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HARDY SPACES ON HOMOGENEOUS GROUPS AND
LITTLEWOOD-PALEY FUNCTIONS

SHUICHI SATO

ABSTRACT. We establish a characterization of the Hardy spaces on the homo-
geneous groups in terms of the Littlewood-Paley functions. The proof is based
on vector-valued inequalities shown by applying the Peetre maximal function.

1. INTRODUCTION

Let R™ be the n dimensional Euclidean space. In this note we assume that
n > 2. We also consider a structure on R™ which makes R™ a homogeneous group
H equipped with multiplication given by a polynomial mapping. This requires that
we have a dilation family {A;}s~o on R™ of the form

Apr = (w1, 120, .t wy), T = (T, ),

with some real numbers aq, ..., a, satisfying 1 = a1 < as < --- < a,, such that each
A is an automorphism of the group structure (see [7], [21] and [11, Section 2 of
Chapter 1]). More precisely, in addition to the Euclidean structure, H is equipped
with a homogeneous nilpotent Lie group structure and we have the following:

(1) Lebesgue measure is a bi-invariant Haar measure;

(2) the identity is the origin 0 and 27! = —u;

(3) (az)(Bz) =azr+ Pz for x € H, o, f € R;

(4) Ay(zy) = (Aw)(Apy) for 2,y € H, t > 0;

(5) if z = zy, then zp = Py(x,y), where Pi(z,y) = z1 + y1 and Py(z,y) =
2k +yr + Ri(z,y) for k > 2 with a polynomial Ry (x,y) depending only on
T1ye- 3 Th—1,Y1,--->Yk—1, which can be written as

k
Ry(,y) = > Maly’.
1170, J]£0,a(1)+a(J)=ax

(See Sections 2.1 and 2.2 below for the notation.)

Let |z| be the Euclidean norm for z € R™. We have a norm function p(z) which is
homogeneous of degree one with respect to the dilation A;; by this we mean that
p(Agz) =tp(x) for t > 0 and = € H. We may assume the following:

(6) p is continuous on R™ and smooth in H\ {0};
(7) plx+y) < p(x)+p(y) and p(zy) < co(p(x)+p(y)) for some constant ¢y > 1
and p(z1) = p(z);
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(8) we have
cilz™ < p(x) < eof2]™ if p(z) 2 1,
sl < plx) < ealel® i pla) < 1,

with some positive constants c;, o, Br, 1 <j<4,1<k <2
(9) p(z) <1if and only if |z| <1 and the unit sphere ¥ = {z € H: p(x) = 1}
with respect to p coincides with S"~1 = {z € R" : |z| = 1}.

The polar coordinate expression of the Lebesgue measure dz = t7~! dSdt is
useful, where v = a; + -+ + a, (the homogeneous dimension). By this we mean

that .
/Hf(x)dx:/o /Ef(AtG)t’Y‘ldS(G)dt

with dS = wdSy for appropriate functions f, where w is a strictly positive C'*°
function on ¥ and dSy denotes the Lebesgue surface measure on X.

We recall the Heisenberg group H; as an example of a homogeneous group. Let
us define the multiplication

(1,22, 23) (Y1, Y2, y3) = (X1 + Y1, T2 + Y2, 3 + Y3 + (T1Y2 — T291)/2),

(w1, 2, 23), (Y1,y2,y3) € R®. Then this group law defines the Heisenberg group H;
with the underlying manifold R?, where the dilation A;(z1, 29, x3) = (tx1,txe, t?23)
is an automorphism.

We consider the Littlewood-Paley g function on H defined by

(1) 0@ = ([T1renemr) ",

where f € 8, ¢ € 8 satisfying [; odz = 0 and ¢, (z) = t=Yp(A; ). Here 8
denotes the space of tempered distributions and 8§ the Schwartz space, which are

the same as those in the Euclidean case (see [19]); also the convolution F x G for
F,G € L' is defined by

FeGlo) = [ Fay )G dy= [ PGl o)y
We refer to [4] and [21, 13, 14] for the study of Littlewood-Paley operators and
singular integrals, respectively, on LP spaces for homogeneous groups, 1 < p < oco.
In this note we prove a characterization of Hardy spaces HP, 0 < p < 1, on
H (see Section 2.3 below) in terms of the Littlewood-Paley g functions. We first
recall related results in the Euclidean case. Let ¥, £ =1,2,..., M, be functions
in §(R™) satisfying the non-degeneracy condition

(1.2) inf sup Z\ff" )(EE)| > ¢

gER™\{0} t>0

for some positive constant ¢, where F(¢) is the Fourier transform:

F) =€) = | ¢(@)e ™8 dy, (2,6) =218+ + Tnban.

