A remark on 4 dimensional compact aspherical homogeneous space

メタデータ 言語: jpn
出版者:
公開日: 2017-10-03
キーワード (Ja):
キーワード (En):
作成者:
メールアドレス:
所属:
URL http://hdl.handle.net/2297/505

A remark on 4 dimensional compact aspherical homogeneous space

Kazuo Saito

Introduction

In this note we shall consider the homeomorphism type of the compact aspherical homogeneous space of dimension 4. Let G be a connected, simply connnected Lie group and H a closed subgroup of G such that G/H is a compact aspherical homogeneous space of dimension 4 and G acts on G/H irreducibly, i. e. no proper subgroup of G does not act transitively. When G is a solvable group, the homeomorphism type of the solvmanifold is uniquely determined by its fundamental group ([5], [6]). It is proved that if M and N are both compact connected negatively curved Riemannian manifolds with isomorphic fundamental groups, then M and N are homeomorphic provided $\dim M \neq 3$ and 4 ([2]). Recently it is shown that the homeomorphism type of the compact homogeneous space is determined up to a finite covering by its fundamental group ([7]). We shall prove the following

THEOREM. Let G/H be a 4 dimensional compact homogeneous space, where G is a connected, simply connected Lie group and H is a closed subgroup of G. If G acts on G/H irreducibly, the fundamental group of G/H is solvable.

From the result that compact aspherical homogeneous spaces with isomorphic solvable fundamental groups are homeomorphic ([4]), we have the following

COROLLARY. Let G_i be a connected, simply connected Lie group and H_i its closed subgroup such that G_i/H_i is a closed 4 dimensional aspherical manifold on which G_i acts irreducibly for i=1, 2. If the fundamental groups of G_1/H_1 and G_2/H_2 are isomorphic, then G_1/H_1 and G_2/H_2 are homeomorphic.

1. Preliminaries

In this note we use the following notations.

- (1) **Z**, **R** and **N** denote the ring of integers, the field of real numbers and the set of natural numbers, respectively.
- (2) For a Lie group G, G^o denotes its identity component.
- (3) [G, G] denotes the derived subgroup of group G.
- (4) Let G be a group and H its subgroup. $N_G(H)$ denotes the normalizer of H in G.
- (5) For a Lie group G, L(G) denotes its Lie algebra.
- (6) For a group G, z(G) denotes the center of G.

Then we have the following definitions.

Definition. A manifold M is said aspherical or of type $K(\pi, I)$ if all its homotopy groups, except possibly its fundamental group, are equal to zero.

Definition. A transitive action of a Lie group G on manifold M is said irreducible if the following conditions are satisfied;

- (1) G acts on M effectively
- (2) G does not contain proper subgroups which are transitive on M.

Definition. Let G be a Lie group. A subgroup T of G is said to be triangular if its image ad(T) by the adjoint representation of G is a triangular group of transformations of L(G).

Let G be a connected Lie group and $G = S \cdot R$ be a Levi decomposition of G, where S is a semisimple subgroup of G and R is the radical of G. There are well known following facts.

THEOREM 1 ([3]). Let M = G/H be compact and aspherical, and let G be simply connected and locally effective on M. Then the following assertions are true;

- (1) G is diffeomorphic to \mathbf{R}^n
- (2) $H^o \subset T \cdot R$, where T is some maximal connected triangular subgroup of S
- (3) if G is irreducible on M, then $H^o \subset [T, T] \cdot R$.

It follows, from this Theorem 1, that if $G = S \cdot R$ is a Levi decomposition of G which is diffeomorphic to \mathbb{R}^n , then S is isomorphic to $A_1 \times \cdots \times A_p$, where A_i is a simple Lie group which is isomorphic to the universal covering group A of $SL(2, \mathbb{R})$ and diffeomorphic to \mathbb{R}^3 .

THEOREM 2 ([4]). Let M be a compact homogeneous space of type $K(\pi, 1)$ with π solvable. Then the following assertions are true;

- (1) M is homeomorphic to solvmaifold
- (2) if M_1 is another compact homogeneous space of type $K(\pi, 1)$, then M_1 is homeomorphic to M

This Theorem 2 means that the homeomorphism type of the compact aspherical homogeneous space is determined by its fundamental group, if it is solvable.

THEOREM 3 ([6]). Let G be a connected Lie group and H a closed subgroup of G such that G/H is compact. Then $N_G(H^o)$ contains a maximal connected triangular subgroup of G.

