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Thermodynamics on the horizon of a flat universe at late times is studied in holographic cosmological
models that assume an associated entropy on the horizon. In such models, a ΛðtÞ model similar to a time-
varying ΛðtÞ cosmology is favored because of the consistency of energy flows across the horizon. Based on
this consistency, a ΛðtÞ model with a power-law term proportional to Hα is formulated to systematically
examine the evolution of the Bekenstein-Hawking entropy. Here,H is the Hubble parameter and α is a free
parameter whose value is a real number. The present model always satisfies the second law of
thermodynamics on the horizon. In particular, the universe for α < 2 tends to approach thermodynamic
equilibriumlike states. Consequently, when α < 2, the maximization of the entropy should be satisfied as
well, at least in the last stage of the evolution of an expanding universe. A relaxationlike process before the
last stage is also examined from a thermodynamics viewpoint.

DOI: 10.1103/PhysRevD.100.123545

I. INTRODUCTION

The ΛCDM (Lambda cold dark matter) model can
elegantly explain the accelerated expansion of the late
Universe [1–4]. In this model, an extra driving term, i.e.,
a cosmological constantΛ related to dark energy, is added to
the Friedmann and acceleration equations. However, the
ΛCDM model suffers from several difficulties [5]. To
resolve these difficulties, various models have been pro-
posed [6]: e.g., ΛðtÞCDM models [i.e., a time-varying ΛðtÞ
cosmology] [7–13], bulk viscous models [14–18], and
creation of CDM (CCDM) models [19–21]. In addition,
thermodynamic scenarios based on the holographic princi-
ple [22] have been recently proposed [23–45]. Extending
the concept of black hole thermodynamics, these scenarios
assume that the horizon of the Universe has an associated
entropy, e.g., the Bekenstein-Hawking entropy [46], the
Tsallis–Cirto entropy [47], a modified Rényi entropy
[48,49], and power-law corrections [50,51].
These entropies have been applied to holographic

cosmological models and have led to extra driving terms
expressed as a function of the Hubble parameter H. For
example, in entropic cosmology [23], H2 and H terms are
derived using the Bekenstein-Hawking entropy and the
Tsallis-Cirto entropy, respectively [31]. In addition, a
power-law term proportional to Hα can be derived from
Padmanabhan’s holographic equipartition law with a
power-law corrected entropy [38]. Cosmological models
with Hα terms are expected to be suitable for systematic

studies because α can be a free parameter whose value is a
real number.
Formulations of such models are generally categorized

into two types [29]. The first type is ΛðtÞ, which is similar
to ΛðtÞCDM models [7–13]. In ΛðtÞ models, both the
Friedmann equation and the acceleration equation include
an extra driving term [29]. The second type is BV, which is
similar to both bulk viscous models [14–18] and CCDM
models [19–21]. In BV (bulk-viscous-cosmology-like)
models, the acceleration equation includes an extra driving
term whereas the Friedmann equation does not [29]. For
example, Basilakos et al. have shown that the H2 terms in
ΛðtÞ models do not describe structure formations properly
[25]. [A power series of H has been examined in ΛðtÞ
models; see, e.g., theworks of Solà et al. [10],Gómez-Valent
et al. [11], and Rezaei et al. [12].] Li and Barrow have
reported that the H terms in BV models are difficult to
reconcile with astronomical observations of structure for-
mations [17]. The present author and Kimura have indicated
that ΛðtÞ models are consistent with the observed growth
rate of clustering, unlike BVmodels [29]. Observations thus
imply that ΛðtÞ models are suitable for holographic cos-
mological models. However, the suitability of models has
not been discussed from a theoretical viewpoint.
The evolution of the Universe is expected to be related to

thermodynamics on the horizon. It is well known that
ordinary, isolated macroscopic systems spontaneously
evolve to equilibrium states of the maximum entropy
consistent with their constraints [52]. In other words,
the entropy of such systems does not decrease (i.e., the
second law of thermodynamics) and approaches a certain*komatsu@se.kanazawa-u.ac.jp
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maximum value in the last stage (i.e., the maximization of
entropy). The second law of thermodynamics has been
extensively studied from a cosmological viewpoint
[38–45,53–57]. The maximization of entropy has recently
attracted attention [58–65]. For example, Mimoso and
Pavón have examined the maximization of entropy in the
Universe with a de Sitter era and have shown that the
Universe behaves as an ordinary macroscopic system at
least in the last stage [59]. Krishna and Mathew have
investigated entropy maximization and the holographic
equipartition law [60,61]. Bamba et al. have examined
thermodynamic equilibrium conditions for several entropies
in Rastall gravity [62]. The previous works imply that a
certain type of universe behaves as an ordinary macroscopic
system in the last stage [59]. Accordingly, the evolution of
the Universe should be a kind of relaxation process. Such a
relaxationlike process has not yet been examined system-
atically from a thermodynamics viewpoint.
In this context, we study thermodynamics on the horizon

of the Universe in a holographic cosmological model that
includes a power-law term. To examine the suitability of
models, we derive energy flows across the horizon using
two methods. Based on the consistency of the two energy
flows, we formulate a cosmological model with the power-
law term. Using this model, we systematically examine not
only the background evolution of the late Universe but also
thermodynamics on the horizon. The present study should
facilitate the discussion of various cosmological models
from a thermodynamics viewpoint. Note that density
perturbations related to structure formations are not dis-
cussed here.
The remainder of the present article is organized as

follows. In Sec. II, a general formulation of cosmological
equations in a flat Friedmann-Robertson-Walker (FRW)
universe is reviewed. An energy flow across the horizon is
derived from the general formulation. In Sec. III, the
Bekenstein-Hawking entropy is reviewed. A similar energy
flow is derived from the equipartition law of energy and the
consistency of the two derived energy flows is discussed. In
Sec. IV, a cosmological model that includes a power-law
term is formulated based on the consistency. The back-
ground evolution of the late Universe in the present model
is examined. In Sec. V, the entropy evolution for the present
model is examined to discuss the second law of thermo-
dynamics and the maximization of entropy. Finally, in
Sec. VI, the conclusions of the study are presented.

II. GENERAL COSMOLOGICAL EQUATIONS AND
ENERGY FLOW ACROSS THE HORIZON

We consider a homogeneous, isotropic, and spatially flat
universe, i.e., a flat FRWuniverse. In Sec. II A, we review a
general formulation of the cosmological equations [31]
because it can be used for holographic cosmological
models. Based on the general formulation, an energy flow
across the horizon is discussed in Sec. II B.

A. General Friedmann, acceleration, and continuity
equations in a flat FRW universe

We review a general formulation of the cosmological
equations in a flat FRW universe using the scale factor aðtÞ
at time t. According to Ref. [31], the general Friedmann
equation is given as

HðtÞ2 ¼ 8πG
3

ρðtÞ þ fΛðtÞ; ð1Þ

and the general acceleration equation is

äðtÞ
aðtÞ ¼

_HðtÞ þHðtÞ2

¼ −
4πG
3

�
ρðtÞ þ 3pðtÞ

c2

�
þ fΛðtÞ þ hBðtÞ

¼ −
4πG
3

ð1þ 3wÞρðtÞ þ fΛðtÞ þ hBðtÞ; ð2Þ

where the Hubble parameter HðtÞ is defined by

HðtÞ≡ da=dt
aðtÞ ¼ _aðtÞ

aðtÞ ; ð3Þ

and w represents the equation of the state parameter for a
generic component of matter, which is given as

w ¼ pðtÞ
ρðtÞc2 : ð4Þ

Here, G, c, ρðtÞ, and pðtÞ are the gravitational constant, the
speed of light, the mass density of cosmological fluids, and
the pressure of cosmological fluids, respectively [31]. For a
matter-dominated universe and a radiation-dominated uni-
verse, w is 0 and 1=3, respectively. We consider the matter-
dominated universe, i.e., w ¼ 0, although w is retained for
generality. Two extra driving terms, i.e., fΛðtÞ and hBðtÞ,
are phenomenologically assumed. In this study, fΛðtÞ is
used for the ΛðtÞ model, similar to ΛðtÞCDM models,
whereas hBðtÞ is used for the BV model, similar to bulk
viscous models and CCDM models. Accordingly, we set
hBðtÞ ¼ 0 for the ΛðtÞ model and fΛðtÞ ¼ 0 for the BV
model.
Coupling [ð1þ 3wÞ× Eq. (1)] with [2× Eq. (2)] and

rearranging the resultant equation, we obtain the differ-
ential equation given by