R

The following result in the case of the Euclidean structure is known (see [22]).
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Theorem A. Let 0 < p < 1. Suppose that p© € $(R™) with Jgn oW dx =0,
£=1,2,...,M, and that the condition (1.2) holds. Then

epll fllae < Z 190 (Nlp < CpllFl[ v

=1
for f € HP(R™), where || I, denotes the LP norm and g, (f) is defined as in (1.1)
with ¢ = O, fxu(x) = fp [ = y)ee(y) dy, @u(y) =t "p(t1y).

See [6] for the Hardy space H? (R”) Analogous results for LP spaces, 1 < p < oo,
can be found in [1], [10] and [15].

To generalize Theorem A to the case of homogeneous groups, we note that the
condition (1.2) can be used to find b € (0, 1), positive numbers ri, 7y with r; < 79
and functions ), ... (M) € §(R™) such that supp F(n¥)) C {r; < |¢] < 2}, 1 <
¢ < M, and

oo M
(1.3) SN F N OFH)(BE) =1 for £ € R™\ {0}

j=—o00 £=1

See [16, Lemma 2.1] and also [20 Chap. V], [2]. From (1.3) it follows that

(1.4) Z Zcpb] s =6 iné,

j=—o0 f=1

where § denotes the Dirac delta function.

Also, the condition (1.2) implies the existence of functions n*), ... (M) ¢ §(R™)
such that supp F(n) C {ry < || < 72}, with positive numbers 71, 7o with r; < ro,
for which we have

Moo dt
(1.5) Z/ o9 =0 8.
(=170

Let A be the additive sub-semigroup of R generated by 0, aq,...,a, and let P,
be the space of polynomials on H of homogeneous degree less than or equal to
a € A (see Section 2.2 below for more details). We employ a version of (1.5) as a
non-degeneracy condition for ¢ ... ™) on H and we shall prove the following
result analogous to Theorem A.

Theorem 1.1. Let 0 < p < 1. We can find d € A with the following property.
Suppose that {p®) € 8 :1 <€ < MY} is a family of functions such that

(1)
/go(e)dxzo, 1<¢< M;

(2) there exist functions n'®) € 8, 1 < £ < M, satisfying that

(1.6) Z/ (e) = €11_{101 Z/ s s

B~>ooe 1
and that

/n@de:o forallP e Py, 1<0<M.
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Then we have

M
(1.7) eollflar < Ngpw (Nllp < Collfllan for f e H

{=1

with positive constants ¢, and C), independent of f, where HP is the Hardy space
on H.

Let H be a stratified group with a natural dilation and let h be the heat kernel
on H (see [7]). Define ¢U) € 8, j =1,2,..., by
V) () = |9h(@,t)] = (~L)'h(x,1),
t=
where 9; = 9/0t and L is the sub-Laplacian of H. As an application of Theorem
1.1 we have the following.

Corollary 1.2. Let f € HP, 0 < p < 1. Then, for any j > 1, we have
ol fllae < llggo (Hllp < Collfllar

with some positive constants cp, Cp independent of f.

This almost retrieves Theorem 7.28 of [7], where the first inequality is shown
under the condition that f € 8 vanishes weakly at infinity and g, (f) € LP.

As in the case of the Euclidean structure of Theorem A, the first inequality of
(1.7) of the theorem is more difficult for us to prove than the second one; the second
inequality can be shown by applying a theory of vector-valued singular integrals.

Let 1o
So(f)() = ( Lo |fwt<y>|2t“dydt>
plz—ty)<t

be the Lusin area integral on the homogeneous group H. Then in [7], results anal-
ogous to Theorem 1.1 were proved for S,(f) (see [7, Theorem 7.11 and Corollary
7.22]), while the result for the Littlewood-Paley g functions was shown only for
special Littlewood-Paley functions g4(;) associated with the heat kernel.

