φu)

]
·udx+ρ

∫
Ω

[
∇ · [(φu)⊗u]

]
·u dx

= ρ

∫
Ω

(
∂φ

∂ t
|u|2 +φ

∂u
∂ t

·u
)

dx+
ρ

2

∫
Γ

φ |u|2u ·n ds+
ρ

2

∫
Ω

[
∇ · (φu)

]
|u|2 dx

(from Lemma 3.2.2-(ii))

= ρ

∫
Ω

(1
2

∂φ

∂ t
|u|2 +φu · ∂u

∂ t

)
dx+

ρ

2

∫
Γ

φ |u|2u ·nds (from the first eq. of (3.1))

=
d
dt

[
ρ

2

∫
Ω

φ |u|2 dx
]
+

ρ

2

∫
Γ

φ |u|2u ·nds =
d
dt

E1(t)− I1(t;Γ ),

−2µ

∫
Ω

[
∇ · (φD(u))

]
·u dx =−2µ

∫
Γ

φ
[
D(u)n

]
·u ds+2µ

∫
Ω

φ |D(u)|2 dx

=−I3(t;Γ )− I4(t;Ω),

we obtain

d
dt

E1(t) = I1(t;Γ )+ I3(t;Γ )+ I4(t;Ω)−ρg
∫

Ω

∇η · (φu) dx. (3.15)

Secondly, d
dt E2(t) is computed as follows:

d
dt

E2(t) =
d
dt

[
ρg
2

∫
Ω

|η |2dx
]

= ρg
∫

Ω

η
∂η

∂ t
dx

= ρg
∫

Ω

η
∂φ

∂ t
dx (from the third eq. of (3.1))

= ρg
∫

Ω

η
[
−∇ · (φu)

]
dx (from the first eq. of (3.1))

=−ρg
∫

Ω

∇ · (ηφu)dx+ρg
∫

Ω

∇η · (φu)dx

= I2(t;Γ )+ρg
∫

Ω

∇η · (φu)dx. (3.16)
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The result (3.9) follows by adding (3.15) and (3.16) and recalling (3.12).

Corollary 3.2.3. (i) Suppose that a pair of functions (φ ,u) : Ω × [0,T ] → R×R2 satis-

fies (3.1) with (3.2)-(3.4), (3.7) and (3.8) . Then, we have

d
dt

E(t) =
3

∑
i=1

Ii(t;ΓT )+ I4(t;Ω). (3.17)

(ii) Furthermore, if Γ = ΓD ∪ΓS and φ(x, t)> 0 ((x, t) ∈ Ω × [0,T ]), we have

d
dt

E(t) = I4(t;Ω)≤ 0. (3.18)

Proof. On ΓS, from the first equation of (3.3), there exists a scalar function w : Ω × [0,T ]→R

such that D(u)n = w(x, t)n, which implies

[
D(u)n

]
·u = (wn) ·u = w(u ·n) = 0.

Hence, the result (3.17) is established from Theorem 3.2.1 with (3.2) and (3.3).

When Γ = ΓD ∪ΓS, i.e., ΓT =∅, the identity (3.17) implies (3.18).

It is to be noted here that the definition (3.6), Lemma 3.2.2-(ii) and Corollary 3.2.3-(ii)

can also be found in [21], where u ·n = 0 is assumed.

Theorem 3.2.4. Suppose that a pair of functions (φ ,u) : Ω × [0,T ]→ R×R2 satisfies (3.1)

with (3.2)-(3.4), (3.7), (3.8) and an inequality

φ(x, t)> 0, (x, t) ∈ Γ T × [0,T ], (3.19)
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and that there exists α ∈ (0,1) such that

η(x, t)≥−αζ (x), x ∈ Γ T , t ∈ [0,T ], (3.20)

0 < c0 ≤
√

2
α
(1−α). (3.21)

Then, we have the following estimates:

I1(t;ΓT )+ I2(t;ΓT )≤ 0, (3.22)

in particular,
d
dt

E(t)≤ I3(t;ΓT ). (3.23)

Proof. We prove (3.22), then (3.17) and (3.22) imply (3.23), since I4(t;Ω) is always non-

positive. We have

2

∑
i=1

Ii(t;ΓT ) =−ρ

∫
ΓT

φ(u ·n)
[
gη +

1
2
|u|2
]

ds

=−ρ

∫
ΓT

φc
η

φ

[
gη +

1
2

c2
0gζ

η2

φ 2

]
ds

=−ρg
∫

ΓT

cη
2
[
1+

c2
0

2
ζ η

(ζ +η)2

]
ds.

Let f (r) : = r/(1+ r)2. From f ′(r) = (1− r)/(1+ r)3, it holds that f (r1) ≤ f (r2) for

−1<r1 ≤ r2 ≤ 1. If η < 0, then since −1 ≤−α ≤ η/ζ ≤ 0, we obtain f (−α)≤ f (η/ζ ).

Again if η ≥ 0 then we also have f (−α)< 0 < f (η/ζ ). In both cases we obtain f (−α)≤

f (η/ζ ) i.e.,

− α

(1−α)2 ≤ ηζ

(ζ +η)2 ,
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which implies that

2

∑
i=1

Ii(t;ΓT )≤−ρg
∫

ΓT

cη
2
{

1−
c2

0α

2(1−α)2

}
ds ≤ 0

from the condition (3.21).