2. Example

This section is mainly concerned with the manifold which is constructed in [4] . Let G be a Lie group and F, H closed subgroups of G such that $F \supset H$. We consider a fibration

$$F/H \to G/H \to G/F$$

where G/H is the base space and F/H is the fiber space. If $G_1 \subset G$ is a subgroup which is transitive on G/F, then the fibration is homogeneous with respect to G_1 . The stationary group of the fiber is $F_1 = F \cap G_1$. We have the following

PROPOSITION 1. If $F_1 \subset H$, then the action of F_1 on F/H is induced by the action of F_1 by inner automorphisms of F.

PROOF. Let gH be an element of F/H, Then since $g_1 \subseteq H$, we have

$$g_1 \cdot (gH) = g_1 g g_1^{-1} g_1 H = g_1 g g_1^{-1} H, g_1 \in F_1.$$

Thus the assertion is proved.

Let G be $SL(2, \mathbf{R}) \times_{ad} \mathbf{R}^3$, where ad is the adjoint representation of $SL(2, \mathbf{R})$ and let T be the group of the triangular matrices with positive elements on the diagonal. Then $T \times_{ad+T} \mathbf{R}^3$ is a solvable group and there exists a subspace $V \subset \mathbf{R}^3$ of codimension 1 which is invarianat with respect to T. Hence $T \times_{ad+T} \mathbf{R}^3/V$ is 3 dimensional solvable group and so [T, T], \mathbf{R}^3 C. Thus we obtain an abelian Lie group $[T, T] \cdot \mathbf{R}^3/V$. The subgroup

$$D_{\alpha} = \left\{ \begin{array}{cc} \left(\begin{array}{cc} e^{k\alpha} & 0 \\ 0 & e^{-k\alpha} \end{array} \right) \mid k \in \mathbf{Z} \end{array} \right\}$$

acts on $[T, T] = \mathbf{R}^1$ by the multiplication by $e^{2\alpha}$. If $\alpha \in \mathbf{R}$ is such that $e^{2\alpha} + e^{-2\alpha} \in \mathbf{N}$, then D_{α} is conjugate with the subgroups of integral valued matrices in the group of automorphisms of $[T, T] \cdot \mathbf{R}^3/V = \mathbf{R}^2$. Hence D_{α} preserves some lattice Γ in $[T, T] \cdot \mathbf{R}^3/V$. We set $H_1 = p^{-1}(\Gamma)$, where $p:[T, T] \cdot \mathbf{R}^3 \to [T, T] \cdot \mathbf{R}^3/V$ is a natural projection. Let H be the subgroup of G generated by D_{α} and H_1 . Then it follows that H is a closed in G and $G/H = M_{\alpha}$ is a compact 4 dimensional homogeneous space. If we set $H' = z(SL(2,\mathbf{R})) \cdot H$ in place of H, then we get another analogous manifold $G/H' = M'_{\alpha}$.

PROPOSITION 2. M_{α} and M'_{α} are diffeomorphic to solvmanifolds.

PROOF. Since $H \subset T \cdot \mathbf{R}^3$, we have the fibration $T \cdot \mathbf{R}^3/H \to G/H \to G/T \cdot \mathbf{R}^3$. Here the base space $G/T \cdot \mathbf{R}^3$ is diffeomorphic to S^1 . Then a maximal compact subgroup K of $SL(2, \mathbf{R})$ is transitive on $G/T \cdot \mathbf{R}^3$ and so, by Proposition 1, the diffeomorphism of the fiber space is trivial. Hence G/H is diffeomorphic to $T \cdot \mathbf{R}^3/H \times S^1$, because a bundle over S^1 is determined by a diffeomorphism of the fiber space. This manifold is a solvmanifold. For M'_{α} this argument is also applicable, because $z(SL(2, \mathbf{R}))$ acts trivially on \mathbf{R}^3 .

3. Proof of Theorem

In this section we shall prove Theorem in Introduction. let G be a connected, simply connected Lie group which is irreducible on M = G/H and $G = S \cdot R$ be a Levi decomposition with the natural projection $q: G \to S$. Then, from the remark following Theorem 1, we have $S = S_1 \times \cdots \times S_p$. Let $p_i: S \to A_i$ be the natural projection for $i = 1, \dots, p$. From Theorem 1 we have that dim $p_i \cdot q(H) \leq 1$. Since dim M = 4, we get that $p \leq 2$.