In [16] an alternative proof of the first inequality of the conclusion of Theorem
A is given by applying the Peetre maximal function Fy'y defined by

- |F(z—y)|
(@) = "0 T RN
(see [12]). The proof of [16] is expected to extend to some other situations. Indeed,
it has been applied to get the Littlewood-Paley function characterization of para-
bolic Hardy spaces of Calderén-Torchinsky [2, 3] (see [17]); see also [18] for related
results on weighted Hardy spaces.

In this note we shall show that the methods of [16] can be also applied to charac-
terize Hardy spaces on the homogeneous groups by certain Littlewood-Paley func-
tions (Theorem 1.1). Omne of the ingredients of the methods is to prove a vector-
valued inequality in Theorem 4.6 below in Section 4, which is stated as a weighted
inequality.

In Section 2, we shall recall some results from [7] needed in this note including
the definition of Hardy spaces on H, Taylor’s theorem and also we shall have the
definition of weight classes. In Sections 3 and 4 we shall show key estimates Lemmas
3.1 and 4.2, respectively, which will be used to prove Theorem 4.6 in Section 4
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mentioned above. The proof of Theorem 1.1 will be completed in Section 5; also
the proof of Corollary 1.2 will be given there. Finally, in Section 6 we shall employ
an analogue of (1.4) on H as a non-degeneracy condition and we shall describe
results similar to Theorems 1.1 and 4.6 (Theorems 6.1 and 6.2). Also, we shall
state discrete parameter versions of Theorems 1.1 and 4.6 (Theorems 6.3 and 6.4).

2. SOME PRELIMINARIES

In this section we have some preliminary results. See [7] for results in Sections
2.1, 2.2 and 2.3.

2.1. Invariant derivatives. Let e; = (egj),egj),...,eglj)), 1 < j < n, be the
element of H such that egj ) =1 and e,(g )= 0if k = j. Define the left-invariant and

right-invariant differential operators, which are denoted by X; and Y}, respectively,
by
d
(@) = | fatte)|

Vifw) = | (e >L_

Then we can see that X;(f(Asz)) = s% (X f)(Asx), Y;(f(Asz)) = s% (Y, f)(Asx).
Let Ny denote the set of non-negative integers and let I = (iq, 42, ...,i,) € (Ng)™.
Define

[I|=d1+d2+ - +in, a(l)=a1i1 + agiz+ -+ apin.
Higher order differential operators X and Y’ are defined as
X =Xxi Xl X vI=yjhve. . Y
Then |I| is called the order of X! and Y/ and a(I) the homogeneous degree for

them.
Let I = (i1,42,...,4n) and I’ = (ip,...,i2,41). Then

(X1 f) wglz) = f 5 (Y7 g)(a),
/H<Xff)<x>< Yo = ( ‘”/f )X g)(x) de

/(Y’f)()( o = (- ‘”/f YV g)(x) de
H
XI(fxg)(@) = (F» X' g)(x), Y(frg)= (Y’f)

for appropriate functions f, g.

2.2. Taylor polynomials. Let
(2.1) chac el =il xte T =(iy,ig,...0),

be a polynomial on R™. We may also consider P(z) as a polynomial on H. The
degree of the polynomial P is max{|I| : ¢ # 0}. Also, the homogeneous degree of
P is defined to be max{a(I) : ¢ # 0}.

If P(z) = 27, then Y/P and X!P are homogeneous of degree a(.J) — a(I) with
respect to the dilation A;. This implies, in particular, that Y/P = XIP = 0 if
a(l) > a(J).
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Let A ={a(I): I € (Ng)"}. Define
(2.2) a=min{c € A:c>a}.

We denote by P, the space of all polynomials P in (2.1) with a(I) < a for all I.

Let @ € A. Let f be a function which has continuous derivatives X' f in a
neighborhood of x € H for a(I) < a. The left Taylor polynomial P,(y) of f at x
of homogeneous degree a is the unique polynomial P such that X! P(0) = X! f(x)
for all I with a(I) < a. The right Taylor polynomial is defined similarly with Y’
in place of X7,

We state mean value and Taylor inequalities.

Lemma 2.1. Suppose that f is continuously differentiable on H. Then for x,y € H,
we have

[flzy) = f@)] <CY py)™  sup  [(X;f)(xz)],
j=1

p(2)<C1p(y)

where the constants C,C1 are independent of x,y and f.

This can be shown by using Theorem 1.33 of [7] and the relation Y]f = —)/i_';”,
where f(z) = f(z71).