Remark 3.2.5. We observe numerically that I2(t;Γ ) is dominant and ∑
3
i=1 Ii(t;Γ ) is negative,

while I1(t;Γ ) and I3(t;Γ ) may be positive, cf. Subsection 4.1.2. Although the sign of d
dt E(t)

is as yet unknown due to I3(t;ΓT ), from the numerical results we can say that the transmission

boundary condition (3.4) is reasonable under the conditions (3.19)-(3.21) to be satisfied in

practical computation.

Remark 3.2.6. The condition (3.21) is not strict in the practical computation, where α and

c0 are chosen typically as, e.g., α = 0.01 and c0 = 0.9 [20]. These satisfy (3.21), since√
2/α (1−α)≈ 14.





Chapter 4

Numerical results by FDM

In this Chapter, we present numerical results by a finite difference scheme for problem

(3.1)–(3.5). Considering five different cases of boundary setting, we have presented results

for numerical simulation in a square domain. We have also presented results for energy,

derivative of energy and Ik
hi, i = 1, . . . ,4 for that five cases. Two tables are also presented, the

first one is for the maximum and minimum values of Ik
hi, i = 1, . . . ,4, and the second one is

for the choice of c0.

4.1 Problem setting

For the numerical computation we set Ω = (0,L)2 for a positive constant L, T = 100,

ζ = a > 0, µ = 1, g = 9.8× 10−3, ρ = 1012, η0 = c1exp(−100|x− p|2) (c1 > 0, p ∈ Ω).

As the real domain is very large, we consider the length in km scale. So the above values are

in km (length), kg (mass) and s (time). We set ΓS = /0 for simplicity. We consider five cases

of ΓT :

(i) ΓT = /0, (ii) ΓT = Γtop, (iii) ΓT = Γtop ∪Γright ∪{(L,L)},

(iv) ΓT = Γtop ∪Γright ∪Γleft ∪{(L,L)}∪{(0,L)}, (v) ΓT = Γ ,
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for Γtop : = {(x1,L);0 < x1 < L}, Γright : = {(L,x2);0 < x2 < L}, Γleft : = {(0,x2);0 < x2 <

L}, and set ΓD = Γ \ΓT . For the above cases (ii)-(v), c0 = 0.9 is taken following [20].

4.1.1 A finite difference scheme

Let N ∈ N and ∆t > 0 be given, and let h : = L/N and NT : = ⌊T/∆t⌋, xi, j : = (ih, jh)T ∈

R2 (i, j ∈ Z), Ωh : = {xi, j ∈ Ω ; i, j ∈ Z}, Ω h : = {xi, j ∈ Ω ; i, j ∈ Z}, ΓhD : = {xi, j ∈

Γ D; i, j ∈ Z}, ΓhT : = {xi, j ∈ ΓT ; i, j ∈ Z}. Let u0
h : Ω h → R2 and φ 0

h : Ω h → R be given

approximate functions of u0 and φ 0, respectively. Our finite difference scheme is to find

{(φ k
h ,u

k
h)(xi, j); xi, j ∈ Ω h,k = 1, . . . ,NT} such that, for k = 0, . . . ,NT −1,



φ
k+1
h −φ k

h
∆t

+
(

∇h ·uk
h

)
φ

k
h +uk

h ·∇
up
h φ

k
h = 0 on Ω h,

ρφ
k
h

(
uk+1

h −uk
h

∆t
+(uk

h ·∇h)uk
h

)

−2µ∇h ·
(

φ
k
h Dh(uk

h)
)
+ρgφ

k
h ∇hη

k
h = 0 on Ωh,

φ
k
h = η

k
h +ζ on Ωh,

uk+1
h = uk+1

D on ΓhD,

uk+1
h = c

φ
k+1
h −ζ

φ
k+1
h

n on ΓhT ,

(4.1)

where ∇h = (∇h1,∇h2)
T and ∇

up
h = (∇up

h1 ,∇
up
h2)

T represent the (standard) central and upwind

(with respect to uk
h) difference operators, respectively, and Dh(vh) : = [(∇hvh)+(∇hvh)

T ]/2 :

Ω h → R2×2
sym for vh : Ω h → R2. If the required points for the operators ∇h and ∇

up
h are not

in Ω h, one sided difference is used.

4.1.2 Numerical results for five cases of boundary settings

Numerical simulations are carried out by scheme (4.1) for L = 10, a = 1, u0 = 0, c1 = 0.01,

p = (5,5)T , N = 1,000 and ∆t = 0.05 (NT = 2,000). Figure 4.1 shows color contours of ηk
h
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for k = 0, 500, 1,000, 1,500 and 2,000, which correspond to times t = 0,25,50,75 and

100, respectively, where (i)-(v) represent simulated results for the cases (i)-(v) stated in the

Section 4.1. It can be clearly found that the artificial reflection is almost removed on the

transmission boundaries for the cases (ii)-(v).

