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On the values at zero of partial zeta functions

for ray classes of a real quadratic field III.

Hiroshi YAMASHITA

Abstract. Let & be a real quadratic field. Let e be an integer of & and m be a

positive rational integer. Denote by ({a, (m), 5) be a partial zeta function associated
to a ray class a containing the principal ideal («) and defined with a conductor {m).
We give a formula of the value of {(a, (m), 1) by means of the generalized Dedekind
sum defined by H. Rademacher, ¢.f. [1]. We also give a formula of the value L{0, x)

of the L-function attatched to a ray class character .

L. Introduction. We studied the value
at zero of a partial zeta function on a real
quadratic field in [5, 6] based on the Shin-
tani formula, c.f. [4].
mula is available for a ray class group de-

Our explicit for-

fined with a conductor of a positive inte-
ger and containing a principal ideal in a
real quadratic field, which has a sum of
products of values of the first Bernoulli
polynomial. In the present paper, we
shall convert this factor to the generalized
Dedekind sum defined by H. Rademacher
and show the Dedekind sum can be com-
puted rapidly by using the explicit reci-
procity law, whose algorithm is instructed
in §3.3.3,, [2]. We also deduce a formula of

L{0, x) for a character  of the

ray class group as an application.

2. Ray class groups. Let m be a pos-
itive integer which is greater than 1. Let
S be the set of natural numbers that are
prime to . Denote by O the ring. of inte-
gers of a real quadratic field k. Since S is
a multiplicative set, we localize © with S
and denote this localization by Oy, which
has a subring 1 + MmOy = {1+ mz 1z €
Oy} Let I be the group of fractional
ideals of k. We define a subgroup Z,,, to be

I = {I €T:8 1= O(m)}.
An element z of k is called totally posi-
tive if it is positive in any embedding into
R. Let (1 4+ mOpm)+ be the subgroup
of 1 + mOy, consisting of every totally
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positive elements. Each z € (1 + mOm)
acts on Zp, by L — Lz, which makes Z,, a
(1 +mOmy)4-set. An orbit by this action
is called a ray class. Our main concern is
in the ray class which contains a principal
ideal (@) for a € O,y We denote by @
this ray class. Denote by Cli(m) the ray
class group and by CI}(m) a subgroup of
ray classes containing principal ideals, re-
spectively. Cl¥(m) = {8 :a € Ol } 15
expressed as a set of double cosets:

(1) Cli(m) = O\OE, /(1 + mOm)s.

This expression is useful to compute ray
classes. We may describe CI2(m) by means
of idelic notation. Set U = [[,ne0 Uns
U{moo) = Hp|m(1 + mO;) x Hp|oo(k;<)2
and Up = JlymeeUp- In [6], we define
Ci2(m) = UUy /U {moo)Up®*, and hence
Cla(m) = U/U(moo)O*.

Since O, is dense in [[,, U we see
U/U(moo) s isomorpic to

O/ (L + mOpmy) x (R* ® Z/[2Z)*,

Therefore, Cl}(m) is represented as

{08 /(1 +mOum) x (R* ® Z/22)*} [0,

The factor (R*® Z/2Z)? is called the sig-
nature part. The ray class group of ¢} is
also given by

Clg(m)* = [(Z/mZ)>< X {il}] /{£1}.
The quadratic field & is an extension of Q

by a square root of a square-free integer
d>1. Put

gl2es FM2E
Vd (d#1 mod 4),

w =
1+2\/E (d=1 mod 4).

O is a free Z-module generated by 1 and
w. Let gy be a fundamental unit of &
which is greater than 1 in the first em-
bedding into R. Let &1 be a totally pos-
itive fundamental unit, which is e; = £}
if N{eg) = —1 and &1 = g if dose not.
Double cosets in (1) are yielded by decom-
posing into (1+mQm))4-cosets firstly, and
classifying them by means of the action of
O* secondly. The process of decomposi-
tion is able to be reversed. We attain the
same classes in either way. Let [ be the
order of €1 in O, /(1 + mOG,y)+. There
are positive integers a and b such that

gi=a+bw, as1 modm, m|b.

A symbol ¢ is assigned to denote this unit.
Since every ray class contain an integer of
k, we can choose a representative of the
class from ©. Let o € @ be prime to m.
We decompose it as

(2) o = ¢fz,

where ¢ is a positive integer such that
(e,m) = 1, B is an element of @ whose
norm N(f) is prime to m and which is ex-
pressed as

B=FH+hfw (A h)=],
and where z is an element of (1 +
mOm))+O*. We note that ¢ is able to
be selected from positive integers less than
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m. Depending on the decomposition (2),
two integers are defined to be Ny = |[N ()|
and N = bNp/m. We proved (fo, Ng} =1
if fifa # 0in [5]. We set fo = 1 when fj
is zero. Then, there is an integer A so that
fod = fi+ foTr(w) mod Ny
holds unless fo = 0. Weset A= 0if f, =0.
Let & be an integer satisfying

d=a+ M modmN, 0<§<mN.