Lemma 2.2. Leta € A, a > 0. Put k = [a], where [a] denotes the largest integer
not exceeding a. There are constants C, and B, such that if f is k 4+ 1 times
continuously differentiable on H, x,y € H and P, is the right Taylor polynomial of
f at x of homogeneous degree a, then

fyz) = Pe)| <Ca D> p)*P  sup V' f(zz)|.
|I|<k+1,a(I)>a p(2)<Bap(y)

See [7, Theorems 1.33, 1.37].

2.3. Hardy spaces. We define

[®vy = sup (14 p(a)NFTVO Y @ (z)|
|[|<N,z€H

(see [7, p. 35]). Put
By = {0 €8 |0 <1}

Let

M) (£)(@) = sup{sup |f + @y ()] : & € By}
The Hardy space H? on H for p € (0, 1] is defined as

H? ={f €8 :|[flar = [ M,)()llp < o0},
with sufficiently large N,. The number

min {N € No: N >min{a € A:a>~y(p~' —1)}}

can be taken as N, which equals [y(p~' —1)] + 1 when A = Ny (see [7, Chap. 2]).
In the case of Fuclidean structure, the H? spaces can be characterized by the
radial maximal function sup,- |f * ¢¢|, where p € 8 with [ =1 (see [6]).
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2.4. Weight functions. Let B be a subset of H. Then B is a ball in H with center
z € H and radius t > 0 if

B={yecH:py 'z) <t}

We write B = B(xz,t). Let f5 f(y)dy = |B|™" [ f(y) dy, where |B| denotes the
Lebesgue measure of B. Let w be a weight function on H and 1 < p < co. We say
that w belongs to the class A, of Muckenhoupt if

sup (]{3 w(zx) dm) (ﬁ w(:v)_l/(”_l)dx>p_l < 00,

where the supremum is taken over all balls B in H.
The Hardy-Littlewood maximal operator is defined by

-4wfu|@,
xeB

where the supremum is taken over all balls B in H containing z. (See [8, 9].)
We denote by || f| e the weighted LP norm

(]gf<xnpumx>dw)l/p.

We shall apply the following weighted vector-valued inequalities.

Lemma 2.3. Let 1 < p,v < co. Suppose that w € A,. Then for appropriate
functions G(z,t) on H x (0,00) we have

(L s ) ) [ o) "o

where G'(x) = G(z,t).
This is a version of a result in [5] (see [9, pp. 265-267]).

1/v

3. SOME BASIC ESTIMATES

For n,¢ € § and t, L > 0, let
(3.1)

C(n,,t, L) = (14 p(x))* (0 = (), C(n,wyt,L)Z/HIC(U7¢7t,L7x)Idw

Define the Peetre maximal function on H by

|F(zy~ )| |F(y)|
3.2 DN SUp —————— = sup .
2 VRl = S A Ro)™ 3 (T By )
Let f € 8. We say that f vanishes weakly at infinity if f x ¢; — 0in 8 ast — oo

for all ¢ € 8 (see [7, p. 50]).

Lemma 3.1. Suppose that o9, n©) € 8,1 < ¢ < M, satisfy fgo(e) =0,1<¢< M,
and (1.6). Suppose that f € 8 wvanishes weakly at infinity and that ¢ € 8. Let
be (0,1). Then

(3.3)

M oo
B - du
ww“1sZwam/c“mlwmwﬂmﬁmwa

u
(=1 j=
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where j1 = max(0, j).

Proof. Define ¢ € 8 by

(¢) dt
(= Z/ Vi) o
The fact that ¢ € 8§ and [ ¢ =1 can be seen from [7, p. 51]. We have
[ty = Tim (f * Gumtr %y — f* Gupr % 1y)

k—o0,
m—o00

[ du
- kl—lglo Z Z/ fx Wit)bﬂ Z) * 167 ) uthi m

m—o0 j=—k £=1

- Z Z/ f*sputlﬂ (Z) *wu 1p— J)uth dj

j=—00 {=1

if f € 8’ vanishes weakly at infinity (see Proposition 1.49 and the proof of Theorem
1.64 in [7]). Noting that