_H ¼ −
3

2
ð1þ wÞH2 þ 3

2
ð1þ wÞfΛðtÞ þ hBðtÞ: ð5Þ

Using this equation, we can examine the background
evolution of the Universe in various cosmological models.
For example, for ΛCDM models, substituting fΛðtÞ ¼

Λ=3, hBðtÞ ¼ 0, and w ¼ 0 into Eq. (5) yields
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_H ¼ −
3

2
H2 þ Λ

2
: ð6Þ

The evolution of H is given by

�
H
H0

�
2

¼ ð1 −ΩΛÞ
�
a
a0

�
−3

þΩΛ; ð7Þ

where ΩΛð¼ Λ=ð3H2
0ÞÞ is the density parameter for Λ. In a

flat FRWuniverse, the density parameter for matter is given
by 1 −ΩΛ, neglecting the influence of radiation. H0 and a0
represent the Hubble parameter and the scale factor at the
present time, respectively. To observe the background
evolution of the Universe, the normalized Hubble param-
eter H=H0 given by Eq. (7) is shown in Fig. 1. In this
figure, ΩΛ is set to a fine-tuned value, 0.685, from the
Planck 2018 results [3]. The observed data points [66] are
also plotted. In an expanding universe, a=a0 increases with
time. Note that we do not discuss the significant tension
between the Planck results [2] and the local (distance
ladder) measurement from the Hubble Space Telescope [4].
As shown in Fig. 1, H=H0 decreases with a=a0 and

gradually approaches a constant value. The constant value
is given by Ω1=2

Λ , which is calculated from Eq. (7) by
applying a=a0 → ∞. These results imply that _H is negative
and gradually approaches 0. That is, _H < 0 is satisfied and
_H → 0 is expected at least in the last stage. The last stage is
similar to that in a de Sitter universe and should be in
equilibriumlike states. The thermodynamics of the de Sitter
universe was examined in the work of Mimoso and Pavón
[59]. For similar discussions, see, e.g., Refs. [58,60–65].

In this way, the background evolution of the Universe
can be examined using Eq. (5) derived from the general
Friedmann and acceleration equations. In addition, from
the two equations, we can calculate the general continuity
equation written as [31]

_ρþ 3Hð1þ wÞρ ¼ 3

4πG
H

�
hBðtÞ −

_fΛðtÞ
2H

�
: ð8Þ

The right-hand side of this equation is nonzero, except for
ΛCDMmodels. In ΛðtÞmodels, such as ΛðtÞCDMmodels,
the nonzero right-hand side can be interpreted as a kind of
energy exchange cosmology [67]. In BV models, such as
CCDM models, the nonzero right-hand side is related to an
effective pressure [19–21].

B. Energy flow across the Hubble horizon derived
from the general formulation

In this subsection, we examine an energy flow across the
horizon using the general formulation according to pre-
vious studies [23,45,68]. To this end, we consider an
energy flow across a spherical surface of Hubble horizon
(radius) rH, which is given by

rH ¼ c
H
: ð9Þ

In the present study, the Hubble horizon is equivalent to
an apparent horizon because a flat FRW universe is
considered [23].
When the Universe expands at the Hubble rate, the

energy flow across the horizon [23,45,68] can be
written as

− _E ¼ −
dE
dt

¼ AH

�
ρþ p

c2

�
c2HrH

¼ AHrHc2ð1þ wÞρH; ð10Þ

where AH is the surface area of the sphere with the Hubble
horizon rH, andw ¼ p=ðρc2Þ is given by Eq. (4). The right-
hand side of this equation can be calculated using Eqs. (1),
(8), and (9) and AH ¼ 4πr2H. The detailed calculation is
given in Appendix A. From Eqs. (A5) and (A6), the energy
flow is written as

− _E ¼ AHc3

4πG
ð− _H þ hBðtÞÞ

¼ c5

G

�
−

_H
H2

þ hBðtÞ
H2

�
: ð11Þ

This equation indicates that − _E does not depend on fΛðtÞ
for ΛðtÞ models. That is, − _E is proportional to − _H=H2 for
ΛðtÞ models because hBðtÞ ¼ 0. Therefore, − _E is expected
to approach 0 if H gradually approaches a positive

ΛCDM

Observed data points

H
/H

0

a/a0

5

4

3

2

1

0
0 1 2 3

FIG. 1. Evolution of the normalized Hubble parameter H=H0

for a fine-tuned ΛCDM model. The horizontal axis is the
normalized scale factor a=a0. The solid line represents the
ΛCDM model given by Eq. (7), in which ΩΛ is set to 0.685
from the Planck 2018 results [3]. The closed circles with error
bars are observed data points taken from Ref. [66]. The data
points are normalized as H=H0, where H0 is set to
67.4 km=s=Mpc from Ref. [3].
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constant, as shown in Fig. 1. In the next section, we
examine this expectation. We also derive a similar energy
flow using another method and discuss the consistency of
the two derived energy flows.

III. THERMODYNAMICS ON THE HORIZON

Based on the holographic principle [22], we assume that
the horizon of the Universe has an associated entropy and
an approximate temperature [23]. In Sec. III A, the
Bekenstein-Hawking entropy is introduced. In Sec. III B,
an energy flow across the horizon is derived assuming the
equipartition law of energy.
Note that the entropy S of ordinary isolated macroscopic

systems does not decrease, i.e., _S ≥ 0, as mentioned
previously. In particular, the entropy should approach a
certain maximum value consistent with their constraints,
i.e., S̈ < 0 [52]. A certain type of universe, e.g., a de Sitter
universe [58–61,65], behaves as an ordinary macroscopic
system [59]. For related studies, see, e.g., the works of
Pavón and Radicella [58], Mimoso and Pavón [59], and
Krishna and Mathew [60,61].

A. Entropy on the Hubble horizon

In this study, the Bekenstein-Hawking entropy SBH
[46] is applied to an associated entropy on the Hubble
horizon because it is the most standard one. At late
times, SBH is dozens of orders of magnitude larger than
other entropies related to matter, radiation, etc., as
examined by Egan and Lineweaver [57]. That is, SBH
should be approximately equivalent to the total entropy
of the late Universe. Accordingly, we focus on SBH
and do not discuss the generalized second law of
thermodynamics. Note that the Hubble horizon is
equivalent to an apparent horizon because a flat universe
is considered.
The Bekenstein-Hawking entropy is written as

SBH ¼ kBc3

ℏG
AH

4
; ð12Þ

where kB and ℏ are the Boltzmann constant and the reduced
Planck constant, respectively. The reduced Planck constant
is defined as ℏ≡ h=ð2πÞ, where h is the Planck constant
[37–39]. Substituting AH ¼ 4πr2H into Eq. (12) and apply-
ing Eq. (9) yields

SBH ¼ kBc3

ℏG
AH

4
¼

�
πkBc5

ℏG

�
1

H2
¼ K

H2
; ð13Þ

where K is a positive constant given by

K ¼ πkBc5

ℏG
¼ πkBc2

L2
p

; ð14Þ

and Lp is the Planck length, which is written as [37–39]

Lp ¼
ffiffiffiffiffiffiffi
ℏG
c3

r
: ð15Þ

From Eq. (13), we can confirm SBH > 0.
We now calculate the time derivative of SBH.