4.1.3 Numerical study of energy estimate

In this subsection, we study the stability of solutions to the problem (3.1)-(3.5) numerically

by scheme (4.1) in terms of the energy E(t) defined in (3.6). The values of E(tk) and

Ii(tk;Γ ), i = 1,2,3, I4(tk;Ω) are approximately computed by using solution {(uk
h,φ

k
h )}

NT
k=1

with {ηk
h}

NT
k=1 of scheme (4.1) as

E(tk)≈ Ek
h : =

ρ

2
h2

∑
xi, j∈Ωh

φ
k
h (xi, j)

∣∣uk
h(xi, j)

∣∣2 + ρg
2

h2
∑

xi, j∈Ωh

∣∣ηk
h(xi, j)

∣∣2,
I1(tk;Γ )≈ Ik

h1 : =−ρ

2

∫
Γ

(Πhφ
k
h )
∣∣Πhuk

h

∣∣2(Πhuk
h) ·nds,

I2(tk;Γ )≈ Ik
h2 : =−ρg

∫
Γ

(Πhφ
k
h )(Πhη

k
h)(Πhuk

h) ·nds,

I3(tk;Γ )≈ Ik
h3 : = 2µ

N

∑
m=1

(∫
ℓT

m

+
∫
ℓB

m

+
∫
ℓL

m

+
∫
ℓR

m

)
(Πhφ

k
h )(D(Πhuk

h)n) · (Πhuk
h)ds,

I4(tk;Ω)≈ Ik
h4 : =−2µ h2

N

∑
i, j=1

(Πhφ
k
h )(xi−1/2, j−1/2)

∣∣Dh(uk
h)(xi−1/2, j−1/2)

∣∣2,
where Πh fh ∈C(Ω ;R) is the bilinear interpolation of fh : Ω h → R for fh = φh,ηh, Πhuh =

(Πhuh1,Πhuh2)
T ∈C(Ω ;R2), the boundary is represented as Γ =

⋃N
m=1(ℓ

T
m ∪ ℓ

B
m ∪ ℓ

L
m ∪ ℓ

R
m)

for line segments ℓT
m, ℓB

m, ℓL
m, ℓR

m defined by ℓT
m : = xm−1,Nxm,N , ℓB

m : = xm−1,0xm,0, ℓL
m : =

x0,m−1x0,m, ℓR
m : = xN,m−1xN,m, and the domain is represented as Ω =

⋃N
i, j=1 ω i−1/2, j−1/2

for ωi−1/2, j−1/2 : = ((i−1)h, ih)× (( j−1)h, jh)⊂ Ω with the area h2.

Numerical simulations for the problem (3.1)-(3.5) with L= 1, a= 0.1, u0 = 0, c1 = 0.001,

p = (0.5,0.5)T are carried out by scheme (4.1) with ∆t = 2h for h = L/N = 1/N, N = 400,

500, 800 and 1,000. The results are presented in Figure 4.2, where (i)-(v) in the figure
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(i)

t = 0 t = 25 t = 50 t = 75 t = 100

(ii)

t = 0 t = 25 t = 50 t = 75 t = 100

(iii)

t = 0 t = 25 t = 50 t = 75 t = 100

(iv)

t = 0 t = 25 t = 50 t = 75 t = 100

(v)

t = 0 t = 25 t = 50 t = 75 t = 100

Fig. 4.1 Color contours of ηk
h by finite difference scheme (4.1) for the five cases (i)-(v)

discussed in Subsection 4.1.2.
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represent the cases (i)-(v) stated in the Section 4.1. The graphs of Ek
h and ∑

4
i=1 Ik

hi versus

t = tk (k ∈ N) are presented in the left and center figures, respectively. There are four lines

in each figure, but the lines are almost overlapped in the cases of (ii)-(v). In the case of

(i) the graphs are qualitatively similar. The right figures show the graphs of Ik
hi, i = 1, . . . ,4

versus t = tk (k ∈ N) for dt = 0.002 and dx = 0.001. The maximum and minimum values

of Ik
hi, i = 1, . . . ,4, on the time interval (0,T ) are presented in Table 4.1 for dt = 0.002 and

dx = 0.001.

From the numerical results presented in Figure 4.2, it can be found that the total energy

is mainly decreasing with respect to time. In the case of (i), i.e., Γ = ΓD, we can see that at

the early period the graphs are increasing, while the values are small. From the Figure 4.3, it

can be clearly seen that the sum ∑
4
i=1 Ik

hi corresponding to the derivative of the total energy is

always non-positive, which confirms the stability of solutions to the model numerically. From

Figure 4.4 and Table 4.1, it can be observed that the value of Ih2 is dominating negatively

over Ih1 and Ih3 so that the sum ∑
4
i=1 Ihi becomes non-positive always.

Table 4.1 Maximum and minimum values of Ik
hi, i = 1, . . . ,4, with respect to the number of

transmission boundaries

ΓT ΓD Ih1 Ih2 Ih3 Ih4

0 4
Max 0.00 0.00 0.00 0.00
Min 0.00 0.00 0.00 −8.63×10−7

1 3
Max 1.10×10−4 0.00 1.44×10−9 0.00
Min −2.59×10−3 −3.37 −1.25×10−9 −3.76×10−7

2 2
Max 1.86×10−4 0.00 1.72×10−9 0.00
Min −3.38×10−3 -6.27 −2.50×10−9 −2.31×10−7

3 1
Max 1.43×10−4 0.00 2.58×10−9 0.00
Min −5.06×10−3 −9.40 −3.75×10−9 −1.74×10−7

4 0
Max 2.87×10−4 0.00 3.47×10−9 0.00
Min −6.75×10−3 −12.54 −5.01×10−9 −1.14×10−7
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(i)

