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Characteristics of the Franz-Keldysh effect were theoretically analyzed by taking
into account electronic intraband relaxation. Theoretical analysis of optical ab-
sorption was performed basing on the density matrix formalism with the help of
a stochastic model to include the intraband relaxation. The absorption tails ob-
served in experiments were well explained by this theoretical analysis, together with

the Franz-Keldysh effect itself.
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1. Introduction

The optical absorption coefficient or the refractive index can be controlled with
an applied electric field in various materials. Such an electrooptical effect in a bulk
semiconductor crystal is called the Franz-Keldysh effect and is utilized as an opera-
tion mechanism in optical modulators or switches, which are fundamental devices in
optoelectronics.'™® However, the results of theoretical analyses of the Franz-Keldysh
effect have not exactly coincided with the experimental data,'®?? and several modi-
fications are required in order to explain experimental data.®) The most noteworthy
differences between the theoretical results and experimental data concern the absorp-
tion tail®® which is always observed in an absorption spectrum at photon energies
smaller than the band-gap energy even there is no external applied field. The elec-
tron transition through the impurity-band formed by impurity atoms was given as
an explanation for the absorption tail.

Similar characteristics of the absorption tail in the gain and the spontaneous emis-
sion spectrum for photon energies lower than the band-gap energy were also observed
in the study of semiconductor lasers. Kane?®) theoretically explained that distribut-
ing fluctuations of the potential, which is formed by the ionized impurity atoms, creat
a tail-like density of states in a Gaussian shape. Furthermore, Halperin and Lax?®
and Lasher and Stern?® improved this absorption-tail model in a quantum mechani-
cal manner. However, these theoretical analyses treated materials highly doped with
impurity atoms, and did not explained why the tail of the gain or the absorption
spectrum is still observed in undoped semiconductor crystals.

Yamada and co-workers explained that the tail phenomena are caused by the relax-
ation effect of the electron wave due to scattering among electrons.?®29) Yamanishi®?)
and Yamanishi and Lee®V also investigated, in more detail, mechanisms of electronic
scattering and pointed out that line shape typical of broadening of the spectrum
show characteristics intermediate between those of Lorentzian and Gaussian func-

tions. Since the absorption tail was also observed in the quantum well semiconductor
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lasers, which are being rapidly developed in recent years with precise fabrication
technologies, the electronic intraband relaxation effect has been widely accepted as
the origin of the tail on the basis of several detailed theories.?'"3%

The most popularly used theoretical method to introduce the electronic intraband
relaxation effect is the density matrix formalism in semiconductor lasers.?®) In this
work, we theoretically analyze the optical absorption basing on the density matrix
formalism, but further improve the treatment to determine a more accurate profile
of the tail. In the next section, derivation of the dynamic equation of the density
matrix element is reexamined using a stochastic model which includes the effect of
non-Markovian intraband relaxation. Then a basic equation on optical absorption
under the influence of electronic intraband relaxation is derived. In § 3, a form of the
optical absorption coefficient under application of external DC electric field is derived
by considering the Franz-Keldysh effect together with the relaxation effect. In § 4,
numerically calculated examples of the absorption coefficient in GaAs are given. We
take into account the electronic transition from the valence band to the conduction
band but, for simplicity, do not take into account other transition mechanics such as

that through the exciton state or that by free carrier absorption.

2. Method of Density Matrix

2.1 Damping on dipole vibration with electronic relaxation effect
It is convenient to use the method of the density matrix for describing the dynamical

behavior of a dipole in a semiconductor.??

The time response of the dipole to a
continuous optical field is determined with a conventional density matrix p(t) or
with a matrix element p..(f) given in egs.(20) and (24). The relaxation effect of the
dipole or the electron wave is caused by mutual interaction among the dipoles or the
electrons. Then we start here by introducing a subset w(t) of the density matrix to
represent, in more details, microscopic characteristics of the dipoles or the electrons.