Differentiating Eq. (13) with respect to t yields the first
derivative of SBH, which is given by [38,39]

_SBH ¼ d
dt

SBH ¼ d
dt

�
K
H2

�
¼ −2K _H

H3
; ð16Þ

or equivalently

_SBH ¼ 2SBH

�
− _H
H

�
: ð17Þ

In addition, differentiating Eq. (16) with respect to t yields
the second derivative of SBH, which is given by

S̈BH ¼ d
dt

_SBH ¼ d
dt

�
−2K _H
H3

�
¼ −2K

�
Ḧ
H3

−
3 _H2

H4

�

¼ 2
K
H2

�
3 _H2 − ḦH

H2

�
¼ 2SBH

�
3 _H2 − ḦH

H2

�
: ð18Þ

Equation (17) indicates that the sign of _SBH depends on
whether − _H=H is positive or negative because SBH > 0.
Similarly, Eq. (18) indicates that the sign of S̈BH depends on
whether 3 _H2 − ḦH is positive or negative. Accordingly,
the two signs depend on the evolution ofH in cosmological
models.
We now show the evolution of the entropy on the horizon

of the Universe in a typical model. To this end, we consider
a fine-tuned ΛCDM model given by Eqs. (6) and (7). As
shown in Fig. 1, ΩΛ is set to 0.685 and the influence of
radiation is neglected. The evolution of SBH, _SBH, and S̈BH

E

BHSBHS

BHS

N
or

m
al

iz
ed

 v
al

ue
s

a/a0

0 1 2 3

0

2

4

6

-2

FIG. 2. Evolution of SBH, _SBH, S̈BH, and − _E for a fine-tuned
ΛCDM model for ΩΛ ¼ 0.685. The four parameters are normal-
ized as SBHðH2

0=KÞ, _SBHðH0=KÞ, S̈BHð1=KÞ, and − _EðG=c5Þ.
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is plotted in Fig. 2. As shown in this figure, SBH increases
with a=a0. However, when a=a0 ⪆ 0.6, the increase in
SBH tends to become gradually slower. These results
depend on the evolution of H. (As examined in Fig. 1,
H=H0 decreases with a=a0 and gradually approaches a
constant value. That is, we have _H < 0 and expect _H → 0
in the last stage.)
In addition, as shown in Fig. 2, _SBH is positive because

SBH increases with a=a0. Therefore, the second law of
thermodynamics, _SBH ≥ 0, is satisfied in the ΛCDM
model. In addition, _SBH gradually decreases with a=a0
and approaches 0. Consequently, the maximization of
entropy, S̈BH < 0, is satisfied in the last stage even though
S̈BH is positive in the early stage (a=a0 ⪅ 0.6). Similar
discussions are given in Refs. [58–65]. In this way, we
can study the evolution of the entropy on the horizon. In
Sec. V, we systematically examine the second law and
entropy maximization using a cosmological model with a
power-law term.
Finally, the energy flow − _E derived from the general

formulation is examined. As shown in Fig. 2, the energy
flow decreases with a=a0 and gradually approaches 0.
This is because − _E is proportional to − _H=H2 from
Eq. (11) when hBðtÞ ¼ 0 is used for the ΛCDM model.
In the next subsection, a similar energy flow is derived
using another method.

B. Energy flow across the Hubble horizon derived
from the equipartition law of energy

In Sec. II B, an energy flow across the horizon was
derived from the general formulation. In this subsection, a
similar energy flow is derived from the equipartition law of
energy [45,69]. The consistency of the two energy flows is
discussed here. The relationship between the energy flow
and a deceleration parameter is also examined.
We have assumed that the information of the bulk is

stored on the horizon based on the holographic principle
[22]. In addition, we assume the equipartition law of energy
on the horizon according to Refs. [45,69]. Consequently,
the energy E on the Hubble horizon can be given by [45,69]

E ¼ N ×
1

2
kBT; ð19Þ

whereN is the number of degrees of freedom on a spherical
surface of Hubble radius rH, which is written as

N ¼ 4SBH
kB

: ð20Þ

The temperature T on the Hubble horizon is given by

T ¼ ℏH
2πkB

: ð21Þ

Substituting Eq. (20) into Eq. (19) yields

E ¼
�
4SBH
kB

�
1

2
kBT ¼ 2SBHT: ð22Þ

This equation, E ¼ 2SBHT, has been examined by
Padmanabhan [44,69].
We now reformulate the energy given by Eq. (22) using

the Hubble parameter. Substituting Eqs. (13) and (21) into
Eq. (22) yields

E ¼ 2

�
πkBc5

ℏG

�
1

H2
×

�
ℏH
2πkB

�
¼ c5

G

�
1

H

�
: ð23Þ

Differentiating the energy given by Eq. (23) with respect to
t yields the following energy flow _E:

_E ¼ c5

G

�
−

_H
H2

�
: ð24Þ

This equation indicates that _E is proportional to − _H=H2.
Recall − _E given by Eq. (11). We select a ΛðtÞ model

because hBðtÞ ¼ 0. Substituting hBðtÞ ¼ 0 into Eq. (11)
yields the following equation, which is equivalent to
Eq. (24):

− _E ¼ _E ¼ c5

G

�
−

_H
H2

�
: ð25Þ

In the ΛðtÞmodel, − _E agrees with _E even though they were
derived using different methods. The consistency related
to Eq. (25) was described in the works of Krishna and
Mathew [61] and Shu and Gong [45]; BV models were not
discussed.
This consistency may imply that ΛðtÞ models are

suitable for describing holographic cosmological models.
In the present study, we phenomenologically formulate a
ΛðtÞmodel that includes a power-law term. We discuss this
in the next section. Hereafter, we consider aΛðtÞmodel and
use − _E because − _E ¼ _E.
In general, the temporal deceleration parameter q is

defined by

q≡ −
�

ä
aH2

�
; ð26Þ

where positive (negative) q represents deceleration (accel-
eration) [37]. Substituting ä=a ¼ _H þH2 into Eq. (26)
yields

q ¼ −
_H

H2
− 1: ð27Þ

Substituting Eq. (25) for theΛðtÞmodel into Eq. (27) yields
the simple relation given by
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q ¼ − _E

�
G
c5

�
− 1; ð28Þ

where − _EðG=c5Þ represents the normalized energy flow.
When − _EðG=c5Þ < 1, q is negative. In this way, q can be
evaluated from − _E. We examine this in the next section.
It should be noted that we assume the following three, to

study thermodynamics on the horizon of the Universe in a
holographic cosmological model. First, the equipartition
law of energy can be applied to a relaxationlike process.
Usually, the equipartition law of energy is valid in equi-
librium states. For example, a de Sitter universe is consid-
ered to be in equilibriumlike states becauseH is constant. In
the present study, we assume that the equipartition law of
energy can be applied to the relaxationlike process.
Secondly, the energy on the horizon can be given by
Eq. (19). In general, a factor included in this equation
should depend on the Hamiltonian of the system. In
Ref. [69], the factor was assumed to be 1=2, to derive a
simple relation given by Eq. (22). Similarly, in this paper,
the factor is assumed to be 1=2. Thirdly, the temperature
given by Eq. (21) can be applied to the relaxationlike
process. In fact, the original equation for the temperature
was derived using a de Sitter space in which H is constant
[70]. Therefore, exactly speaking, Eq. (21) should be
modified when the relaxationlike process is discussed.
The three assumptions have not yet been established
although they were used in previous works. In this study,
the three assumptions are considered to be a viable scenario
and are used for a ΛðtÞ model.

