Dielectric Properties of (NMt4)(NEt4)CoX4(X:Co,Br) Type Crystals

メタデータ 言語: eng 出版者: 公開日: 2017-10-03 キーワード (Ja): キーワード (En): 作成者: メールアドレス: 所属: URL http://hdl.handle.net/2297/494

Dielectric Properties of (NMt₄)(NEt₄)CoX₄(X : Cl, Br) Type Crystals

Nagahide IZUMI

Institute of Physics, Faculty of Education Kanazawa University, Kakuma, Kanazawa, 920

Abstract

Single crystal $(NMt_4)(NEt_4)CoCl_4$ and $(NMt_4)(NEt_4)CoBr_4$ were grown by slow evaporation method and dielectric constant have been measured over a temperature range from -190° C to 50° C. Two phase transition points, -165° C and -171° C, have been observed for $(NMt_4)(NEt_4)CoCl_4$ crystal. For $(NMt_4)(NEt_4)CoBr_4$ crystal, two phase transition points, -163° C and -178° C, were also observed and moreover found that this temperature region were ferroelectric phase.

\$ Introdution

The crystal of tetramethylammonium (hereafter the fomula $N(CH_3)_4$ is abbreviated as NMt_4) tetrachlorocobaltate (NMt_4)₂CoCl₄ undergoes successive phase transition at about -151, -81, 3.0, 4.6, 7.1 and 20° C on heating and shows the ferroelectricity in temperature range between 4.6° C and 7.1° C.^{1)~3)} These phase are denoted as I, II, III, II', IV, V, VI in the order of decreasing temperature. The structure of these phase are as follow, phase I is *Pnmc*, phase II and II' are incommensurate, phase III shows commensurate accompanied with ferroelectricity along a axis and space group is $P2_1$ cn, phase IV shows commensurate (space group P112/n), phase V is $P12_1/c1$ and phase VI is orthorhombic with space group $P2_12_12_1$.

On the other hand, the crystal of tetraethylammonium (hereafter the fomura $N(C_2H_5)_4$ is abbreviated as NEt_4) tetrachlorocobaltate (NEt_4)CoCl₄ undergoes phase transition at about $-53^{\circ}C.^{4)}$ The phases are denoted as I, II in order of decreasing temperature. Space group of phase I is $P_{4_2/nmc}$.

The crystal of $(NMt_4)_2CoBr_4$ undorgoes phase transition at about $14.7^{\circ}C$ and two phases are denoted as I (space group Pncm) and II (space group $P12_1/c1$). The crystal of $(NEt_4)_2$ CoBr₄ undergoes phase transition at about $9^{\circ}C$ and two phases are denoted as phase I (space group $P4_2/nmc$) and II. $(NMt_4)CoCl_4$ crystal have successive phase transition but $(NMt_4)CoBr_4$

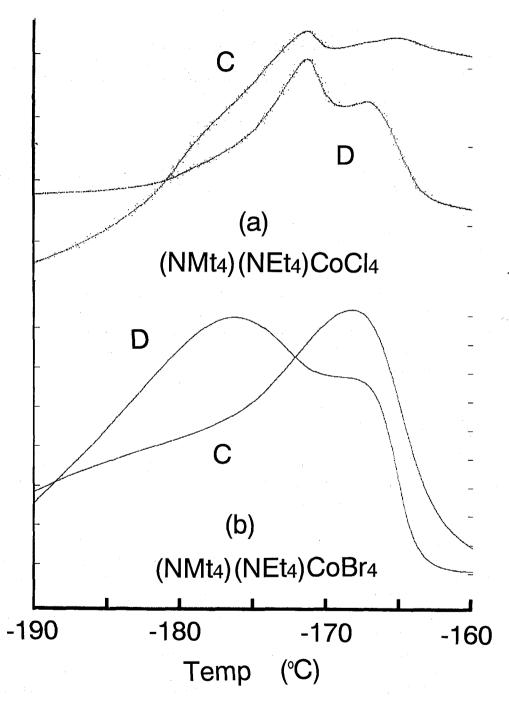


Fig. 1 Capacitance C and dielectric loss D (a) for $(NMt_4)(NEt_4)CoCl_4$ crystal, and (b) for $(NMt_4)(NEt_4)CoBr_4$ crystal, respectively.

has one simple second order phase transition, $(NEt_4)_2CoCl_4$ and $(NEt_4)_2CoBr_4$ have one simple first order phase transition.⁸⁾

A study of (NMt₄)(NEt₄)CoX₄ mixed crystal system seems, therefore, to be particular