(1) Case of p=2

In this case we have that $G=(A_1\times A_2)\cdot R$ and dim $q(H)\leq 2$. If $R\neq \{e\}$, then $R\subset H$. So by the reason of irreducibility we have $G=A_1\times A_2$. Then $H^o=[T_1,T_1]\times [T_2,T_2]$, where T_i is a maximal triangular subgroup of A_i for i=1,2, and $N_G(H^o)=z(A_1)T_1\times z(A_2)$. Since $\pi_1(G/H)=H/H^o$ and $H\subset N_G(H^o)$, $H/H^o\subset N_G(H^o)/H^o=z(A_1)\mathbf{R}\times z(A_2)\mathbf{R}$ and so $\pi_1(G/H)=\mathbf{Z}^4$.

Let $H_1 = H \cdot N_G(H^o)^o$. Since $H \subset H_1 \subset N_G(H^o)$ and $H_1^o = N_G(H^o)^o = T_1 \times T_2$, it follows that H_1^o is a closed subgroup of G, while by the construction H_1^o is transitive on H_1/H . We

consider the fibration and the corresponding exact sequence of the fundamental group;

$$H_1/H \to G/H \to G/H_1$$

$$1 \to \pi_1(H_1/H) \to \pi_1(G/H) \to \pi_1(G/H_1) \to 1.$$

Let K_i be a subgroup of A_i whose Lie algebra is maximal and compact. Since $K = K_1 \times K_2$ is an abelian subgroup of G and is transitive on the compact base space G/H_1 , G/H_1 is a 2 dimensional torus. With respect to the fiber H_1/H_1 ,

$$H_1/H = H_1^o/H_1^o \cap H = S^1 \times S^1.$$

However $K \subset G$ is transitive on G/H_1 and $K \cap H_1 \subset z(G) \cap H$, because $K \cap H_1 \subset N_G(H^o)$. So the diffeomorphism of the fiber ,which is induced by an inner automorphism by the element of $K \cap H_1$, is trivial and hence, applying Proposition 1, this fibration is trivial over the loops S^1 of the base. Thus G/H is 4 dimensional torus([8]).

(2) Case of p = 1

In this case we have $G = A \cdot R$ and further the following two subcases (i) and (ii) because dim $q(H) \le 1$.

(i) dim q(H) = 0 and $H^o \subset R$, codim $_RH^o = 1$.

Claim 1. R is abelian and if we write $G = A \times_{\varphi} \mathbf{R}^n$, then φ is an irreducible representation.

If R is nonabelian, then either $[R,R]\cdot H=R$ or $[R,R]\subset H$. If $[R,R]\cdot H=R$, then $G'=A\times_{\sigma}[R,R]$ is transitive on M, which contradicts an irreducibility of G on M. If $[R,R]\subset H$, then this contradicts a local effectiveness of the action of G on M. Thus R is abelian.

Assume φ is reducible. Let $R=V_1+V_2$ be a direct sum decomposition of two φ invariant subspaces of R, $V_i \neq \{0\}$ for i=1,2. Then either $V_1+H^o=R$ or $V_2+H^o=R$ and so $A\times_{\varphi}V_1$ or $A\times_{\varphi}V_2$ is transitive on M. This contradicts an irreducibility of G on M. Thus φ is irreducible.

Claim 2. \(\varphi\) is unimodular.

We put $F = N_G(H^o)^o$. By Theorem 3 there exists a maximal connected triangular subgroup T of A such that $T \cdot R \subset F$. But this induces $T \cdot R = F$ and F/H^o is a 3 dimensional solvable Lie group with a lattice $H \cap F/H^o$. This solvable Lie group has the following splitting

$$1 \longrightarrow [T, T] \cdot R/H^o \longrightarrow F/H^o \longrightarrow T/[T, T] \longrightarrow 1.$$

$$\parallel \qquad \qquad \parallel$$

$$\mathbf{R}^2 \qquad \qquad \mathbf{R}^1$$

We get that $F/H^o = \mathbf{R}^1 \times_{\psi} \mathbf{R}^2$, where $\psi(t) = (Ad(t), \varphi(t))$, Ad is an adjoint map of T on [T, T], for $t \in T/[T, T]$. By the reason of the unimodularity of ψ and ad, φ is unimodular.

By the above claims, φ coincides with the adjoint representation used in Proposition 2. Hence $G = A \times_{ad} \mathbf{R}^3$ and $G/H = M_{\alpha}$.

(ii) dim q(H) = 1 and codim $_RR \cap H = 2$.

Claim 3. If $G = A \cdot R$, then R = N, where N is the nilradical of R.