' 5y (2) = (1 + p(z)"EC(H ¢, u™ 077, L, x),

we see that

M o
B34) [fru(x)] <> S / /|fw§?w (14171 ply 1))t
0=1j=—

, d
X O b, u™ b, LA (5 )| (uth?) 7 dy =,

since b < u <1 in the integral. We observe that
(3.5)
(L4 57 p(y ) F L+t p(= ) < 2P P (L4 47 b ply ),

where ¢ is as in (7) of Section 1. To see this, we first note that

I+t p(y ™ 2)) (1 4+t p(z" "))
=b 7t 2 (U +tp(y '2) + Vtp(z" z) + ply~'2)p(z 7))
and
L=+t p(y )L+t oz ) (L 4+t p(y )
W +iply~t2) + Vtp(z"w) + ply~ 2)p(z )
t(bit + p(y~'z))

S bt2 4+ tp(y=tz) + btp(z~1x)

- t(bit + p(y~'z)) '
If j > 0, since p(y~'z) < co(p(y~'2) + p(z7'2)), co > 1 and & <1,

I 2 bjc—l t2 + tp(yill.)

— 7 > it
"W p(y ) T

Next let j < 0. If ¥/t > p(y~'z), then

2 +tp(y=tz) + btp(z~tx) -

1>
2t2b7

DO | =
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If ¥t < p(y~'z), since v/ > 1,

thQ +tp(y~1z) + btp(z~1x)
- 2tp(y~'a)

_ Vit ply! )+p(f1x) co'plyte) 1
- 200y 2) = oy Tm) © 2%

Combining results, we can easily get (3.5).
Multiplying both sides of (3.4) by (1 + ¢t 1p(z~1x))~L and using (3.5), we have

[ ()| (L + 27 p(z 1)) ™F

|fwffth<>|
<CZZbLJ+//1+t = j; Ty

—1

¢=1 j=—o00
© —lpy=i iV— g, T
< O™ w07 L Ay, (y™2) [(wtd) Y dy ——
M 00 du
— é *k
Z Z LJ+/ C n(é) Y, u L)(f*@igjt)L,b,jt,l(x);.
(=1 j=—o0
The inequality (3.3) follows from this by taking supremum in z. (]

To estimate C(n,,t, L) in (3.1) we apply the following result.

Lemma 3.2. Let n,¢ € 8.

(1) Lett > 1. Suppose that a € A and [nP dxz =0 for all P € P,. Then, for
any M > 0, we have

% 0(e)] < B, 0, MY (04 ()
for all x € H with some constant B1(n, ¥, a, M) (see (2.2) for a).
(2) Let 0 <t < 1. Ifa € A and [¢YPdz =0 for all P € P,, then, for any
M >0,
|77 * wt(m)‘ < BQ(na 1/% a, M)ta(l + p(x))_M
for all x € H with some constant Ba(n, ¥, a, M).

Proof. Let t > 1 to prove part (1). Let P,(y) be the right Taylor polynomial of 1
at « of homogeneous degree a € A. Then, if R,(y) = ¥(yx) — P.(y),

(3.6) |Ro(y)] < C(¥,a, M)p(y)*(1+ p(a)) ™

for any a € A, M > 0, provided that p(z) > D,p(y) with sufficiently large D,.
This can be shown by applying Lemma 2.2. Indeed, if D, > 2¢oBa, p(z) < Bap(y)
and p(x) > D,p(y), where B, is as in Lemma 2.2, then it can be easily shown that

cop(zz) = p(x)/2.
If [nPdx =0 for P € P,,

[t v o oy dy = [ Ry (A7 dy = 0
By (3.6) we have
(3.7) By (AT ™)) < CEp(y)" (1 + ¢ pla)
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if p(x) > Dyp(y). Let J = J; + Jo, where
h= [ @R Y = [ @ R Y

Dap(y)<p(x) Dap(y)>p(x)

Then, (3.7) implies that

(3.8) Al <Ct*(1 +t‘1p(x))‘M/p(y)a|n(y)\ dy < Ot (L + 1" p(a)) M.
Next we estimate Jy. By Lemma 2.2

Re()| <C(a) DY p(y)*?,

1< [al+1,a(1)>a

which implies that

Ry ATy <o Y e Wpy)r D<ot Y p(y)* .
1< ¥ Ta(D)>a 1< (¥ Ta()>a

Thus

(39) | B < Cto / ()| S @ | dy
Dap(y)>p(x) HIZlel1,6(D>a

< Cupat™ 71+ p(x)) ™ < Oprat™ (1 +t ()™M,
By (3.8) and (3.9) we have, for any M > 0,
(3.10) |J| < Ct % 7A 4+t tp(x) ™

for t > 1. This completes the proof of part (1).
To prove part (2), let 0 < ¢ < 1. We note that