We see 4 = 1 mod m, and furthermore,
(6,mN} = 1 by Lemma 8 in [5]. We can
now imtroduce the formula of the value of
the partial zeta function from three con-
stants &, m/N and c.

@) (). (m),0) =
Tr(e)

. omi ~ D! ({%})
-25 G n ({w+aw )

where By(z) is the first Bernoulli polyno-

mial and {z} is the fractional part of a real
number z, c.f. [3].

3. Dedekind sums.
Dedekind sum s{h,k : z,y):

(=) (434)

¢ mod k

is defined by H. Rademacher, which has
a reciprocity law, c.f [1]. If we set h =
6, k =mN,z = —=% and y = 0, then
we see a similar sum which appears in the
formula (3). In Lemma B, §3.3.3. in [2],

A generalized

the reciprocity law for a Dedekind sum

25 (45) ()

is given explicitly.

Moreover, by using
this law, it is shown that the value of
the Dedekind sum is able to be computed
rapidly,. We apply this method to our
formula (3).

Dedekind sum

o= (47) (1)

which equals the Dedekind sum s(h, k)
when ¢ = 0.

To this end, we define a

THEOREM 1. The value of {({«), (m), 0)
s equal to

_l?f;;n(_?f — s(8, mN; (m — c)N).
Proof. The value of ((z)) agrees with
Bi({z}) if z ¢ Z. On the contrary, we
have B1(0) = —1 and By(1) = . If

85 —eN =0 mod miN, then the value of

(-5+2) ()

Since (§,mN) = land 6§ = 1
mod m, there is a unique integer in the

1S zero.

interval (0, m/N) such that the congruence
holds, that is 7 = ¢N. Thus, the difference

35 ({2 2)) ()
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is equal to

1 ¢ 1 ¢

2B (1-5) =35 (5)-
Therefore, the formula follows from
(3). |

REMARK 1. A formula

s(6,mN; (m —c)N) =

mi ! 8s 8
2 B ({o+mw)) &)

also follows from the same argument,
¢.f. Theorem 2 in [6].

We observe that the constants § and N

do not depend on the value of ¢. Let
j: Clg(m) — Clp{m)
be the natural map of ray classes. The fac-
tor ¢ in the decomposition (2) comes from
Clg(m) through this map. Namely,
@=2¢B, zelmj.

The natural map j is not always injective.
A class T € Clg(m} is mapped to the iden-
tity in Clg(m) if and only if the integer
z belongs to (1 + mO,,)+O.
cretely, this holds for z > 0 if there is an
integer & which satisfies £ = € mod m.
Let 7 € (Z/mZ)* be a generator of Ker j,
where we choose it from an interval (0, m).
Put H = Kerj and H = {&7, - ,&, }
We decompose Cl%(m) into cosets relative
to H:

More con-

Olk U H ﬁ_’r
Since Ha = Hp, we have

(4) CR(m)=
{EB;:1<i<m,l<j<n}.

ExAMPLE 1. Values of v are as in the
following table.

m | Q(v2) Q(VB) Q(v5)
2 1 1 1
3 2 2 2
4 1 3 1
5 4 3 1
6 5 1 5
7 1 6 6
8 1 1 5
9 8 8 8
4, The reciprocity law. The

Dedekind sum s(h, k; ¢) has a reciprocity
law, which is described explicitly in [2].

THEOREM 2. Let h and k be positive in-
tegers such that (h,k) = 1 and h < k.
Then, the following relation holds for 0 <
e<k

s(h,k;c) + s(k, h;e) =

1 h+k+1 _l___i__lFJ
12\k A hk 2rk 2 LA
—e(h,¢),
where
0 ifh|candc#0,

glh,c) =
i ifhtcorc=0.

The proof of this formula is instructed
in Exercise 6 in §3.3.3, [2]. We follow it.

LeMMA 3. Let h and k be integers such
that (h,k) =1 and 0 < h < k. Take b’
and k' so that 'h + k'k=1. Then,
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()= dr-n ()

for 1 < j < k, where §z(x) is the charac-

teristic function of the set Z.

Proof. We choose A’ and %' so that they

satisly —k < h and 0 < k' < h.