(ii)

(iii)

(iv)

(v)

Fig. 4.2 Graphs of Ek
h versus t = tk (≥ 0,k ∈ Z) for the five cases (i)-(v).
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(i)

(ii)

(iii)

(iv)

(v)

Fig. 4.3 Graphs of ∑
4
i=1 Ik

hi ≈
d
dt E(t) versus t = tk (≥ 0,k ∈ Z) for the five cases (i)-(v).
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(i)

(ii)

(iii)

(iv)

(v)

Fig. 4.4 Graphs of Ik
hi, i = 1, . . . ,4 versus t = tk (≥ 0,k ∈ Z) for the five cases (i)-(v).
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4.1.4 Choice of c0

In this subsection, we study the value of c0 by solving the problem with L = 1, a = 0.1,

p = (0.5,0.5)T and c0 = 0.1,0.2, . . . ,1.2 and 1.5 by scheme (4.1) with N = 400, ∆t =

0.005 (NT = 20,000), and by computing

Sk
h(c0) : =

{
h2

∑
xi, j∈Ω h

η
k
h(xi, j)

2
} 1

2

≈ S(tk;c0) : =

{∫
Ω

|ηk(x)|2dx
} 1

2

= ∥η
k∥L2(Ω),

Sh(c0) : =

{
∆t

NT

∑
k=0

Sk
h(c0)

2
} 1

2

≈ S (c0) : =

{∫ T

0
|S(tk;c0)|2dt

} 1
2

= ∥η∥L2(0,T ;L2(Ω)).

We set six different cases for the initial values of η0 and u0 as follows.

Case I: η
0 = c1 exp

(
−100

∣∣x− (0.5,0.5)
∣∣2), u0 = 0,

Case II: η
0 = c1 exp

(
−200

∣∣x− (0.5,0.5)
∣∣2), u0 = 0,

Case III: η
0 = c1 exp

(
−100

∣∣x− (0,0.5)
∣∣2), u0 = 0,

Case IV: η
0 = c1 exp

(
−100

∣∣x∣∣2), u0 = 0,

Case V: η
0 = c1 exp

(
−100

∣∣x− (0.5,0.5)
∣∣2), u0 = 10−4 (1,1)T ,

Case VI: η
0 = c1 exp

(
−100

∣∣x− (0.5,0.5)
∣∣2), u0 = 10−4 (1,−1)T ,

where c1 = 10−3.

Since the artificial reflection should be removed after the time the wave touches the

transmission boundary, we find a value of c0 which provides the minimum of Sh(c0). The

results are presented in Table 4.2, from where it can be concluded that for the case of zero

initial velocity the suitable value of c0 lies in [0.7,1.0] and for the case of nonzero initial

velocity we cannot say anything yet.
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Table 4.2 c0 and Sh(c0)

c0 Sh(c0)
Case I Case II Case III Case IV Case V Case VI

0.1 12.17 8.53 8.14 5.47 44.48 44.49
0.2 9.89 6.97 6.35 4.04 34.36 34.37
0.3 8.84 6.24 5.52 3.35 28.74 28.75
0.4 8.27 5.85 5.08 2.98 25.23 25.24
0.5 7.93 5.61 4.84 2.79 22.82 22.83
0.6 7.71 5.46 4.71 2.69 21.05 21.06
0.7 7.58 5.37 4.65 2.66 19.69 19.69
0.8 7.51 5.32 4.63 2.67 18.60 18.61
0.9 7.4805 5.2969 4.64 2.70 17.71 17.72
1.0 7.4807 5.2977 4.68 2.76 16.98 16.98
1.1 7.50 5.32 4.73 2.82 16.36 16.36
1.2 7.55 5.35 4.79 2.89 15.83 15.84
1.5 7.75 5.49 5.02 3.12 14.66 14.66



Chapter 5

Numerical results by LGM

In this Chapter, firstly, we have presented a LG scheme for the problem described in Sec-

tion 3.1. Secondly, we have presented results for numerical simulation in a square domain

for the five cases of boundary setting described in the Section 4.1. Thirdly, results for energy,

derivative of energy and Ik
hi, i= 1, . . . ,4 for that five cases are also presented. After that results

for the experimental order of convergence of the LG scheme are also presented for several

norms. Then simulated results in the Bay of Bengal for two different cases of boundary

setting are presented. Finally, graphs of η on the transmission boundary, graphs of mass and

graphs of L2 norm are shown for that two cases.

5.1 LG scheme

Let Th = {K} be a triangulation of Ω , and Mh the so-called P1 (piecewise linear) finite

element space. We set Ψh : = Mh for the water level η , and

Vh(ψh) : =

vh ∈ M2
h ;

vh(P) = c(P)
ψh(P)−ζ (P)