(n* ) (x) = TP * 7l (Asz), s=t"">1
Thus by (3.10), if M > 0 and [ ¢Pdx =0 for P € P,, we have, for z € H,
[0+ u(@)| < Cs757% (14 pla) ™™ = C1(1 + pla)) M.
This concludes the proof. ([

Remark 3.3. The constants B;(n,%,a, M), j = 1,2, in Lemma 3.2 can be taken
independent of 1 and v if ||n[/(z) < 1 and [[¢[|(z) < 1 and if L is sufficiently large
depending on a, M.

4. MAXIMAL FUNCTION OF PEETRE AND VECTOR-VALUED INEQUALITIES

For the maximal function (f ;)3 ,—1 we have the estimate in Lemma 4.2 below.

it
We first prove the following.
Lemma 4.1. Let F' be continuously differentiable on H. Let v > 0, N = ~v/r and
let 0 < u < 1. Then for x € H, we have

Fy(z) < Cru VM(IF[)Y (@) + Cru Yy (XGF)N (@),

j=1
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Proof. For u,r >0 and z, 2z € H we have
(4.1)

1/r
Pz = (ﬁ . )|F<y>+<F<xz-1>—F<y>>rdy)

1/r 1/r
<e, <]l |F(y)|Tdy> +cr <]l |F(zz7") - F(y)lrdy> ;
B(zz—1,u) B(zz—1,u)

where ¢, = 1lifr>1land ¢, =271/ if 0 < r < 1.
Let w=22z"1, y € B(xz7!,u). By Lemma 2.1

|F(w)=F(y)l = [Fy(y~'w)~Fy)| < CY_ ply™ w)* sup |(X;F)(yv)].
i— p(v)<Cip(y~—tw)
Since 0 < u < 1,
|F(w) - F(y)| < Cu sup |(X5F) (yv)].
j=1 p(v)<Cip(y~—tw)
We note that

ply~tezt) = ply~tw) <u, ply~'x) = pla™ty) < colu+ p(2)).

Therefore
X F -1
s (GPEol<c s AKEOET WG
p(v)<Cip(y=1w) p(v)<Cip(y—tw) (14 p(z=1yv))

< C(X;F) 3 (@) (1 + p(2)N

It follows that

n

1/r
(12) (ﬁ - )|F(xz1>—F<y>|’“dy> Cu SRR 1+ ()

=
We observe that B(zz~',u) C B(z,co(u + p(z))), since we have p(y~'x)
co(u+ p(2)) if p(y~(xz71)) < u. Thus

(4.3)

1/r 1/r
(f Py dy> <c <w<u + p(z))v][ P dy>
B(zz—1,u) B(x,co(utp(2)))

< Cu™"(1+ p(2))/"M(|F|") ()"
If N =~/r, combining (4.1), (4.2) and (4.3), we have

IN

M < Cu™ " M(|F|")(z )1/T+C’u§n:(X-F)** (z)
a+ )7 = £ mates
j=1
Taking supremum in z, we get the conclusion. [l

Lemma 4.2. Let N=~/r,r>0,0<0 <1. Let f,po € 8. Then we have

(f * @) N1 (@) < Ca N M(If x )" (@) + C, 52 IN-1(7)
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for allt > 0.
To prove this we apply the following.

Lemma 4.3. Define the operator Ty by (Tif)(x) = f(Asx). Then, for appropriate
functions F, f, g on H we have

(1) (TiFp)(x) = (T F)N g(x) for allt,N,R > 0;
(2) Ti(f xg)(x) = (T3 f) * (Trg)(z) for everyt > 0;
(3) Ty(M(f))(x) = M(T:f)(x) for every t > 0.

This can be shown by direct computation.

Proof of Lemma 4.2. By (1), (2) of Lemma 4.3
Ti(f * o) -1 (@) = (Tef * @) 3 (2)-

Using Lemmas 4.1, we have

(Tof * )N a(x) < COTNM(Tof x )7 (2) + C8 Y _(Tof * X;j9) N1 (2).
j=1

Applying T;-1 to both sides of this inequality, we can get the conclusion, since by
Lemma 4.3 we have

T (Tof * 90)}‘\?1(5”) =(f= Sﬁt)ﬁ,t—l(z)a
Ty s M(ITef % |") 7 () = M| f * o)V (),
T (Tef * Xjo)Na (@) = (f * (Xj9)e) ¥ g1 ().