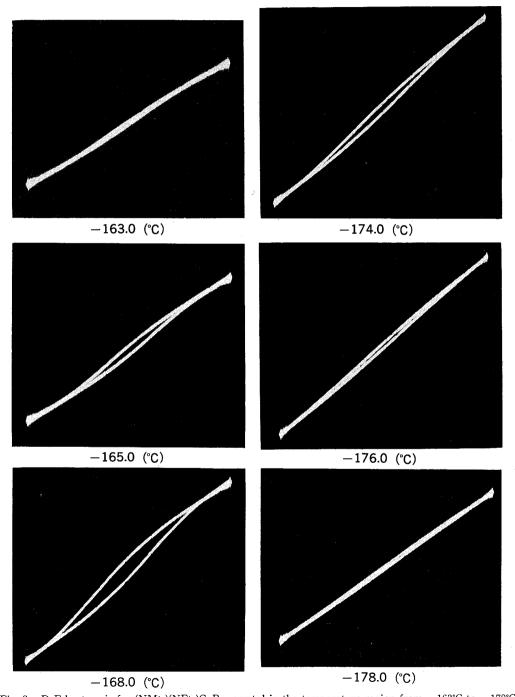


Fig. 2 D-E hysteresis for $(NMt_4)(NEt_4)CoBr_4$ crystal in the temperature region from $-163^{\circ}C$ to $-178^{\circ}C$.

(NMt4)2CoCl 4	(NEt4)2CoCl4	(NMt4)(NEt4)CoCl4	(NMt4)2CoBr4	(NEt4)2CoBr4	(NMt4)(NEt4)CoBr4
Pncm 			I Pncm — 14.7℃ —	I P42/nmc — 9 ℃ —	
P21cn (F) 4.6°C ' (1.C) 3.0°C	P42/nmc		II P121/c1	11	
IV P112/n (c)					
V P121/c1	11	— -165°C — — -171°C —			— −1 6 3 °C − (F)

Table 1 Phase diagram of (NMt₄)(NEt₄)CoCl₄ and (NMt₄)(NEt₄)CoBr₄.

interest. In this paper, we report the dielectric properties of $(NMt_4)(NEt_4)CoCl_4$ and $(NMt_4)(NEt_4)CoBr_4$.

\$. 1 Experimental

Single crystal (NMt₄)(NEt₄)CoCl₄ was prepared from aqueous solution by slow evaporation method at 30°C. At first, the crystal of (NMt₄)₂CoCl₄ was obtained from stoichiometric proportion of N(CH₃)₄Cl and CoCl₂, and (NEt₄)CoCl₄ was also obtained from N(C₂H₅)₄Cl and CoCl₂. These crystals were reduced to powder, and mixed in stoichiometric proportion.

Single crystal of (NMt₄)(NEt₄)CoBr₄ was grown as similar way to (NMt₄)(NEt₄)CoCl₄.

The crystals for dielectric measurement were polished with wet filter paper which was soaked with methanol and water. Typical size of specimens were about 0.05cm in thickness and 1 cm² in area. Ag paste was used as electrodes. Dielectric constant and loss were measured with LCR meter, YHP-4285A, at a constant frequency 1.00 MHz. which was controlled by computer (NEC PC-9801DA) over a temperature range from -190°C to 50°C. Typical changing rate of temperature during the measurement was about 19k/hour. The 60 Hz D-E hysteresis loop was observed by Sawyer-Tower circuit.

\$. 2 Results and Discussion

Typical results of capacitance C and dielectric loss D for (100) plate of (NMt₄)(NEt₄)CoCl₄ and (NMt₄)(NEt₄)CoBr₄ crystals were shown in Fig. 1. In (NMt₄)(NEt₄)CoBr₄ crystal, two transition points were found, one was about -163° C and another was -178° C. In this temperature region, D-E hysteresis loop was observed as shown in Fig. 2. This result shows that the temperature region between -163° C to -178° C in (NMt₄)(NEt₄)CoBr₄ crystal is ferroelectric phase. For (NMt₄)(NEt₄)CoCl₄ crystal, howeve, D-E hysteresis loop was not observed in the temperature region from -165° C to -171° C. The phase diagram of (NMt₄)(NEt₄)CoCl₄ and (NMt₄)(NEt₄)CoBr₄ were shown in Table 1.

Refferences

- 1) S. Sawada, T. Yamaguchi, H. Suzuki and F. Simizu; J. Phys. Soc. Japan. 54 (1985) 3136.
- 2) H. Mashiyama, K. Hasebe and S. Tanisaki; J. phys. Soc. Japan. 49 (1980) 92.
- 3) K. Hasebe, H. Mashiyama and S. Tanisaki; J. Phys. Soc. Japan. 49 (1980) 1633.
- 4) N. IZUMI; Bull. Fac. Educ. Kanazawa No. 38 (1989) 1.
- 5) K. Gosi; J. Phys. Soc. Japan. 51 (1982) 203.
- 6) K. Hasebe, H. Mashiyama, S. Tanisaki and K. Gesi; J. Phys. Soc. Japan. 53 (1984) 1966.
- 7) A. Sawada and K. Tanaka; J. Phys. Soc. Japan. 60 (1991) 4326.
- 8) N. IZUMI; Bull. Fac. Educ. Kanazawa Univ. No. 40 (1991) 91