ψh(P)
n(P), ∀P : node on ΓT ,

vh(Q) = 0, ∀Q : node on ΓD


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for the velocity u. The LG scheme is to find {(φ k
h ,u

k
h)}

NT
k=1 ⊂Ψh ×Vh such that, for k =

1, . . . ,NT ,



∫
Ω

φ k
h − φ̃

k−1
h ◦Xk−1

1h γ
k−1
h

∆t
ψh dx = 0, ∀ψh ∈Ψh,

ρ

∫
Ω

φ
k
h

uk
h − ũk−1

h ◦Xk−1
1h

∆t
· vh dx+2µ

∫
Ω

φ
k
h D(uk

h) : D(vh)dx

+ρg
∫

Ω

φ
k
h ∇η

k
h · vh dx = 0, ∀vh ∈Vh,

φ
k
h = η

k
h +Π

FEM
h ζ ,

(5.1)

where Xk
1h(x) : = x−uk

h(x)∆t, γk
h : Ω → R is defined by

γ
k
h(x) : = det

(
∂Xk

1h(x)
∂x

)
,

the symbol “ ◦ ” represents the composition of functions, i.e., [vh ◦Xk
1h](x) : = vh(Xk

1h(x)),

Π FEM
h : C(Ω)→ Mh is the Lagrange interpolation operator, and

ψ̃h(x) =


ψh(x), x ∈ Ω ,

ψh(Px), x ∈ R2 \Ω ,

where Px ∈ Γ is the “nearest” nodal point from x. In each step, firstly, φ k
h ∈Ψh is obtained

from the first equation of scheme (5.1). Secondly, uk
h ∈ Vh is obtained by using φ k

h from

the second equation. In the first equation of (5.1), the idea of mass conservative Lagrange–

Galerkin scheme [45] is employed.

5.1.1 Numerical results for five cases of boundary settings

A numerical simulation is carried out by LG scheme (5.1) with the same setting described

in Subsection 4.1.2 except ∆t, where it is set as ∆t = 0.0625. The results are shown in
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Figure 5.1. The figures are similar to the ones in Figure 4.1 obtained by finite difference

scheme (4.1) and support the results in Figure 4.1.

(i)

t = 0 t = 25 t = 50 t = 75 t = 100

(ii)

t = 0 t = 25 t = 50 t = 75 t = 100

(iii)

t = 0 t = 25 t = 50 t = 75 t = 100

(iv)

t = 0 t = 25 t = 50 t = 75 t = 100

(v)

t = 0 t = 25 t = 50 t = 75 t = 100

Fig. 5.1 Color contours of ηk
h by LG scheme (4.1) for the five cases (i)-(v) discussed in

Section 4.1.
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5.1.2 Numerical study of energy estimate

In this subsection, we study the stability of solutions to the problem (3.1)-(3.5) numerically

by scheme (5.1) in terms of the energy E(t) defined in (3.6). The values of E(tk) and

Ii(tk;Γ ), i = 1,2,3, I4(tk;Ω) are approximately computed by using solution {(uk
h,φ

k
h )}

NT
k=1

with {ηk
h}

NT
k=1 of scheme (5.1) as

E(tk)≈ Ek
h : =

∫
Ω

ρ

2
(φ k

h )
∣∣uk

h

∣∣2dx+
∫

Ω

ρg
2

∣∣ηk
h

∣∣2dx,

I1(tk;Γ )≈ Ik
h1 : =−ρ

2

∫
Γ

(φ k
h )
∣∣uk

h

∣∣2(uk
h) ·nds,

I2(tk;Γ )≈ Ik
h2 : =−ρg

∫
Γ

(φ k
h )(η

k
h)(u

k
h) ·nds,

I3(tk;Γ )≈ Ik
h3 : = 2µ

∫
Γ

(φ k
h )(D(uk

h)n) · (u
k
h)ds,

I4(tk;Ω)≈ Ik
h4 : =−2µ

∫
Ω

(φ k
h )
∣∣D(uk

h)
∣∣2 dx.

Numerical simulations for the problem (3.1)-(3.5) with the same setting described in

Subsection 4.1.3 except ∆t. Here we set ∆t = 2h, h = 0.007, 0.0047, 0.0035 and 0.0028,

where h is the maximum edge length of the triangle element. The results are presented in

Figures 5.2, 5.3 and 5.4, where (i)-(v) in the figures represent the cases (i)-(v) described

at the beginning of this section 4.1. The graphs of Ek
h and ∑

4
i=1 Ik

hi versus t = tk (k ∈ N) are

presented in the Figure 5.2 and Figure 5.3, respectively. There are four lines in each figure,

but the lines are almost overlapped in the cases of (ii)-(v). In the case of (i) the graphs are

qualitatively similar. The Figure 5.4 show the graphs of Ik
hi, i = 1, . . . ,4 versus t = tk (k ∈ N)

for dt = 0.0056 and dx = 0.0028.

From the numerical results presented in Figure 5.2, it can be found that the total energy

is mainly decreasing with respect to time. In the case of (i), i.e., Γ = ΓD, we can see that

the graphs are increasing in the Figure 5.2, while the values are small. We think this is

because of numerical truncation error. But it can be seen that as the number of points in
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computation increases, the results seem to converge to a stable state. From the Figure 5.3 it

can be clearly seen that the sum ∑
4
i=1 Ik

hi corresponding to the derivative of the total energy is

always non-positive, which confirms the stability of solutions to the model numerically.

(i)

(ii)

(iii)

(iv)

(v)

Fig. 5.2 Graphs of Ek
h versus t = tk (≥ 0,k ∈ Z) for the five cases (i)-(v).



50 Numerical results by LGM

(i)

(ii)

(iii)

(iv)

(v)

Fig. 5.3 Graphs of ∑
4
i=1 Ik

hi ≈
d
dt E(t) versus t = tk (≥ 0,k ∈ Z) for the five cases (i)-(v).
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(i)

(ii)

(iii)

(iv)

(v)

Fig. 5.4 Graphs of Ik
hi, i = 1, . . . ,4 versus t = tk (≥ 0,k ∈ Z) for the five cases (i)-(v).