Let a,b, L > 0 and
Gl(ll)L ={(n,¥) € 8§ x 8§ :supt*C(n,9,t,L) < oo},

t>1

@5,22 ={(n,¢) €8x 8: sup t7°C(n,,t,L) < oo},
’ 0<t<1

Canr =€) NCY,
where C'(n,,t, L) is as in (3.1).
By Lemma 3.2 we have the following results.
Remark 4.4. Let a,b,c,d, L, N be non-negative numbers and 1, € 8.
(1) faeA, a>a+Land [nPdx =0 for all P € P,, then (n,v) € (‘fflli
(2) If €A, B>band [¢pPdz =0 for all P € Py, then (1,9) € €). In
particular, (n,v) € (‘322])\, for some € > 0 and for all N if [ dz = 0.
(3) We have €} ¢ €} ifa >band ) c €Y} if L > N for j = 1,2. The
set Cq,p,1, is decreasing in each of the parameters a, b, L when the other two
are fixed.

Here we give a proof of part (1). Part (2) can be shown similarly. Let ¢t > 1. By
part (1) of Lemma 3.2, if M > L+~ and @ > a + L, we have

Clnih,t, L) < Ct=o—r+M ple) M da 1 Cto / (1+ p(a))* do
p(z)>t p(x)<t

< Cct ot < o,
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This completes the proof.
Using Lemmas 3.1 and 4.2, we can prove the following result.

Theorem 4.5. Let ¢ > 1,7 >0 and N = y/r. Let oY) €8, [ =0,1 <t < M.
Suppose that there exist n\®) € 8,1 < £ < M, for which we have (1.6). Let f € 8. If

(™), X)) € Gg\h ~ with some € >0 forallk=1,...,n and {,m=1,..., M,
then

(4.4 Z/ (7 * eO)3 CZ/ M(1f #o01)ap L.

Proof. By the assumption of the theorem and (2), (3) of Remark 4.4 we have
(n(m)7ngo(€)) € CN4e,e,v for some € > 0. Thus by (3.3) of Lemma 3.1 we have

M oo 1
N m o du
< > Cwb N”/b C(n'™, Xy, u=o™I N)(f*‘Puth)Nb s (@)
m=1j=—o0
M oo ‘ 1 du
< Z Z CN,bbE‘j'/b (f*%?;)t)]vb Jie 1@)?.
m=1 j=—o0

Using this and Lemma 4.2, we see that
f EE3 — Z T T
(f % o) i1 (@) < C5NM(If %7117 (@)
M 0 ) 1 du
06> S Ol /b (@R ()
m=1j=—o0
Thus, applying Holder’s inequality when g > 1, we have
(f % e 2 (@) < cafNQqu * o) ()"
‘ o du\"
+ CN b,g,Mm 07 2:1 Z paclil/2 </ f*‘Pubat)Nb ir-1(2) u)
m=1j=—o0

Since ¢ > 1, Holder’s inequality implies that
(4.5)
du

1 m d q , 1 m "
( / (f % h s (@) “) < (log(1/b))®/4 / (f ol Vs ()T —.
b U b

u

So we see that
(4.6) (f*oi)xa(@)? < Cé‘N"M(\f o) @)/

m) s du
+CN7b7q,M§qZ Z bqe\JI/Z/ f*%ﬁ(bj)t)N,bﬂ‘t*l(x)q*~

u
m=1j=—o0
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By integration of both sides of the inequality (4.6) over (0, 00) with respect to the
measure dt/t, it follows that

Z/ *SO:EZ) 7\?75 ()1 *<C5 qu/ M|f>k(p(€)| )z )‘Z/T
+ 051 Z paclil/2 Z/ / (f % o) e ()0 %dg

u
j=—00

<cr 0y [T a0y
=170

t

b e du . dt
+C’5q</bquu) Z paclil/2 Z/ f*(p )N -1 (7)? e

j=—00

where the inequality

(f % ) N s (@) Su™N(Fx otV (@)

has been used. The inequality (4.4) follows from this by taking § sufficiently small,
since the last sum of integrals is finite, which can be easily seen under the conditions
that f, ) € 8 and [ ¥ dr = 0.