We indicate the principal Hamiltonian corresponding to the band structure in a

semiconductor crystal as Hy, the eigenenergy level of which is W), at the eigenstate
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of |n). We also assume that a time-dependent perturbation H((t) is applied to the
subsystem of electrons from ¢ = ¢;. The dynamical behavior of the subset w(t) of the

density matrix is given by the following equation:

dw(t)

) - ]ih [ (Ho + He (1) , w(®) ] (1)

Equation (1) is transformed into an interaction picture as

dw'(t)
dt

1 / /

where ’ represents “in the interaction picture” in the relations of

w'(t) = exp [%l w(t) exp [—%l (3)
and
HI() = exp [%] H, (1) exp [—@] | ()

We solve an approximate solution of eq.(2) using the interaction technique up to
the second-order perturbation. When time increases as ¢t — t + At, the variation of

w'(t) is obtained by
w'(t + At) —w'(t)
1 A /
= [Hiw) W) du
1 t4+AL pug ; ; ;
—= [ [T [Hiw) , w/@) ]) durdu,
(5)

Setting eigenstates in the conduction and valence bands to be |¢) and |v), respectively,
and writing the off-diagonal element of w'(t) as w!.(t), the dynamical behavior of
a dipole in a semiconductor is determined by the off-diagonal element w/ (¢). By

ve

multiplying eq.(5) by (v| from the left side and by |¢) from the right side, we obtain



the matrix element of w/(t) as
Wee(l + AL) — wy (1)
1 t+At .
= — Uy )W
G B

1 t+At  puz ;
7z /t /t Ja(ur, up)wy, () duydus, (6)

where f;(u,) is the term of the first-order perturbation,
fi(wa) = (uH;(ur) ) — (| Hy(u1)]c), (7)

and fo(u1,usp) is the second-order perturbation,

Ja(u1, uz)
= {{(v|H,(u2) H, (1) [v) + (c|H](uz) H (u1)|c) }
—{(v|H}.(ug)|v) (c| Hy(u1)|c)

(v Hy (u) [v)(c| Hy(up) [c) }- (8)

It is known that contributions of the third and fourth terms in eq.(8) are eventually
negligible in a semiconductor crystal.3%36)

We take here the statistical average of eq.(6) over the system, as indicated by .
Since the statistical average of the perturbation H’(t) is (n|H![n) = 0, the term with
the first-order perturbation in eq.(6) must become zero.

The variables u; and us in the second-order perturbation in eq.(6) vary in the range
of t <wuy < uy <t+ At for a short time interval At. However, the statistical average
must be performed over ¢; <t < uy, because the interaction starts from ¢ = ¢;. Then,
we rewrite

e va______
fo(ur,ug) = / Ja(t,uz)6(t — uy)dt. (9)
The time interval up — ¢; is long enough to define the autocorrelation of H.(t). we

assume here that the fluctuated Hamiltonian is characterized by the second-order
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correlation in a semiconductor crystal®38) as

i-ﬁﬁﬁzi=/ump(—”2‘t), (10)

h2 T

where A is the amplitude of the fluctuation and 7 is the correlation time of the

fluctuation. Therefore, we can write

1 (At pup

?z [ Ja(uy, ug)duydus
1 t+AL wy

— ?[ [ f2(5,U2)deU2

t—1; T
= At Aexp (——) dr. (11)

0 Ty

Then the statistical average of eq.(6) becomes

Wit + At) — wi(1)

t1—1; T
= — /A% Aexp (——) dr w! (1), (12)
0 T

which is rewritten in the form of a dynamic equation as

!
el _ 4 1) W (13
di
with
t—t; T
g = | Aexp <——) dr
0 Th
:l{l—exp (—t_ti)} (14)
Ta T
and

—_ = A‘l_b. (15)

Parameter 7, may correspond to the intraband relaxation time 7, in the previous

density matrix theory.?%29 Substituting eq.(14) into eq.(13), we obtain the solution



for the density matrix element as

W0 = wh@exp {2 (4w - 1)) (16)

a To

2.2 Response of the densily matriz to continuous optical field

Since the rate of relaxation for electronic scattering varies with time ¢, as discussed
in the previous section, it is difficult to give a dynamic equation of the density matrix
to represent the response to a continuous optical field. We examine the time response
of the density matrix w!,(t) for an impulse §(t — ;) field, in the first step. Then
the response to the continuous optical field is examined in terms of p,.(t), which
corresponds to a matrix element in the conventional density matrix formalism.