(i) Suppose k| j and set j = hi. We have

{k}fz}_i_ {h’in} _ {(1 —:'k)f;}

(ii) Suppose j = hi + 1. We see

E—1 k— k&'
i+ < —— 4+ R = .
1+ h < A + 3

This implies 7 + k' < 0. Therefore,

k'(hi + 1) h/(hi + 1)
i
. ]é z’+h’k
‘{h}+{ B }

E i+h 4

_TL"l'l-i- % =%+1

(i) Suppose j # 0,1 mod h. We see
j 2 2and 7 £ 0 modAh. Suppose
the equality is valid for §— 1. we have

{KOB) (KDY _ic

There is an integer m satisfying

+1.

{%}W

K B
RORUE
holds. Applying

BoK_1

h 'k hk
to the left hand side in this equality
and simplifying it, we have

kg h'g 7
(B} () ot

Since 7 Z 0 mod h and A'j #Z 0
mod &, an inequality

3j 1 1
mS Tt (h k)
follows. Thus, m < 0. Suppose m <
0. We have

K'j K
{7}+{k}>h—k+2

However, this inequality does not
hold. Therefore, m = (). The equality
is also valid for j. |

Let A(h, k; c) be the difference between
s(h, k) and s(h, k; c).

LEMMA 4. Let h and k be positive inte-
gers such that h < k and (h,k) = 1. Let
¢ be an integer such that 0 < ¢ < k. We
have
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ka3 £ ()
sna-3(4) £ ()

=1
Proof. Since (h,k) = 1, we change the

variable with § = A mod k. Then, the
Dedekind sum is expressed as

na-5(459 (%)

Therefore, A(h, k; ¢) equals

S [(22)- (2)](%).
Note the value of ((j £ C)) - ((%)) equals

% 1 (§ <k—c),
C N

z 3 (j=k—c)
%—1 (G>k—c).

Suppose ¢ > 2. We divide the sum into
three parts corresponding to cases, and ex-
tract terms £ ((%;1)) We have

i () (2)

k
k-1
-

2. 5)

By changing j to ¢ — j, we obtain
> ()
Jj=k—c+1 k
he =y
-(%)-% ()

Hence, the above expression of A(h,k;c)
is simplified:

-1(F)-2 (%)

When ¢ = 1, it is easy to show

Wk-1) 1 (K
() -3 ()
Let k1 and ¢; be integers in the interval
[0,h) satisfying k=% mod handec=¢
mod h. Since &'ky =1 mod A, we have

()2 (%)

Jj=1
Let 7 be integer such that ¢ = ¢ +rh. The
second formula follows from

c1+rh ;-
> (7)) -
J=ert+l

We note Lemma 3 implies

Alh,k;e) =

A(kl, h. Cl)

LEMMA 5. Let h and k be positive inte-
gers such that (h,k) =1 and h < k. We
have

(%) () -3 (3)

for1<ji<k.
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Now, we can prove the reciprocity law.
It is verified directly when ¢ = 0. Sup-
pose ¢ > 0. A sum A(h, k;c) + A(k, h;c)
is written as

)+
1) ()

from Lemma 4. By virtue of Lemma 5, we
have A(h, k;c) + A(k, h; ) is equal to

2
s~ 1 i)+ 107 (7):

Tt is easy to check

AL

holds, This complete the proof.

1
(h’: C) + Z

Let &' be a positive integer such that
¢4 = 1 modm holds. We make
A6, mN; {(m — ¢)N) short by starting the
formula

ST ()

Since

{(m—c)N

% () 5.6
£ ()

-5 (%) - (%)

A(h, k; e} + A(k, h; ¢) is equal to

S(Ee2) S (29)-(2):
-5 (),

because of & = 1 mod m. We define a
function ¢(z, 8) of z € N to be

oo, ) = ij (=)

for the constant N depends only upon 5.

Recall that a positive integer v generates
Ker j.

LEMMA 6. The function ¢(z,8) has the
following properties:

(i) wlz+m,B) = ¢(,B).
(ii) The difference @(zv, ) — w(z, )

equals
:(5)-3G)

(iii) We have a formula
(e

Proof. By virtue of an equation

Y+ {(k—1N) k—1+ 5t
mN " m | mN’

we convert ¢(z, 8) to a double sum

22 ()

k=1 t=1

A, mN, (m—c)N) =
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Since (&', mN) = 1, we see p(z +m, ) is

o S ()

k=g+1 =1

This proves p{z+m, ) =
of

@(z, 3), because

S (2 ) -

k=1 t=1

Let ¢ be an integer such that 1 <
¢ < m and cv = ¢ modm. Since
C((cB), (m), 0) = C((¢B), (m),0), -we have
A(d,mN,(m — ¢)N) = A(6,mN,(m —
¢)N). Thus,