52 Numerical results by LGM

5.1.3 The experimental order of convergence of the LG scheme

In this section, the experimental order of convergence of the LG scheme for the five cases (i)-

(v) are investigated with several norms. For this purpose, we set Ω = (0,1)2, g = µ = ρ =

ζ = 1. The exact solutions are considered as follows:

φ = 1+ sinπx1 sinπx2 (2+ sinπt)/8,

u =

1

1

sinπx1 sinπx2 (2+ sinπt)/3.

.

N(= 32, 64, 128, 256, 512) is considered as the number of divisions on each side of the

boundary of the square domain Ω . T = 1 is considered. ∆t = h/2 is taken for all cases. The

relative errors
||Mh −ΠhM||X

||ΠhM||X
were calculated for M = φ ,u, where X = l∞

(
L2), l∞

(
H1

0
)
,

l∞
(
H1), l2 (L2), l2 (H1

0
)

and l2 (H1). Also ||Mn
h ||l∞(Y ) = max

1⩽n⩽NT
||Mn

h ||Y and ||Mn
h ||l2(Y ) =√√√√△t

NT

∑
n=1

||Mn
h ||2Y

(
Y = L2,H1

0 ,H
1). Here Πh is a Lagrange interpolation operator and h is

the maximum edge length of the triangle element. The results for the experimental order of

convergence of the LG scheme are presented in the Figures 5.5– 5.10. The results show

that the experimental order of convergence of u1 and u2 is O(h) for all the six norms and

experimental order of convergence of η is O(h) for the norms l∞ −L2 and l2 −L2 and for

the other four norms experimental order of convergence is not O(h) but confirmed to be

convergent.
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(i) (ii) (iii)

(iv) (v)

Fig. 5.5 Graphs of experimental relative errors in log scale with the norm l∞
(
L2) for the five

cases (i)-(v).
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(i) (ii) (iii)

(iv) (v)

Fig. 5.6 Graphs of experimental relative errors in log scale with the norm l∞
(
H1

0
)

for the five
cases (i)-(v).
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(i) (ii) (iii)

(iv) (v)

Fig. 5.7 Graphs of experimental relative errors in log scale with the norm l∞
(
H1) for the five

cases (i)-(v).
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(i) (ii) (iii)

(iv) (v)

Fig. 5.8 Graphs of experimental relative errors in log scale with the norm l2 (L2) for the five
cases (i)-(v).
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(i) (ii) (iii)

(iv) (v)

Fig. 5.9 Graphs of experimental relative errors in log scale with the norm l2 (H1
0
)

for the five
cases (i)-(v).
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(i) (ii) (iii)

(iv) (v)

Fig. 5.10 Graphs of experimental relative errors in log scale with the norm l2 (H1) for the
five cases (i)-(v).
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5.2 Numerical results for the Bay of Bengal

In this section, for more realistic simulation, we have shown results for the numerical

simulation in the Bay of Bengal by the LG scheme presented in the Section 5.1. For the

numerical treatment, firstly we have simplified the domain presented in the Figure 1.1 and

prepare triangular mesh as in Figure 1.4 by using FreeFem++. Figure 5.11 gives an idea of

our simulation setting. Let the domain presented in the Figure 5.11 be Ω . It is to be noted

here that in the horizontal direction, the domain is extended from 0 km to 1051.4 km and in

the vertical direction, it is extended from 0 km to 889.59 km. We have imposed two types

of boundary conditions, the zero Dirichlet boundary condition on ΓD and the transmission

boundary condition on ΓT (See Figure 5.11). ΓD is set on the coast and ΓT is set artificially

Fig. 5.11 A figure of Bay of Bengal domain showing the setting of the transmission and the
Dirichlet boundaries.
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in the water. It can be seen from the Figure 5.11 that ΓT consists of three parts AB = ΓT1 ,

BC = ΓT2 and CD = ΓT3 . We set an initial elevation η0 = 0.05 exp(−0.1|x− p|2) at the point

p, where p is the nearest nodal point from (525,440). Then a numerical simulation is done

considering ζ = 2.0, µ = 1, g = 9.8×10−3, ρ = 1012, h = 1.408044 until T = 5000. The

results at t = 0s, 2800s, 3120s, 3240s, 3740s, 3940s and 4660s are presented in the left

figures of the Figures 5.13 and 5.14. From the left figures of the Figures 5.13 and 5.14 it

can be seen that a circular wave is created at around the centre which propagates towards

the boundary with respect to time. A reflection is found when the wave touches ΓD but no

remarkable reflection is found when the wave touches ΓT . It seems that the wave passes

through ΓT .

Fig. 5.12 A figure of extended domain showing the setting of the transmission and the
Dirichlet boundaries.