IV. ΛðtÞ MODEL WITH A POWER-LAW TERM

The formulation of a ΛðtÞ model is likely suitable for
describing holographic cosmological models, as discussed
in Sec. III B. Accordingly, in this study, we formulate a
ΛðtÞ model that includes a power-law term. With fΛðtÞ
replaced by fαðHÞ, the Friedmann and acceleration equa-
tions for the present model are written as

H2 ¼ 8πG
3

ρþ fαðHÞ; ð29Þ

and

ä
a
¼ −

4πG
3

ð1þ 3wÞρþ fαðHÞ: ð30Þ

From these two equations, the differential equation corre-
sponding to Eq. (5) is

_H ¼ −
3

2
ð1þ wÞH2 þ 3

2
ð1þ wÞfαðHÞ; ð31Þ

where the extra driving term fαðHÞ is given by [38]

fαðHÞ ¼ ΨαH2
0

�
H
H0

�
α

: ð32Þ

Here, α and Ψα are dimensionless constants whose values
are real numbers. The power-law term can be obtained from
Padmanabhan’s holographic equipartition law [32] with a
power-law corrected entropy [50], as examined in a
previous work [38]. In the present paper, α and Ψα are
considered to be independent free parameters. That is,Ψα is
assumed to be a kind of density parameter for effective dark
energy. In addition, Ψα is assumed to be

0 ≤ Ψα ≤ 1: ð33Þ

The constant, H, and H2 terms are obtained from Eq. (32)
by applying α ¼ 0, 1, and 2, respectively. A power series of
the Hubble parameter has been examined in ΛðtÞ models
[10–12]. It should be noted that in this study, α is a real
number, unlike in previous works.
We now consider a matter-dominated universe. Sub-

stituting w ¼ 0 and Eq. (32) into Eq. (31) yields the
differential equation for the present model given by

_H ¼ −
3

2
H2 þ 3

2
ΨαH2

0

�
H
H0

�
α

¼ −
3

2
H2

�
1 − Ψα

�
H
H0

�
α−2

�
: ð34Þ

The background evolution of the Universe is calculated
from Eq. (34). The solution method is summarized in
Appendix B. When w ¼ 0, from Eqs. (B14) and (B18), the
solution for α ≠ 2 can be written as

�
H
H0

�
2−α

¼ ð1 −ΨαÞ
�
a
a0

�
−3ð2−αÞ

2 þ Ψα; ð35Þ

and the solution for α ¼ 2 is

H
H0

¼
�
a
a0

�
−3ð1−ΨαÞ

2

: ð36Þ

Note that Eq. (35) should reduce to Eq. (36) when α → 2 is
applied to Eq. (35).
We can examine various models using the above

solutions. For example, ΛCDM models are obtained from
Eq. (35). In this case, fαðHÞ isΛ=3. Substituting α ¼ 0 into
Eq. (35) and replacing Ψα by ΩΛ yields

�
H
H0

�
2

¼ ð1 −ΩΛÞ
�
a
a0

�
−3

þ ΩΛ; ð37Þ

where ΩΛ is given by Λ=ð3H2
0Þ. This equation is equivalent

to the solution given by Eq. (7).
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We calculate the energy flow − _E across the horizon and
a temporal deceleration parameter q in the present model.
Recall that − _E given by Eq. (25) and q given by Eq. (27)
both include − _H=H2 terms. This term is directly obtained
from Eq. (34). Substituting Eq. (34) into Eq. (25) yields the
following energy flow:

− _E ¼ c5

G

�
−

_H
H2

�
¼ 3

2

c5

G

�
1 −Ψα

�
H
H0

�
α−2

�
: ð38Þ

In addition, substituting Eq. (38) into Eq. (28) yields

q ¼ − _E

�
G
c5

�
− 1 ¼ 3

2

�
1 −Ψα

�
H
H0

�
α−2

�
− 1

¼ 1

2
−
3

2
Ψα

�
H
H0

�
α−2

: ð39Þ

We now show the background evolution of the Universe
in the present model. To this end, the evolution of the
Hubble parameter and the energy flow is shown in Fig. 3.
For typical results, α is set to −2, 0, 1, 2, and 3. In addition,
Ψα is set to 0.685, which is equivalent to ΩΛ for the fine-
tuned ΛCDM model. Therefore, the plots for α ¼ 0 are
equivalent to those for the ΛCDM model examined in
Figs. 1 and 2. As shown in Fig. 3(a), the Hubble parameter
decreases with a=a0. For α < 2, H=H0 gradually
approaches a positive constant value, whereas for α ¼ 3,
it gradually approaches 0. Consequently, _H ≤ 0 is always
satisfied and _H → 0 should be satisfied at least in the last
stage. In this way, H=H0 decreases with a=a0. However,
the evolution of the energy flow is different because − _E is
proportional to − _H=H2.
As shown in Fig. 3(b), − _E for α < 2 decreases with

a=a0, whereas − _E for α ¼ 3 increases with a=a0. In
particular, when α ¼ 2, the energy flow is always constant
(i.e., steady). From Eq. (38), the normalized constant value
for α ¼ 2 is given by

− _E
�
G
c5

�
¼ −

_H
H2

¼ 3ð1 − ΨαÞ
2

: ð40Þ

In Fig. 3(b), the value is 0.4725 because Ψα ¼ 0.685. In
addition, − _E for α < 2 gradually approaches 0. This result
implies _H → 0 at least in the last stage. This is because − _E
is proportional to − _H=H2 and H=H0 for α < 2 gradually
approaches a positive constant value [Fig. 3(a)].
Accordingly, the last stage for α < 2 should be a kind of
de Sitter universe discussed in Refs. [58–61].
The energy flow is closely related to the temporal

deceleration parameter q. We can evaluate q for the present
model using Fig. 3(b) and the simple relation q ¼
− _EðG=c5Þ − 1 given by Eq. (28). To this end, the hori-
zontal break line of q ¼ 0 is plotted in Fig. 3(b). The region
below the break line corresponds to an accelerating uni-
verse because q < 0.

As shown in Fig. 3(b), all the energy flows are below the
break line at a=a0 ¼ 1. That is, the plots shown in this
figure correspond to an accelerating universe at the present
time. In addition, an initially decelerating and then accel-
erating universe (hereafter decelerating and accelerating
universe) can be confirmed from the evolution of − _E for
α ¼ −2, 0, and 1. This is because − _E is initially larger than
1 and thereafter smaller than 1. In contrast, − _E for α ¼ 3
indicates an initially accelerating and then decelerating
universe (hereafter accelerating and decelerating universe).
In the above discussion, several cases were mentioned.

The deceleration parameter depends on α, Ψα, and H=H0,
as shown in Eq. (39). Therefore, we discuss an accelerating
universe using the ðα;ΨαÞ plane. To this end, the boundary
required for q ¼ 0 is calculated from Eq. (39). Substituting
q ¼ 0 into Eq. (39) yields the boundary given by

Ψα ¼
1

3

�
H
H0

�
2−α

: ð41Þ

0=

3=

1=
2=

H
/H

0

2= −

a/a0

0 1 2 3
0

1

2

3

4

4 5

(a)

0= 3=

1=

2=

2= −

×
(G

/ c
5 )

q = 0

q < 0

a/a0

0 1 2 3 4 5
0

1

2
(b)

E
FIG. 3. Evolution of the Hubble parameter and the energy flow
across the horizon for the present model for Ψα ¼ 0.685.
(a) Normalized Hubble parameter H=H0. (b) Normalized energy
flow − _EðG=c5Þ. Ψα is set to 0.685, which is equivalent to ΩΛ for
the fine-tuned ΛCDM model. The plots for α ¼ 0 are equivalent
to those for the ΛCDM model. In (b), the horizontal break line
represents − _EðG=c5Þ ¼ 1, i.e., q ¼ 0. The region below the
break line corresponds to q < 0, i.e., an accelerating universe, as
designated by the arrow.
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When α ¼ 2, Ψα ¼ 1
3
is obtained from this equation. When

α ≠ 2, substituting Eq. (35) into Eq. (41) yields

Ψα ¼
1

3

�
ð1 − ΨαÞ

�
a
a0

�
−3ð2−αÞ

2 þ Ψα

�
; ð42Þ

and solving Eq. (42) with respect toΨα yields the following
boundary for q ¼ 0:

Ψα ¼
ð aa0Þ−

3ð2−αÞ
2

2þ ð aa0Þ−
3ð2−αÞ

2

: ð43Þ

Using Eq. (43), the boundary of q ¼ 0 for various values
of a=a0 can be plotted in the ðα;ΨαÞ plane. In Fig. 4, a=a0
is set to 0.25, 0.5, 1, 2, and 4 to examine typical boundaries.
In an expanding universe, a=a0 increases with time. The
arrow attached to each boundary indicates an accelerating-
universe-side region that satisfies q < 0. The upper side of
each boundary corresponds to this region.
As shown in Fig. 4, the accelerating-universe-side region

varies with a=a0. For example, the boundary for a=a0 ¼
0.25 in an earlier stage implies that a large-α and large-Ψα

region tends to be on the accelerating-universe side. In
contrast, the boundary for a=a0 ¼ 4 in a later stage implies
that a small-α and large-Ψα region tends to be on the
accelerating-universe side.
When α < 2, the accelerating-universe-side region

extends downward with increasing a=a0. Consequently,
a decelerating and accelerating universe is expected when
α < 2. To examine this, we focus on the point (0,0.685)
for the fine-tuned ΛCDM model. For a=a0 ¼ 0.25 and 0.5,
the point (0,0.685) is outside an accelerating-universe-
side region. However, the point is inside the region for
a=a0 ¼ 1, 2, and 4. This result confirms the decelerating
and accelerating universe.

In contrast, when α > 2, an accelerating and decelerating
universe is expected. To examine this, we focus on the point
ðα;ΨαÞ ¼ ð3; 0.685Þ, corresponding to the plot for α ¼ 3
shown in Fig. 3. As shown in Fig. 4, the point (3,0.685) is
inside the accelerating-universe-side region for a=a0 ¼
0.25, 0.5, 1, and 2. However, for a=a0 ¼ 4, the point is
outside the region, as expected. In this way, the dynamical
properties of the present model can be systematically
examined using the ðα;ΨαÞ plane. In the next section,
we study the thermodynamic properties of the present
model.
When α ¼ 2, energy flows are steady, as shown in

Fig. 3(b) and Eq. (40), because a constantΨα is considered.
In particular, the deceleration parameter q is always 0 at
the intersection point ðα;ΨαÞ ¼ ð2; 1

3
Þ, as shown in Fig. 4.

q ¼ 0 can be obtained by substituting ðα;ΨαÞ ¼ ð2; 1
3
Þ into

Eq. (39). Accordingly, both the energy flow and the
expansion of the Universe are steady at the intersection
point. In this sense, the Universe mentioned here is
considered to be in a kind of nonequilibrium steady state.
This universe may provide new insights into discussions of
nonequilibrium steady states, such as those in fluctuation
theorems [71], thermodynamic uncertainty relations [72],
and other related topics [73].
It is worth noting three assumptions used for the present

model again. (The three assumptions are closely discussed
in Sec. III B.) First, the equipartition law of energy can be
applied to a relaxationlike process. Secondly, the energy on
the horizon can be given by Eq. (19). Thirdly, the temper-
ature given by Eq. (21) can be applied to the relaxationlike
process. The three assumptions have not been established
although they were used in previous works. In this paper,
these assumptions are considered to be a viable scenario to
discuss the thermodynamics on the horizon of the Universe
in the present model. Note that the formulation of the
present model is equivalent to that of ΛðtÞCDM models
although the theoretical backgrounds are different.

V. ENTROPY EVOLUTION FOR THE
PRESENT MODEL

In this section, we study the thermodynamics on the
horizon of the Universe in the present model. To this end,
we examine the evolution of the Bekenstein-Hawking
entropy because it is approximately equivalent to the total
entropy of the late Universe [57]. The second law of
thermodynamics is examined in Sec. VA. The maximiza-
tion of entropy is investigated in Sec. V B.
Before proceeding further, we write the present model

again. From Eq. (34), the differential equation is

_H ¼ −
3

2
H2 þ 3

2
ΨαH2

0

�
H
H0

�
α

¼ −
3

2
H2

�
1 − Ψα

�
H
H0

�
α−2

�
: ð44Þ

a/a0 0.25CDM

a/a0 0.5

a/a0 1

a/a0 4

q < 0

a/a0 2

-2.0 -1.0 0.0 1.0 2.0 3.0
0.0

1.0

0.8

0.6

0.4

0.2

Ψ
α

FIG. 4. Boundary of q ¼ 0 in the ðα;ΨαÞ plane for various
values of a=a0. The boundaries for a=a0 ¼ 0.25, 0.5, 1, 2, and 4
are shown. The arrow attached to each boundary indicates an
accelerating-universe-side region that satisfies q < 0. The open
circle represents ðα;ΨαÞ ¼ ð0; 0.685Þ for the fine-tuned ΛCDM
model. The open triangle represents ðα;ΨαÞ ¼ ð3; 0.685Þ, cor-
responding to the plot for α ¼ 3 shown in Fig. 3. The intersection
point is ðα;ΨαÞ ¼ ð2; 1

3
Þ.
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This equation is satisfied for all α. The solutions can be
categorized according to whether α ¼ 2 or not. The
solution for α ≠ 2 given by Eq. (35) is written as

�
H
H0

�
2−α

¼ ð1 − ΨαÞ
�
a
a0

�
−3ð2−αÞ

2 þ Ψα; ð45Þ

and the solution for α ¼ 2 given by Eq. (36) is

H
H0

¼
�
a
a0

�
−3ð1−ΨαÞ

2

: ð46Þ

From the above solutions, SBH for the present model is
calculated. When α ≠ 2, substituting Eq. (45) into SBH ¼
K=H2 given by Eq. (13) yields

SBH ¼ K
H2

¼ K=H2
0

ðH=H0Þ2

¼ K=H2
0

ðð1 −ΨαÞð aa0Þ−
3ð2−αÞ

2 þΨαÞ 2
2−α

¼ K
H2

0

�
ð1 −ΨαÞ

�
a
a0

�
−3ð2−αÞ

2 þ Ψα

� 2
α−2
; ð47Þ

where K is a positive constant given by Eq. (14). When
α ¼ 2, applying Eq. (46) instead of Eq. (45) yields

SBH ¼ K=H2
0

ð aa0Þ−3ð1−ΨαÞ ¼
K
H2

0

�
a
a0

�
3ð1−ΨαÞ

: ð48Þ

The obtained SBH is positive.

A. Second law of thermodynamics: _SBH ≥ 0

In this subsection, we examine the second law of
thermodynamics on the Hubble horizon for the present
model. From Eqs. (16) and (17), the first derivative of SBH
is written as

_SBH ¼ −2K _H
H3

¼ 2SBH

�
− _H
H

�
: ð49Þ

This equation indicates that the sign of _SBH depends on
whether − _H=H is positive or negative because SBH > 0.
We now calculate _SBH for the present model. When

α ≠ 2, substituting Eq. (44) into Eq. (49) and applying
Eq. (45) yields

_SBH ¼ −2K _H
H3

¼ 2K
H0

�
− _H
H2

�
H0

H

¼ 2K
H0

3

2

�
1 − Ψα

�
H
H0

�
α−2

�
H0

H

¼ 3K
H0

�
1 −

Ψα

ð1 −ΨαÞð aa0Þ−
3ð2−αÞ

2 þ Ψα

�

×

�
ð1 −ΨαÞ

�
a
a0

�
−3ð2−αÞ

2 þ Ψα

� 1
α−2

: ð50Þ

When α ¼ 2, applying Eq. (46) instead of Eq. (45)
yields

_SBH ¼ 2K
H0

�
− _H
H2

�
H0

H
¼ 2K

H0

3

2
ð1 −ΨαÞ

�
a
a0

�3ð1−ΨαÞ
2

¼ 3K
H0

ð1 −ΨαÞ
�
a
a0

�3ð1−ΨαÞ
2

: ð51Þ

Although the obtained equations are slightly complicated,
they can be used to calculate the evolution of _SBH.
In the present model, we assume 0 ≤ Ψα ≤ 1, as shown

in Eq. (33). Therefore, Eq. (51) for α ¼ 2 always satisfies
_SBH ≥ 0. In addition, applying 0 ≤ Ψα ≤ 1 to Eq. (45) for
α ≠ 2 yields