When an impulse of the electric field §(¢ — t;) is applied at the initial time ¢ = ¢,

variation of wy.(t, ;) in the Schrédinger picture is given as

dwye(t, ;) .
—dt - —ﬁ(wcc — Wyy) Rueb(t — 1)

. 1Y———
+ {.7wcv = 7(t7 tz) = :} wvc(t7ti):

(17)

where W, and w,, are diagonal elements of the density matrix, R, is a matrix
element of the dipole moment operator, and w, = (W, — W,)/h indicates an angular
frequency corresponding to the difference between energy levels W, and W, in the
conduction and valence bands, respectively. The first term in eq.(17) expresses an
interaction between the electromagnetic field and the dipole. Terms in the braces
mean the resonance effect with w,,, the electronic relaxation effect characterized by
7, and spontaneous emission with 1/7.. Since we assumed that the matrix element
Wye(t, 1;) in eq.(17) starts from the time ¢ = ¢;, the solution wy(t,#;) in eq.(17) is

obtained by

Wy (t, tz)



X exp {jww(t —t;) — [f7(m, t;)duy — t—t) } .

s

(18)

The continuous optical field is expressed by setting the complex amplitude F,_ and

the angular frequency w of the electric field as
E(t) = E ™ + Ele . (19)

Writing the response of the density matrix to the continuous optical field as p,.(t),
pue(t) is given by the superposition of wiy.(t, #;) which starts from various initial times

t;. Therefore,

i _ . y
peelt) = / ool 1) (Bue?™ 1 Ere=9td,

1 Jw
~ _]_h(Pcc = pvu)va(I) (‘U)Ewej ta (20)

where ®(w) gives a spectral line shape,

O (w) = Aoo exp{j(wep —w)T — I'(7) }dr, (21)

and the coefficient I'(7) is defined as

I(r) = [ ;v(ul,t — 7)duy + . (22)

Ts
When the electronic relaxation effect is expressed by eq.(14), I'(7) becomes

I(r)=2 (1 T 1) L (23)

Ta \Th Ts

The electric polarization P is given as

P= NiT’I"([)R) = Nt Z(pcvRuc + f)chcu)

cv

N;
== S (Pov — Pec) | Reul?
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{®(w)E et — ®(w)*Efe 7}, (24)

where N, is the density of electrons including both the conduction and the valence

bands. The susceptibility x(w) is defined by the relation of
P = go{x(w) E.€™" + x* (w) ELe '}, (25)
and is written as

x(w) = J_ ZZ(Pm Pw)chvlzq)(w)- (26)

Then the absorption coefficient a,. due to the interband transition is written as

VIR0 Im{x(w)}

(

O:'UC =—

w
l:_—zn_NTZZ(pU‘U - pcc)chv'zS(hUJ = I/ch)7

(27)

where n, is the refractive index and S(hw — W,,) is the spectral line shape function

given in this section as

S(hw — Wey)

L Re{0(w)}

R
= 5Be{ [ explitwn, — w7 - Tar}. (28)

A specific feature of this paper is the introduction of this spectral line shape function.
The spectral line shape function explains well the absorption tail extending into the

band gap.
3. Franz-Keldysh Effect

3.1 Relationship between dipole moment and electron wave function

The Franz-Keldsh effect is taken into account to modify the value of the dipole

moment |Re,|* in eq.(27). Analysis of the Franz-Keldysh effect in this work is based
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on an already established method.'® A model of the analysis is illustrated in Fig.1.
An electron in the conduction or the valence band is defined in a rectangular box
whose lengths are L,, L,, and L,. When a DC electric field F' is applied along the
z-direction, the value of the dipole moment R, is changed through the change of
electron states |c) and |v). A wave function of a single electron in the j-th band W (r)
is given with envelope functions X;(z), Y;(y), and Z;(z), which vary moderately, and
a periodic function u;(r) whose variation is repeated by shifting with the crystal

lattice,

ﬁxj(xwy)zj(z)ujk(r»

The subscript j stands for the conduction band when j = ¢ and the valence band

when j = v. Matrix element R., of the dipole moment is written as

|Rev|? = [(te(r)|ex|thu(x))? = |Ro?| L2 | L *| LI, (30)
where 1, is
g
= /_ L X:(2)X,(2)dr. (31)
]

I, and I are similarly defined. Ry is
| Rol* = [{ue(r) lerfus(r)) . (32)

The optical absorption is given as the sum of |R.,|* of the dipole moment for all

energy levels, as

;TZ)IRWI2
=200 D D |RoPILP 1 P (33)