We are also interested to see what happens if we slightly change the position of the

transmission boundary. For this purpose, we have prepared another domain say Ω̃ extending
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Ω by 100 km in the negative vertical direction ( see Figure 5.12). Thus in the horizontal

direction, the domain Ω̃ is extended from 0 km to 1051.4 km and in the vertical direction, it

is extended from −100 km to 889.59 km. Here Ω ⊂ Ω̃ and the Dirichlet boundary ΓD is the

same for both Ω and Ω̃ . Let the transmission boundary for Ω̃ be Γ̃T . A numerical simulation

is done in Ω̃ considering the same values of parameters used for the domain Ω . The results

at t = 0s, 2800s, 3120s, 3240s, 3740s, 3940s and 4660s are presented in the right figures of

the Figures 5.13 and 5.14, which show similar results as in Ω . From the both left and right

figures of the Figures 5.13 and 5.14, it can be seen that the transmission boundary condition

works well numerically.
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Fig. 5.13 Simulation in the Bay of Bengal at time t = 0s, 2800s and 3120s.
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Fig. 5.14 Simulation in the Bay of Bengal at time t = 3240s, 3740s, 3940s and 4660s.
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5.2.1 Computation of mass and L2 norm for the Bay of Bengal

We have computed the mass

M(t) : =
∫

Ω

η(x, t)dx ≈
∫

Ω

(Πη
k
h)dx =: Mk

h

at t = tk (≥ 0,k ∈ Z) for common part of Ω and Ω̃ . It is to be noted here that AB, BC and

CD are transmission boundaries for the the domain Ω but BC lies inside the domain Ω̃ (see

Figures 5.11 and 5.12). The results are shown in the Figure 5.15.

Fig. 5.15 Graphs of Mk
h versus t = tk (≥ 0,k ∈ Z) for the common part of the domains Ω and

Ω̃ .

The derivative of mass can be computes as follows.
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M′(t) =
∫

Ω

∂η

∂ t
(x, t)dx

=
∫

Ω

∂φ

∂ t
(x, t)dx (from the third equation of (3.1) and ζ = constant)

=−
∫

Ω

∇ · (φu)dx (from the first equation of (3.1))

=−
∫

∂Ω

(u ·n)φds =−
∫

ΓD∪ΓS∪ΓT

(u ·n)φds =−
∫

ΓT

(u ·n)φds

=−
∫

ΓT

cηds (from the equation (3.4), here c is a constant).

Therefore the behaviour of the graph of mass is dependent on the sign of η on ΓT . It

is clear that if η > 0 on ΓT then we have decay of mass, on the other hand if η < 0 on ΓT

then mass will increase. Thus we have presented the graph of η on AB, BC and CD for both

the domains Ω and Ω̃ in the Figures 5.16 and 5.17 to have a clear understanding of the

behaviour of the graphs of mass presented in the Figure 5.15. In the Figures 5.13, 5.14,

and 5.16, 5.17, the results are presented at t = 0s, 2800s, 3120s, 3240s, 3740s, 3940s and

4660s. From the Figure 5.15, until around 3100s there is no decay of mass, after that there

is a drastic decay of mass, this is because the wave touches the transmission boundary ΓT2

(see Figures 5.13 for t = 3120s ). From the the Figure 5.16, it can be seen that the sign of

η is positive on ΓT at t = 3120s. Around t = 3200s–3700s mass remains a kind of stable,

this is because of the cancellation of the values of η on ΓT (see Figures 5.17 for t = 3240s).

After t = 3700s there is another drastic decay of mass, this is because the wave touches the

transmission boundary ΓT1 (see Figures 5.14 for t = 3740s). From the the Figure 5.17, it can

be seen that the sign of η is positive on ΓT at t = 3740s. Around t = 3800s–4650s mass has

slow decay, because the sign of η is positive on ΓT in this time (see Figure 5.17 at t = 3940s).

After t = 4650s there is another drastic decay of mass, this is because the wave touches the
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transmission boundary ΓT3 (see Figures 5.14 for t = 4660s). From the the Figure 5.17, it can

be seen that the sign of η is positive on ΓT at t = 4660s. It is to be noted here that in our

computation, there is still a little bit artificial reflection on the transmission boundary. For

this reason, the difference of mass can be found in Figure 5.15 for the two different cases.

Fig. 5.16 Graph of η on AB, BC and CD for both Ω and Ω̃ at time t = 0s, 2800s and 3120s.



5.2 Numerical results for the Bay of Bengal 67

Fig. 5.17 Graph of η on AB, BC and CD for both Ω and Ω̃ at time t = 3240s, 3740s, 3940s
and 4660s.
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We have also computed the L2 norm of η

∥η(t)∥L2 : =

√∫
Ω

|η(x, t)|2dx ≈
√∫

Ω

|Πηk
h |2dx =: ∥η

k
h∥L2

at t = tk (≥ 0,k ∈ Z) for common part of Ω and Ω̃ . The results are presented in the

Figure 5.18, which show that the norms are almost same for both the cases.

Fig. 5.18 ∥ηk
h∥L2 versus t = tk (≥ 0,k ∈ Z) for the common part of the domains Ω and Ω̃ .

From the Figures 5.13, 5.14, 5.15, 5.16, 5.17 and 5.18, we can conclude that the trans-

mission boundary condition works well numerically. If the transmission boundary shifted

slightly, the results remains almost the same and the error may be around 5% in the simulation

presented in this chapter.