�
H
H0

�
2−α

¼ ð1 − ΨαÞ
�
a
a0

�
−3ð2−αÞ

2 þ Ψα ≥ Ψα ≥ 0; ð52Þ

and rearranging the above inequality gives

1 −
Ψα

ð1 −ΨαÞð aa0Þ−
3ð2−αÞ

2 þ Ψα

≥ 0: ð53Þ

Using the two inequalities, we can confirm that Eq. (50) for
α ≠ 2 always satisfies _SBH ≥ 0. Therefore, the second law
of thermodynamics on the horizon is satisfied in the present
model. This result leads to _H=H ≤ 0 because _SBH ¼
2SBHð− _H=HÞ given by Eq. (49).
The present model satisfies _SBH ≥ 0 and _H=H ≤ 0

without assuming the sign of H. However, observations
indicate H > 0 [66], as shown in Fig. 1. Accordingly,
in this paper, we assume an expanding universe, i.e.,
H > 0. Consequently, _H ≤ 0 is obtained from _H=H ≤ 0.
_H ≤ 0 is consistent with the observed data points shown
in Fig. 1.
In summary, the present model always satisfies the

second law of thermodynamics on the horizon,

_SBH ≥ 0 and
_H
H

≤ 0; ð54Þ
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where 0 ≤ Ψα ≤ 1 is assumed. In addition, assuming an
expanding universe, i.e., H > 0, we have

_H ≤ 0: ð55Þ

B. Maximization of entropy: S̈BH < 0

We discuss the maximization of the entropy on the
Hubble horizon of an expanding universe in the present
model. From Eq. (18), the second derivative of SBH is
written as

S̈BH ¼ 2SBH

�
3 _H2 − ḦH

H2

�
: ð56Þ

Equation (56) indicates that the sign of S̈BH depends on
whether the 3 _H2 − ḦH term is positive or negative.
To examine the sign of this term, we calculate this

term from Eq. (44). The detail calculation is given in
Appendix C. From Eq. (C7), 3 _H2 − ḦH is written as

3 _H2 − ḦH ¼ 3

2
ð− _HÞH2

�
1 −Ψαð3 − αÞ

�
H
H0

�
α−2

�
: ð57Þ

This equation is satisfied for all α. Substituting Eq. (57) into
Eq. (56) yields

S̈BH ¼ 2SBH

�3
2
ð− _HÞH2½1 −Ψαð3 − αÞðHH0

Þα−2�
H2

�

¼ 3SBHð− _HÞ
�
1 − Ψαð3 − αÞ

�
H
H0

�
α−2

�
; ð58Þ

and applying SBH ¼ K=H2 given by Eq. (13) yields

S̈BH ¼ 3K

�
− _H
H2

��
1 −Ψαð3 − αÞ

�
H
H0

�
α−2

�
: ð59Þ

When α ¼ 2, a simple relation can be obtained from
Eq. (59). Substituting − _H=H2 for α ¼ 2 given by
Eq. (40) into Eq. (59) and applying α ¼ 2 yields

S̈BH ¼ 3K
3ð1 −ΨαÞ

2
ð1 −ΨαÞ ¼

9K
2

ð1 −ΨαÞ2: ð60Þ

Equation (60) indicates that S̈BH < 0 is not satisfied when
α ¼ 2. When α ≠ 2, substituting Eq. (44) into Eq. (59) and
applying Eq. (45) to the resultant equation yields the
following slightly complicated equation:

S̈BH ¼ 3K

�
− _H
H2

��
1 −Ψαð3 − αÞ

�
H
H0

�
α−2

�

¼ 9K
2

�
1 − Ψα

�
H
H0

�
α−2

��
1 −Ψαð3 − αÞ

�
H
H0

�
α−2

�

¼ 9K
2

�
1 −

Ψα

ð1 − ΨαÞð aa0Þ−
3ð2−αÞ

2 þΨα

�

×

�
1 −

Ψαð3 − αÞ
ð1 − ΨαÞð aa0Þ−

3ð2−αÞ
2 þΨα

�
: ð61Þ

This equation reduces to Eq. (60) when α → 2.
We now show the evolution of three entropic parameters,

namely SBH, _SBH, and S̈BH, for the present model. To
examine typical results, α is set to −2, 0, 1, 2, 2.5, and 3. In
addition, Ψα is set to 0.685, which is equivalent to ΩΛ for
the fine-tuned ΛCDM model.
As shown in Fig. 5(a), SBH increases with a=a0. When α

is positive, SBH is strongly influenced by α. In contrast,
when α is negative, SBH is weakly influenced by α. For all
α, SBH increases with a=a0. Therefore, _SBH is positive, as
shown in Fig. 5(b). This result agrees with Eq. (54). In
addition, _SBH for α < 2 increases with a=a0 in the early
stage (a=a0 ⪅ 0.6). However, it gradually decreases with
a=a0 in the last stage (1 ≪ a=a0). Consequently, S̈BH for
α < 2 is positive in the early stage and negative in the last
stage [Fig. 5(c)]. In contrast, _SBH for α ≥ 2 increases with
a=a0 [Fig. 5(b)]. Accordingly, S̈BH for α ≥ 2 is likely
positive even in the last stage [Fig. 5(c)]. When α ¼ 2, S̈BH
is constant. This is because S̈BH for α ¼ 2 is given by
Eq. (60) and Ψα is constant. In Fig. 5(c), the normalized
value of S̈BH is approximately 0.447, as calculated from
Eq. (60) and Ψα ¼ 0.685.
These results imply that the maximization of entropy is

not satisfied when α ≥ 2, but should be satisfied in the last
stage when α < 2. So far, typical results have been
observed. Next, we systematically examine entropy maxi-
mization. In the present model, _H ≤ 0 is satisfied in an
expanding universe, as shown in Eq. (55). For simplicity,
we consider _H < 0. Consequently, from Eq. (59), to satisfy
S̈BH < 0, we require

1 −Ψαð3 − αÞ
�
H
H0

�
α−2

< 0: ð62Þ

The left-hand side of Eq. (62) is set to F, which is written as

F ¼ 1 −Ψαð3 − αÞ
�
H
H0

�
α−2

: ð63Þ

Therefore, F < 0 is required to satisfy S̈BH < 0.
We now focus on the last phase in the last stage,

corresponding to a=a0 → ∞. To this end, we use a relation
obtained from the inverse of Eq. (52) for α ≠ 2. When
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α < 2, applying a=a0 → ∞, the relation can be approx-
imately written as

�
H
H0

�
α−2

¼ 1

ð1 −ΨαÞð aa0Þ−
3ð2−αÞ

2 þ Ψα

≈
1

Ψα
: ð64Þ

Substituting the above equation into Eq. (63) yields

F ¼ 1 −Ψαð3 − αÞ
�
H
H0

�
α−2

≈ 1 −Ψαð3 − αÞ 1

Ψα
¼ α − 2: ð65Þ

This equation implies that F < 0 is approximately satisfied
when α − 2 < 0. Accordingly, when a=a0 → ∞, to satisfy
S̈BH < 0, we require

α < 2; ð66Þ

where H > 0 and 0 ≤ Ψα ≤ 1 are assumed.
As discussed above, the Universe for α < 2 is expected

to approach a kind of equilibrium state at least in the last
stage. The evolution of the Universe is considered to be a
relaxationlike process. Therefore, a region that satisfies
S̈BH < 0 in the ðα;ΨαÞ plane varies with time before the last
stage. To examine the relaxationlike process systematically,
the boundary required for S̈BH ¼ 0 is calculated from
Eq. (59). The boundary is given by