Nex Ney Nez Nuz Nuy Moz
where nj; denotes the n-th state of an electron along the i-direction (i=x, y, z) in the

j-th band.
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3.2  Wave function and number of electron states parallel to applied field
The envelope function Z;(z) for the z-direction parallel to the applied field F is
given by the following Schrodinger equation under the effective-mass approxima-

tion.!®)

h 6
{—2—"71@ ZEEFZ} Zj(Z) = WJ'ZZJ'(Z) (34)

Here, m; is the effective mass of an electron in the j-th band and Wj, is the eigenen-
ergy for the z-direction. The + and — signs in eq.(34) refer to an electron in the
conduction band and a hole in the valence band, respectively. In the case of a bulk

crystal, we set the position of the boundary, z = +L,/2, to be +co with the conver-

gent condition of

Z; (:l:%) — Z;{(%00) = 0. (35)

By transforming the variable z in eq.(34) to &; defined as

2m;eF\3 [ W,
§j5(n22e ) [_e;‘ :l:z], (36)
eq.(34) is rewritten as
o
{a_gf = 5,} Zi(&) = 0. (37)

Using one of the boundary conditions in eq.(35), Z.(co)= 0 or Z,(—c0) = 0, the

solution to eq.(37) becomes'?
Zj(z) = a;Ai(;), (38)
where Ai(§) is the Airy function defined by

o [y
Ai(§) = %/0 cos <? + fu) du (39)
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and a; is a normalization constant given by

1

w=ve(2) ()"

Then the envelope integration I, becomes, for L — oo,

3 [(hM,)?]® 1
I, ~my [ — I
L. | 2eF (memy) s
1
INEAL |
Al | — cz vz) | - 41
4‘[ {(nep)2} s )} -
By applying the other boundary condition of Z.(—oc0) — 0 or Z,(co) — 0 to eq.(38),
we obtain
. |2 (2meF 2 W; L, o
- - —| 0. 42
Sm[s( n? )(eF+2> Y ey (42)

Therefore the eigenenergy W;, can be determined by

g 2mjeF>% Wi LZ)%+1
iz = 3y ( n? (eF 2) 1

The density of states per unit energy for the z-direction under the limit of L, — oo

is given, with the help of eq.(43), as

dW;, =\ & el 2

1
1 m,-Lz z
‘E( e ) . (44)

The summation over n.. and n,. is replaced by the integral [ [ dW, .dW,..

Y, 2

Nez Nuz

o0 <  dn. dn
= . ‘;:z 1’rz dW.dW,.
/gzb_z /Fz_L dWe; dW,,;

l - Lz 1 o0 o
=\ _(mcmv)2 dW,.dW,,
wh/ eF et ] g
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Then, we obtain

DXL =

Nez Nyz

s o2 . Wcz+ Wz i
/ FL / FL A‘L -
~ BB WI

_eFL, [ | W,
Wi JerL. Wy

where W, is defined as W; = {(heF)?/2M,.}'/® with reduced mass of M,. defined

i\

dW_.dW,,,

sz, (46)

as 1/M,. = 1/m. + 1/m,, and W, is the energy value which is the sum of those in

the conduction and valence bands, W, = W, + W,..

3.3 Optical absorption coefficient under uniform electric field

Since we are treating an intrinsic semiconductor here, we can set p.,. =~ 0 and
pwe =~ 0, which are electron distribution probabilities in the conduction and valence
bands, respectively. The optical absorption coefficient a,,. in eq.(27) can be rewritten,

using eq.(33), as

A DD DD W

Z Nex Ney Nez Moz Noy Moz

| Ro?| Iz |?| I |*| I |*S (hw — W). (47)

The summation of states for the z-direction in eq.(47) is given by eq.(46). Other
summations of states within the x-y plane are given by eq.(A-8) in the Appendix.

The optical absorption coefficient a,.(F,w) under electric field F' is

aye(F,w)

[l,() M-UC el’
£0 ﬂ'fl.2 W}

/0°° Lo, VP

,UO Mtc el
TL,- £0 7['712 ‘/V2

2

S(hw — W)dW.dW,

(W)
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= w—w,\
hianan e 17 P _—9>
f ( Wy

(48)

where W = W, + W, + W,, and AV (§) (= dAi(§)/d€) is a derivative of the Airy
function. Equation (48) is almost the same as that for the Franz-Keldsh effect in
previous analyses in the literature, except for the introduction of the spectral line
shape function S(hw — W).