Assume $R \neq N$. Let $H_2 = H \cap R$ and then $H_2 \cdot N \subset R$. Since both cases $N \subset H_2$ and $H_2 \cdot N = R$ are impossible by the reason of the irreducibility of G on M, we have codim $_R H_2 \cdot N = 1$. Let $p: R \to R/N$ be the natural projection. Since $p(H_2 \cdot N) = H_2/H_2 \cap H$ has

codimension 1 in the abelian Lie group R/N, there exists a 1 dimensional subgroup V such that $V \cdot p(H_2 \cdot N) = R/N$ and $V \cap p(H_2 \cdot N) = \{e\}$. Since A acts on R/N trivially, $p^{-1}(V) \subset R$ is invariand with respect to A and hence $G' = A \cdot p^{-1}(V)$ is a proper subgroup of G. Since L(G') + L(H) = L(G), G' is transitive on M, which contradicts the irrducibility of G on M. Thus R = N.

Claim 4. N is abelian.

Since $T \cdot N$ is a maximal connected triangular subgroup of G, we have $N_G(H^o)^o = T \cdot N$ by Theorem 3. Let $C \subset T$ be a Cartan subgroup such that $C \cdot [T, T] = T$ and $C \cap [T, T] = \{e\}$. Since dim q(H) = 1, $q(H^o) = [T, T]$. We have $H \subset N_G(H^o) = z(A)T \cdot N$ and so $H^o \subset T \cdot N$. Then 3 dimensional solvable Lie group $C \cdot N/H^o \cap C \cdot N$ is transitive on the compact solvmanifold $T \cdot N/H^o \cap C \cdot N$ of dimension 3. $C \cdot N/H^o \cap C \cdot N$ contains N/H_0 as a normal subgroup of dimension 2. From the description of 3 dimensional solvable Lie groups having lattices ([1]), N/H_0 is abelian and hence $[N, N] \subset H_0$. But assume $[N, N] \neq \{e\}$, this contradicts the local effectiveness of the action of G on M. Thus N is abelian.

Claim 5. If we write $G = A \times_{\varphi} \mathbf{R}^n$, φ is trivial and so $G = A \times \mathbf{R}^n$.

Since T normalizes H^o , φ induces a representation $\tilde{\varphi}: T \to GL(\mathbf{R}^n/H_2^o)$, which is trivial. In fact \mathbf{R}^n is abelian and $T \cdot \mathbf{R}^n/H^o$ is 3 dimensional solvable group and so $[T, \mathbf{R}^n] \subset H_2$. Let $V_1 \subset \mathbf{R}^n$ be the space of the fixed elements of φ and V_2 its invariant complement. From the triviality of $\tilde{\varphi}$ it follows that $V_2 \subset H_2$. Assume $V_2 \neq \{0\}$. Then the subgroup $G' = A \times_{\varphi} V_1$ is a proper subgroup of G and transitive on M, which contradicts the irreducibility of G on M. Thus $V_1 = \mathbf{R}^n$ and so φ is trivial.

By the same argument as in case (1), M = G/H is diffeomorphic to a 4 dimensional torus.

(3) Case of p = 0

In this case we have G=R and so G/H is a solvmanifold.

In all cases we proved that the fundamental group of G/H is solvable since the fundamental group of solvmanifold is solvable. This completed the proof of Theorem.

References

- [1] L. Auslander, L. Green and F. Haken, "Flows on homogeneous spaces," Princeton Univ. Press, Princeton N. J., 1963.
- [2] F. Farrell and L. Jones, Compact negatively curved connected manifolds(of dim = 3, 4) are topologically rigid, Proc. Nat. Acad. Sci. USA 86 (1989), 3461-3463.
- [3] V. Gorbacevič, On aspherical homogeneous space, Math. USSR Sb. 29 (1976), 223-238.
- [4] V. Gorbacevič, On Lie groups, transitive on compact solvmanifolds, Math. USSR Izv. 11 (1977), 271-292.
- [5] G. Mostow, Factor spaces of solvable groups, Ann. of Math. 60 (1954), 1-27.
- [6] A. Onisčik, On Lie groups transitive on compact manifolds, Math. USSR Sb. 3 (1967), 59-72.
- [7] S. Ogose, K. Kawabe and T. Watabe, A note on aspherical homogeneous manifolds (preprint).
- [8] K. Sakamoto and S. Fukuhara, Classification of T²-bundles over T², Tokyo J. Math. 6 (1983), 311-327.