Ψα ¼
1

3 − α

�
H
H0

�
2−α

: ð67Þ

When α ¼ 2, Ψα ¼ 1 is obtained from this equation. When
α ≠ 2, substituting Eq. (45) into Eq. (67) yields

Ψα ¼
1

3 − α

�
ð1 − ΨαÞ

�
a
a0

�
−3ð2−αÞ

2 þ Ψα

�
; ð68Þ

and solving Eq. (68) with respect toΨα yields the following
boundary required for S̈BH ¼ 0:

Ψα ¼
ð aa0Þ−

3ð2−αÞ
2

2 − αþ ð aa0Þ−
3ð2−αÞ

2

: ð69Þ

Using Eq. (69), the boundary of S̈BH ¼ 0 for various
values of a=a0 can be plotted in the ðα;ΨαÞ plane. In
Fig. 6, a=a0 is set to 0.5, 1, 2, and 4 to observe typical
boundaries. The arrow attached to each boundary indicates
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FIG. 5. Evolution of three normalized entropic parameters
for the present model for Ψα ¼ 0.685. (a) SBH normalized as
SBHðH2

0=KÞ. (b) _SBH normalized as _SBHðH0=KÞ. (c) S̈BH nor-
malized as S̈BHð1=KÞ. The plots for α ¼ 0 are equivalent to those
for the fine-tuned ΛCDM model because Ψα ¼ 0.685. a/a0 0.5

a/a0 1

a/a0 2

CDM

-2.0 -1.0 0.0 1.0 2.0 3.0
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FIG. 6. Boundary of S̈BH ¼ 0 in the ðα;ΨαÞ plane for various
values of a=a0. The four boundaries for a=a0 ¼ 0.5, 1, 2, and 4
are shown. The arrow attached to each boundary indicates a
relaxationlike-process-side region that satisfies S̈BH < 0. The
open circle represents ðα;ΨαÞ ¼ ð0; 0.685Þ for the fine-tuned
ΛCDM model. The vertical break line represents α ¼ 2.
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a relaxationlike-process-side region that satisfies S̈BH < 0.
The upper side of each boundary corresponds to this region.
As shown in Fig. 6, this region gradually extends down-
ward with increasing a=a0. However, the region does not
exceed the vertical break line of α ¼ 2, although all the
boundaries intersect at the point ðα;ΨαÞ ¼ ð2; 1Þ. This
constraint is consistent with Eq. (66).
We now show the boundary for a=a0 ¼ 1, which

represents the present time. As shown in Fig. 6, a small-
α and large-Ψα region tends to satisfy S̈BH < 0 at the
present time. For example, the point (0,0.685) for the fine-
tuned ΛCDM model satisfies S̈BH < 0. A region close to
this point satisfies the maximization of entropy not only at
the present time but also in the future.
As observed above, a small-α and large-Ψα region tends

to approach thermodynamic equilibriumlike states rela-
tively quickly. In contrast, in a large-α and small-Ψα region,
it should take a very long time to satisfy S̈BH < 0, even
when α < 2. This result implies that cosmological models
in the former region should be favored from a thermody-
namics viewpoint.

VI. CONCLUSIONS

We examined the thermodynamics on the Hubble hori-
zon of a flat FRW universe at late times using holographic
cosmological models with a power-law term. These models
are generally categorized into two types, i.e., ΛðtÞ and BV.
In the present study, we derived energy flows across the
horizon using two methods to examine their suitability. It
was found that ΛðtÞ models similar to ΛðtÞCDM models
satisfy the consistency of the two energy flows.
Based on this consistency, we phenomenologically

formulated a ΛðtÞ model that includes Hα terms. The
differential equation for the present model can be analyti-
cally solved. Using this solution, we examined the dynamic
properties of the present model. It was found that α < 2
corresponds to a decelerating and accelerating universe,
whereas α > 2 corresponds to an accelerating and decel-
erating universe.
In addition, we examined the thermodynamic properties

of the present model, focusing on the evolution of the
Bekenstein-Hawking entropy SBH. When α is positive, the
entropy evolution is strongly influenced by α. However,
when α is negative, SBH is weakly influenced by α. The
present model always satisfies the second law of thermo-
dynamics on the horizon, i.e., _SBH ≥ 0. When α < 2, the
maximization of the entropy, S̈BH < 0, should be satisfied
at least in the last stage of the evolution of an expanding
universe.
Moreover, we systematically examined the relaxationlike

process of the presentmodel using the ðα;ΨαÞ plane.A small-
α and large-Ψα region tends to approach thermodynamic
equilibriumlike states relatively quickly. Cosmological mod-
els in this region are likely favored from a thermodynamics

viewpoint. Thepresent study should providenew insights into
various cosmological models, especially for ΛðtÞCDM
models.
In this paper, we focused on entropy maximization

related to equilibriumlike states. Accordingly, a universe
for ðα;ΨαÞ ¼ ð2; 1

3
Þ, which is in a kind of nonequilibrium

steady state, was not examined here. This universe may
facilitate the examination of nonequilibrium steady states in
an expanding universe. In addition, density perturbations
related to structure formations were not discussed here.
Detailed studies are needed from various viewpoints. These
tasks are left for future research.
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APPENDIX A: CALCULATION OF ENERGY
FLOW ACROSS THE HUBBLE HORIZON

In this Appendix, we calculate the right-hand side of
Eq. (10) to derive the energy flow across the Hubble
horizon of a flat FRW universe. The energy flow given by
Eq. (10) is written as

− _E ¼ AHrHc2ð1þ wÞρH: ðA1Þ

In order to calculate the right-hand side of this equation,
ð1þ wÞρH is calculated from the general continuity
equation. Using Eq. (8), ð1þ wÞρH can be written as

ð1þ wÞρH ¼ −
1

3
_ρþ H

4πG

�
hBðtÞ −

_fΛðtÞ
2H

�
: ðA2Þ

Next, we calculate − _ρ=3 in Eq. (A2) from the general
Friedmann equation. Differentiating Eq. (1) with respect to
t gives

2H _H ¼ 8πG
3

_ρþ _fΛðtÞ; ðA3Þ

and solving Eq. (A3) with respect to − _ρ=3 yields

−
1

3
_ρ ¼ −2H _H þ _fΛ

8πG
: ðA4Þ

We now calculate the right-hand side of Eq. (A1).
Substituting Eq. (A2) and rH ¼ c=H into Eq. (A1) and
applying Eq. (A4) yields
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− _E ¼ AH

�
c
H

�
c2
�
−
1

3
_ρþ H

4πG

�
hBðtÞ −

_fΛðtÞ
2H

��

¼ AHc3

H

�
−2H _H þ _fΛ

8πG
þ H
4πG

�
hBðtÞ −

_fΛ
2H

��

¼ AHc3

4πG
ð− _H þ hBðtÞÞ: ðA5Þ

In addition, substituting AH ¼ 4πr2H ¼ 4πðc=HÞ2 into
Eq. (A5) yields

− _E ¼ 4πðc=HÞ2c3
4πG

ð− _H þ hBðtÞÞ

¼ c5

G

�
−

_H
H2

þ hBðtÞ
H2

�
: ðA6Þ

The two equations represent an energy flow across the
Hubble horizon of a flat FRW universe. Mimoso and
Pavón [68] have discussed an equivalent equation in
CCDM models in a non-flat FRW universe using an
apparent horizon.