Optical absorption is caused by electron transitions from the heavy-hole and the
light-hole bands to the conduction band. Therefore, the absorption coefficient a(F,w)
is given as the sum of the two mechanisms in which the heavy and the light hole are

denoted with subscripts v = h and v = [, respectively,
a(F,w) = ap.(F,w) + a(F,w). (49)

By denoting the absorption coefficient under no electric field as a(0,w), change in

the absorption coefficient upon the application of electric field is written as
Aa(F,w) = a(F,w) — a(0,w). (50)

4. Numerical Calculation and Discussion
4.1 Spectral line shape function

The spectral line shape function S(hw — W,,) was defined in eq.(28) of § 2.2 as a
real part of Fourier transformation for time variation of a dipole. Since the analytical
solution of eq.(28) is hardly obtained, we must evaluate the equation using suitable
approximations and numerical calculations. The integration in the bracket in eq.(28)

is written as Iy(a;,as) and defined as

P e ,
Io(e,ag) = [ e R Ny, (51)
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Iy(ay,ay) can be expanded with a continuing fraction 37

1
10((11, a2) = az(1/75)2 o (52)
aq =l g 2a5(1/7p)2
1 Th al+2;_%+3—aQ—(}—_<tb)—
Then eq.(28) can be rewritten as
1 hw—-—W, 1 7

In the case of 7,/7, > 1, the shape function becomes Gaussian,

2
_ | he—=Wey TaT
S(hw—ww)=ﬁ% e [peseev 5] (54)

while in case of 7,/ 7, < 1, the function is Lorentzian.

h/ T,

S(hw — Wcu) = (hu) . ch)2 + (h/Ta)z

(55)

Numerical calculations in following part of this paper are performed using egs.(51) '
and (52). Figure 2 shows the shapes of S(hw — W,,) for four values of 7: 0fs, 10 fs,

40 fs and 100fs, with a fixed value of 7, = 0.1 ps. The curve for 7, = 0fs corresponds |Fig.2

g

to the Lorentzian and the curve for 7, = 100fs is Gaussian-like.

4.2 Numerical calculation of optical absorption coefficient
4.2.1 No electronic field

When there is no applied field, we obtain the following relation from eq.(27).

= Gev ( ch) dch

1 o, m, \ 2
= o V ”cv —-W d“’cv 5
om2h? (mc + ml,> g (56)

Then, the optical absorption coefficient a,,.(0,w) becomes

0e(0, w)
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=2 [k / | Ro | gee(Wi) S (hw — W) dW,.
Ny \ €0 /W,y

(57)

The total optical absorption coefficient a(0,w) is given as a sum of v = h and v = [,
as discussed in eq.(49).

Material parameters of the GaAs crystal used for numerical calculation are n, = 3.6,
m, = 0.067mg, my, = 0.45mg, my = 0.082mg, W, = 1.42ev, and |Ry|* = 5.79 x
10757 (W,/W)? C?m?. Calculated examples of the optical absorption coefficient are
shown in Fig.3, where the solid lines are cases in which the electronic intraband
relaxation is taken into account, while the dotted line is for the case without taking
account of the relaxation. Experimental data from ref. 23 are plotted with the black
circles. The absorption tail observed in experiment is explained well by the electronic
relaxation effect with the parameters of 7, = 0.1 ps, 7, = 40fs and 75 = 1ns, in this
example.

4.2.2  Optical absorption coefficient under applied DC' electric field

The calculated optical absorption coefficient in an intrinsic GaAs crystal under ap-
plied DC electric field is shown in Fig.4 with experimental data obtained by Casey
et al.®® and Stillman et al. V' The solid and the dotted lines in Fig.4 are calculated
data with and without taking account of the electric intraband relaxation, respec-
tively. The absorption in the band gap becomes stronger with stronger applied field.
The experimental data are explained well by our theoretical calculation where the
electronic intraband relaxation effect is taken into account. Calculated data of the
change Aa(F,w) in the absorption coefficient are shown in Figs.5 and 6, where the
solid lines and dotted lines are for with and without taking account of the intraband
relaxation effect, respectively. The energy distribution of Aa(F,w) is smoothed by

taking into account the relaxation effect, as shown in Fig.5.