Chapter 6

Instability on the transmission boundary
and some future works

6.1 Instability on the transmission boundary

For long time simulation in the Bay of Bengal for the case Ω (see 5.2) we have some

instability (see Figures 6.1 and 6.2 ). To resolve this instability is a future work. It is to be

noted here that a boundary data for φ is necessary on the so-called inflow boundary, where

u ·n < 0 is satisfied for the outward unit normal vector n. On the transmission boundary ΓT ,

the boundary condition for φ is required for the case of inflow. In such case we have used

one sided difference for the computation in FDM. It is to be noted here that the position

x− uk(x)∆t is the so-called upwind point of x with respect to uk. For the computation in

LGM, the “nearest” boundary value of φ k is used if the upwind point places outside the

domain. So there is a hidden boundary condition for φ in the case of inflow. We think the

instability occurred due to this hidden boundary condition.
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Fig. 6.1 Graph of η on AB, BC and CD for both Ω and Ω̃ at time t = 6500s.

Fig. 6.2 L2 norm of η for the two cases of transmission boundary setting described in the
Section 5.2
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6.2 Some future works

1. Study of the existence, uniqueness and stability of the solutions of the SWEs with a

transmission boundary condition.

2. Study of searching the hidden boundary condition in the case of inflow on the trans-

mission boundary.

3. Inclusion of wind stress, bottom friction, Coriolis force, bathymetry, islands and river

dynamics for developing a storm surge prediction model for the Bay of Bengal.





Chapter 7

Conclusion

The stability of SWEs with a transmission boundary condition has been studied theoretically

and numerically using a suitable energy. For a suitable energy, we have obtained an equality

that the time-derivative of the energy is equal to a sum of three line integrals and a domain

integral in Theorem 3.2.1. The theorem implies a (successful) energy estimate of the SWEs

with the Dirichlet and the slip boundary conditions, cf. Corollary 3.2.3-(ii). After that, an

inequality for the energy estimate of the SWEs with the transmission boundary condition

has been proved in Theorem 3.2.4. In the proof, it has been shown that a sum of two line

integrals over the transmission boundary is non-positive under some conditions to be satisfied

in practical computation.

Based on the theoretical results, the energy estimate of SWEs with the transmission

boundary condition has been confirmed numerically by both FDM and LGM.

From the numerical results presented in Figure 4.2, it can be found that the total energy

is mainly decreasing with respect to time. In the case of (i), i.e., Γ = ΓD, we can see that at

the early period the graphs are increasing, while the values are small. From the Figure 4.3, it

can be clearly seen that the sum ∑
4
i=1 Ik

hi corresponding to the derivative of the total energy is

always non-positive, which confirms the stability of solutions to the model numerically. From

Figure 4.4 and Table 4.1, it can be observed that the value of Ih2 is dominating negatively

over Ih1 and Ih3 so that the sum ∑
4
i=1 Ihi becomes non-positive always. It is found that the
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transmission boundary condition works well numerically and that the transmission boundary

condition reduces the energy drastically via the term Ik
h2.

The choice of a positive constant c0 used in the transmission boundary condition has been

investigated additionally by a FDM. Since the artificial reflection should be removed after the

time the wave touches the transmission boundary, we find a value of c0 which provides the

minimum of Sh(c0). The results are presented in Table 4.2, from where it can be concluded

that for the case of zero initial velocity the suitable value of c0 lies in [0.7,1.0] and for the

case of nonzero initial velocity we cannot say anything yet.

Then we have presented numerical results by a LGM, which are similar to those by the

FDM. The results show that the wave can pass through the transmission boundary ( see

Figure 5.1).

The experimental order of convergence for the LGM with a suitable choice of exact

solutions for five different cases of boundary setting (see Section 4.1) for the norms l∞ −L2,

l∞−H1
0 , l∞−H1, l2−L2, l2−H1

0 and l2−H1 are also presented in the Figures 5.5–5.10. The

experimental order of convergence of u1 and u2 is O(h) for all the six norms and experimental

order of convergence of η is O(h) for the norms l∞ −L2 and l2 −L2 and for the other four

norms experimental order of convergence is not O(h) but confirmed to be convergent (see

Figures 5.5–5.10).

Furthermore, for more realistic simulation, we have shown results for the numerical

simulation in the Bay of Bengal by the LG scheme presented in the Section 5.1 for two

different cases of boundary setting (see Figures 5.13–5.14). From the Figures 5.13 and 5.14

it can be seen that a circular wave is created at around the centre which propagates towards

the boundary with respect to time. A reflection is found when the wave touches ΓD but no

remarkable reflection is found when the wave touches ΓT . It seems that the wave passes

through ΓT . We have computed the mass of η for that two cases and the results show that

the transmission boundary condition works well numerically and there is a decay of mass
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due to the transmission boundary condition(see Figure 5.15). The L2 norms of η for two

different setting described in the Section 5.2 are presented in Figure 5.18. The result shows

the transmission boundary condition is almost independent of its position.

From the Figures 5.13, 5.14, 5.15, 5.16, 5.17 and 5.18, we can conclude that the transmis-

sion boundary condition works well numerically and if the transmission boundary shifted

slightly, the results remains almost the same.

We believe that the theoretical results presented in this work will be helpful to derive

theoretical results of energy estimates of the SWEs with the transmission boundary condition

including the terms Coriolis force, surface stress and bottom stress. As far as we know, there

is not a single model using LGM for the prediction of storm surge in the Bay of Bengal,

therefore we strongly believe that our results will be helpful to develop an appropriate storm

surge prediction model using LGM for the Bay of Bengal in the near future.
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