APPENDIX B: SOLUTIONS FOR THE PRESENT
MODEL WITH A POWER-LAW TERM

In this Appendix, the general solution for the present
model with Hα terms is derived using a method used in
Ref. [37]. The solution method is partially based on
Refs. [28,29]. We first consider α ≠ 2 and discuss α ¼ 2
later, where α is a real number.
The differential equation for the present model given by

Eq. (31) can be written as

_H ¼ −
3ð1þ wÞ

2
H2

�
1 −

fαðHÞ
H2

�
: ðB1Þ

From Eq. (B1), we have ðdH=daÞa given by

�
dH
da

�
a ¼ dH

dt
dt
da

a ¼ −
3ð1þ wÞ

2
H2

�
1 −

fαðHÞ
H2

�
a
_a

¼ −
3ð1þ wÞ

2
H

�
1 −

fαðHÞ
H2

�
: ðB2Þ

We consider a matter-dominated universe, i.e., w ¼ 0,
although w is retained for generality.
In the present model, the extra driving term fαðHÞ given

by Eq. (32) is

fαðHÞ ¼ ΨαH2
0

�
H
H0

�
α

; ðB3Þ

where Ψα is a free parameter. Substituting Eq. (B3) into
Eq. (B2) yields

�
dH
da

�
a ¼ −

3ð1þ wÞ
2

H
�
1 −

ΨαH2
0ðHH0

Þα
H2

�

¼ −
3ð1þ wÞ

2
H

�
1 −Ψα

�
H
H0

�
α−2

�
: ðB4Þ

Now, the normalized Hubble parameter H̃ is defined as

H̃ ≡ H
H0

: ðB5Þ

Similarly, the normalized scale factor ã is defined as

ã≡ a
a0

: ðB6Þ

Substituting H ¼ H̃H0 and a ¼ ãa0 into Eq. (B4) and
arranging the resultant equation yields

�
dH̃
dã

�
ã ¼ −

3ð1þ wÞ
2

H̃ð1 − ΨαH̃α−2Þ: ðB7Þ

In addition, a parameter N is defined by

N ≡ ln ã; and therefore; dN ¼ dã
ã
: ðB8Þ

Note that theN defined here is not the number of degrees of
freedom. Using Eq. (B8), Eq. (B7) can be written as

�
dH̃
dN

�
¼ −

3ð1þ wÞ
2

H̃ð1 − ΨαH̃α−2Þ: ðB9Þ

When w, α, and Ψα are constant, Eq. (B9) can be
integrated as

Z
dH̃

H̃ð1 −ΨαH̃α−2Þ ¼ −
3ð1þ wÞ

2

Z
dN: ðB10Þ

The solution is given by

ln

�
H̃α

H̃2 −ΨαH̃α

� 1
α−2 ¼ −

3ð1þ wÞ
2

N þ C

¼ −
3ð1þ wÞ

2
ln ãþ C; ðB11Þ

where C is an integral constant. From Eqs. (B5) and (B6),
the present values of H̃ and ã are 1. Substituting H̃ ¼ 1
and ã ¼ 1 into Eq. (B11), the integral constant C can be
written as

C ¼ ln

�
1

1 − Ψα

� 1
α−2
: ðB12Þ

Substituting Eq. (B12) into Eq. (B11) and solving the
resultant equation with respect to ã≡ a=a0 yields
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a
a0

¼
�

1 −Ψα

ðH=H0Þ2−α −Ψα

� 2
3ð1þwÞð2−αÞ

; ðB13Þ

and solving this equation with respect to H̃ ≡H=H0 yields

�
H
H0

�
2−α

¼ ð1 −ΨαÞ
�
a
a0

�
−3ð1þwÞð2−αÞ

2 þ Ψα: ðB14Þ

When α ≠ 2, Eqs. (B13) and (B14) are the general
solutions for the present model. Equation (B13) is briefly
described in a previous study [38].
When α ¼ 2, Eq. (B9) is written as

�
dH̃
dN

�
¼ −

3ð1þ wÞ
2

ð1 −ΨαÞH̃: ðB15Þ

This equation is integrated as

Z
dH̃

H̃
¼ −

3ð1þ wÞð1 −ΨαÞ
2

Z
dN: ðB16Þ

The solution is

ln H̃ ¼ −
3ð1þ wÞð1 −ΨαÞ

2
N þ C2

¼ −
3ð1þ wÞð1 −ΨαÞ

2
ln ãþ C2; ðB17Þ

where C2 is an integral constant. Substituting H̃ ¼ 1 and
ã ¼ 1 into Eq. (B17) yields C2 ¼ 0. From Eq. (B17) and
C2 ¼ 0, the solution for α ¼ 2 is written as

H
H0

¼
�
a
a0

�
−3ð1þwÞð1−ΨαÞ

2

; ðB18Þ

where H̃ ≡H=H0 and ã≡ a=a0 are used. The background
evolution of the Universe for α ¼ 2 has been discussed in,
e.g., Ref. [28].

APPENDIX C: CALCULATION OF 3 _H2�ḦH FOR
THE PRESENT MODEL

As discussed in Sec. V B, S̈BH includes 3 _H2 − ḦH
terms. We calculate 3 _H2 − ḦH for the present model.
To this end, a normalized parameter B1 is defined by

B1 ≡ 3 _H2 − ḦH
H4

0

¼ 3

�
_H

H2
0

�2

−
H
H0

�
Ḧ
H3

0

�
: ðC1Þ

To calculate the right-hand side of this equation, we first
calculate Ḧ from Eq. (44), which is satisfied for all α.
Differentiating Eq. (44) with respect to t yields

Ḧ ¼ d
dt

_H ¼ d
dt

�
−
3

2
H2 þ 3

2
ΨαH2

0

�
H
H0

�
α
�

¼ −3H _H þ 3

2
ΨαH2

0α

�
H
H0

�
α−1 _H

H0

¼ −3 _HH0

�
H
H0

−
1

2
Ψαα

�
H
H0

�
α−1

�
: ðC2Þ

Substituting Eq. (C2) into Eq. (C1) yields

B1 ¼ 3

�
_H

H2
0

�2

−
H
H0

�
−
3 _H
H2

0

�
H
H0

−
Ψαα

2

�
H
H0

�
α−1

��

¼ 3
_H

H2
0

�
_H

H2
0

þ
�
H
H0

�
2

−
Ψαα

2

�
H
H0

�
α
�

¼ 3

�
_H

H2
0

�
B2; ðC3Þ

where B2 is

B2 ¼
_H

H2
0

þ
�
H
H0

�
2

−
Ψαα

2

�
H
H0

�
α

: ðC4Þ

Substituting Eq. (44) into Eq. (C4), B2 is given by

B2 ¼
− 3

2
H2 þ 3

2
ΨαH2

0ðHH0
Þα

H2
0

þ
�
H
H0

�
2

−
Ψαα

2

�
H
H0

�
α

¼ −
1

2

�
H
H0

�
2

þ Ψαð3 − αÞ
2

�
H
H0

�
α

¼ 1

2

�
H
H0

�
2
�
−1þΨαð3 − αÞ

�
H
H0

�
α−2

�
: ðC5Þ

In addition, substituting Eq. (C5) into Eq. (C3), B1 is
written as

B1 ¼ 3

�
_H

H2
0

�
1

2

�
H
H0

�
2
�
−1þ Ψαð3 − αÞ

�
H
H0

�
α−2

�

¼ 3

2

�
− _H
H2

0

��
H
H0

�
2
�
1 − Ψαð3 − αÞ

�
H
H0

�
α−2

�
: ðC6Þ

From Eqs. (C1) and (C6), we have

3 _H2 − ḦH ¼ 3

2
ð− _HÞH2

�
1 −Ψαð3 − αÞ

�
H
H0

�
α−2

�
: ðC7Þ

Applying this equation, S̈BH is calculated from Eq. (56), as
examined in Sec. V B. Equation (C7) is satisfied for all α in
the present model.
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Solà, J. Phys. Conf. Ser. 453, 012015 (2013).

[6] K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov,
Astrophys. Space Sci. 342, 155 (2012).

[7] K. Freese, F. C. Adams, J. A. Frieman, and E. Mottola,
Nucl. Phys. B287, 797 (1987); J. M. Overduin and F. I.
Cooperstock, Phys. Rev. D 58, 043506 (1998).

[8] S. Basilakos, M. Plionis, and J. Solà, Phys. Rev. D 80,
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