S E)en - (5) e

Since ¢(c, 8) = ©(cv, §) holds by virtue
of the decomposition (2}, the difference

lcv, B) — w{c, B) equals

1 ((cu)) 1 (( c ))

2\m/  2\m/t’
We can enlarge this equality to 2 = ¢+rm
for an arbitrary positive integer r. O

5. Applications. It is showed in §3.3.4,
[2] that the value of s(h,k;c) is able to
be calculated rapidly by applying the reci-
procity law. The formula of s(1, k) is well-

known:

1 1 k

Since s(1,%; ¢) = s(1, k) + A(1, k; ¢), a for-
mula,

¢ k1 &
(7) S(I,k,c)—-—-g-']—ﬁﬁ'@‘l‘ ok

We apply the Euclidean algo-
rithm. Let h;, k; and ¢; for § =
0,1,2,--+ ,n+1 be series generated by the
following procedure:

(i) Put hg=h, kg

follows.

=kand cg=rc

(if) Compute hj, 1, recur-
sively. Put k; = h;_;. Determine Ay
and c; to be integers 0 < hy,c; < Ky
so that

kj, Cy fOI‘j =

h; = k;_y mod kj, ¢; = ¢j—1 mod k;

holds.

(iii) The algorithm stops at j = n+1 when
the decreasing series h; attains Apy; =
1.

We define 7(h, k; ¢) to be
7(h, k;¢) = s(h, k; ¢} + s(k, h; c).

The value of the Dedekind sum is equal to

the following sum
i

> (=

=0
EXAMPLE 2. We compute in Q(+/3) and
make correction of tables in [6].

m=T1=28
o |order Ny ({a,m,0)
1 1 1 1721
2 3 1 5/21
3 3 1 -2

l)j'r(hj, kj; Cj)+('—' 1)n+13(1, kn+l; Cn+1).
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(continued)
n1  mo
a|order Ny ((a,m,0) z x(€iB;)¢((eiBs), (m), s).
i=1 j=1
1+w| 6 -2  13/21 —
3w 9 6 11/21 The value of L(0, x) is given by
2 4 dw 6 -11 13/21 TT‘(E)
8 + 2w 6 13 -19/21 Zx ciB;) ( — 8(d;, mN;, (m — ;) N; )) ,
8+w| 6 61 -13/21
3+ Tw 6 —133 1/21 where
2+7w| 6 —-143  —5/21
1+ Tw 9 —146 —17/21 §(Jj, Mg (m — ;) Ny) =
lya
3 + 8w 2 —183 —l1/21 s(8;, mN;) — 5 ((E)) + p(es By).
m=9,[=18 Put
o | order No ¢(o,m,0) " o .
ot 1 s A=Y X, B=Y xe) (),
2 3 1 13/18 i=1 i=1
4 3 1 -11/18 2
4+9w| 6 —227  11/18 Ly =D _x(e)e(ci By).
=1
24+0w| 6 —230  —3/18 '
1+ w 9 942 ~1/18 Corresponding each term, we introduce U,
V and W to represent L0, x) as U-V -W,
that is

The second application is that for a for- AT -
mula of the value of the I-function L{(0,x) U ==+ r(e) E x(B; ),
: N;
attached to a character x of Cly(m) in a

real quadratic ﬁe?ld k o.f class number on_e. V=4 ix B,)s(6;,mN;),
Recall H = Im 7 consists of n; classes @, =1
which are chosen so that 1 < ¢ < m

n2
holds. Let v be a positive integer gener- W= ZX(ﬁj) (—_ + EX(C: (e, B; )
ating Ker j. Put ng = |[Ker j|. The ray 7=
class group is decomposed intoc ne cosets We define x(z) = 0 if (z,m) # 1 and ex-
B.H. Since the constants Ny, N and § de-  tend x onto IN.
pend only upon j;, we write them as Ngj, z
Nj and &}. The L-function is defined to be b= ;x(as) ((E)) '

Since
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= naZx ciyeler, By) +

i=1
By solving this equation, we have

L, B B

N3 2?’?,3 2

Zx Yoles, B) =

Thus,

THEOREM 7. The following formula
holds:

A1Tr(e) ~~ x(87)

17 N;
j=1

L(O!X) =

— A1y x(B;)s(85,mN;)

=1
1 & B
- n_sjg;ij) (Lj - 5) .

REMARK 2. L(0,x) is zero if x{s) =1
holds for a complex conjugation ¢ of a
complex place of the ray class field k(m).
Thus, if k(m) is not a CM-fleld, the L-
function vanishes at 0.
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