16
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4.3 Change in refractive index due to applied electric field
Real and imaginary parts of the dielectric constant are generally combined with
the Krames-Kronig relation. Denoting the change in the refractive index induced by

applying electric field as An(F,w), An(F,w) is derived from Aa(F,w) as

An(F,w) = EAOQ Mc&u', (58)

T w? — w?

where ¢ is the speed of light. Change in the refractive index An is numerically calcu- | Fig.7
lated, as shown in Figs.7 and 8, from data in Figs.5 and 6. The black circles in Fig.7 | Fig.8
indicate experimental data obtained by Pond et al. ?® Our theoretical calculations

coincide well with the experimental data.

5. Conclusions

The optical absorption coefficient and the refractive index due to the Franz-Keldysh
effect were theoretically analyzed by taking into account the electronic intraband
relaxation phenomena.

e A treatment basing on the density matrix formalism with a stochastic model was
performed to take into account the electronic relaxation phenomena in a more
exact form.

e The absorption tail observed in experiment is explained to be a result of the
electronic intraband relaxation.

e The experimental data on the Franz-Keldsh effect were explained well using our

improved theory.
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Appendix: Number of Electron States in a x-y Plane Perpendicular to the
Applied Field

The envelope functions X;(z) and Y;(y) perpendicular to the applied electric field are

respectively written as

Xi(z) = \/Lzzsin [kj (.L + %)] (A1)
Vi) = \/Lzy sin [y (u+ 32)] (A2)

with the boundary conditions

X; (i%) =¥ (i%) it (A-3)

o

where kj, and kj;, are the wave vector of an electron for x- and y-directions, respectively.
Applying the boundary conditions of eq.(A-3) give the following conditions for the state of

an electron:

kija: = Mg (njz =1, 23 35 . ) (A4)

kijy = 77‘jy7r (n_)y = 17 27 3: s ')7 (A5)

where n;, and nj, denote the n-th state of an electron along x- and y-directions, respec-
tively. Subsutituting egs.(A-1) and (A-2) into eq.(31), we get the following equations for the

conditions of L, = L, — co.

B isin2{(kw — kyz) L}

2
|]1'| K LZ- (kcz - kvz)2
o~ Lla(kw — k) (A-6)
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|I I2 d Sinz{(kcy — kUU)Ly}
L2 (key— Fu)?

b(key — kuy) (A7)

o g

S
The sum of all states of eq.(33), X, Xn., Xnee e, |I:|?|1,|?, is given, using egs.(A-6) and
(A7), as

D202 PP

Nex Ney Nvz Moy

-]

8 (ke — lcl,,,,)c‘i(kcy — k) ke dhioydkyadky,

27r 0
where
K=k, + K, (A-9)
p2 2
W) = (k2 + k2,) + — (kf,x +k2,) (A-10)
and
1 1 1
S A-11
M, m, ' .y ( )
are used.



Figure captions

Fig.

Fig.

Fig.

Fig.

1. Analytical model of Franz-Keldysh effect. (a) An electron is confined in a semicon-
ductor with a rectangular box with lengths of L,, L,, and L, and a DC electric field I’
applied along the z-direction. (b) Envelope functions of electron wave, Z,(z) and Z.(z), in

the valence and the conduction bands for the z-direction parallel to the applied field.

. 2. Spectral line shape function S(hw — F) for several correlation time values. The values

of the parameters are 7,=1ns, 7,=0.1 ps.

. 3. Optical absorption coefficient under no electronic field for undoped GaAs. The solid

lines are examples calculated for several correlation time values, taking into account the
electronic intraband relaxation, and the dotted line is the case of not taking into account
the relaxation. Black circles are experimental data reported by Casey et al. in ref. 23.

4. Optical absorption coefficient under applied DC electric field for undoped GaAs. The
solid and dotted lines are calculated with and without taking into account the electric
intraband relaxation, respectively. The values of the parameters for the solid lines are
T = 0.1 ps, 75 = 401s, and 7, = 1ms. The experimental data are from refs. 1 and 23.

5. Spectrum of change in the absorption coefficient induced by applying electric field.
The solid and dotted lines are calculated with and without taking into account the electric
intraband relaxation, respectively.

6. Applied electric field dependence of change in the absorption coefficient at fixed photon
energies. The solid and dotted lines are calculated with and without taking into account

the electric intraband relaxation, respectively.

. 7. Change in the refractive index induced by applied electric field. The solid and dotted

lines are calculated from data in Fig. 5 using eq.(58). The black circles show experimental
data under an applied electric field of F' = 7 &1 x 10* v/cm measured by Pond and

Handler.2?

. 8. Applied electric field dependence of the change in refractive index at various photon

energies.
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