O

We have some vector-valued inequalities, which are stated in more general forms
as weighted inequalities than needed in proving Theorem 1.1.
Theorem 4.6. Let N >0, v/N <p,q <oo,q>1 and w € Apn/. Let o® €8,
fgo de = 0,1 < ¢ < M. Suppose that there exist ) € 8, 1 < £ < M, for
which we have (1.6). Also, suppose that (1™, X)) € (‘35\1,1671\, with some € > 0
fork=1,...,nand {,m =1,...,M. Let ¢ € 8 and [ dx = 0. Suppose that

77(4)1/) €G§§+Nforsomee>0for1<€<M Let f € 8. Then we have
1/q 1/q
a dt dt
H ((F+0xs) ) </ 0 )
0

t
Proof. Since, as in the proof of Theorem 4.5, (19, 4) € Cnycen, 1 <€ < M, for
some € > 0, by (3.3) of Lemma 3.1 we have

Ly
with a positive constant C independent of f.

M o]
*% _ _ o du
(f )N SZ Z Onb NH/ Cn ©puto N)(f*@ubat)Nb it- 1(90);
< ¢ du
<33 ¥ [ N 2
=1 j=—o00

Thus, as in the proof of Theorem 4.5, we can get

an [T OZ/ (F o) ()1 S
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Let r = v/N < ¢,p < o0 and w € Apn/. Then by (4.7), Theorem 4.5 and

Lemma 2.3, it follows that

UL sy Cff)p/qw(x) d$> ’

| /\

M

IN

(=1

IN

This completes the proof of Theorem 4.6.

5. PROOFS OF THEOREM 1.1 AND COROLLARY 1.2

Suppose that ¥ € 8 and [ dz = 0. Let € € (0,1) and

Suce) = [ het) w0 T

/(Z/ (f « ol s (@)° df) " s
£ et 2y
3 (/H (/Ooo(fwi”)(x)qit)p/qw(x)dx)l/p.

1/p

1/p

for appropriate functions h on H X (0, 00). Let H be the Hilbert space of functions
£(t) on (0,00) such that [[£|lsc = (Jf;~ |€(t)|2dt/t)1/2 < 0. Let HE be the Hardy
spaces of distributions on H with values in J and let L%C be the L? space of functions

on H with values in J{.
We state some lemmas for the proof of Theorem 1.1.

Lemma 5.1. Let 0 < p < 1. If h € H N L%, then

sup [Sw.c(W)l|» < Clikll gz,
ec(0,

where C' is a constant independent of h.
Proof. First we show that
1Suc(ll> < Clhlz2 .

To see this, we note that

/Sq,,e(h)( dx—/ / (y,1)g * Ty ( )dy@.

So, Schwarz’s inequality implies that

/SM (z) da

It is known that

2
(// g%y (y) 2 dy & ) < Cllgll.

1/2
< Ihllzs, (// g+, (y) 2 dy 2 ) .

(See [7, pp. 223-224].) Thus the result follows from the converse of Holder’s

inequality.



16 SHUICHI SATO

Since YW, = t— 2 (YIW),, we easily see that
> dt o
/0 Y1 w@)e0)| T < [V @) [Ellac < Cllacpla) 77D,

Thus if we define K : H — B = B(H,C) (the space of bounded linear operators
from H to C) by

-1
¢ dt
K= [ @i T,
then
1K (2)l|l5 < Cp(z) ™7, [V K(@)|5 < Cpla) D,
Therefore the conclusion of the lemma follows from a vector-valued version of [7,
Theorem 6.10] (see [7, Theorem 6.20]). O

Also, we need the following result in proving the theorem.

Lemma 5.2. Let A be a non-negative integer. We can find functions U V() ¢ 8,
1 <¢< M, such that

(1)
/U@de = /V“)de =0

for all P € Py;
(2) UD =4O 50O with u®,v© € $(R™) satisfying

/u(e)de = /U(Z)Pda: =0
for all P € P 4;

(3) supp(V) c B(0,1);
(4)

Mo dt L dt
Z/ (U V) & = lim Z/ (V) F =5 ins.
¢=1"0 t g»j?)g r=1"¢€ t

Proof. This follows from [7, Theorem 1.62] except for the vanishing moment prop-
erty of v in (2), which can be easily shown as follows by using Lemma 1.60 of [7].
Let L be a sufficiently large number with L > A. By the remark above, for this L
we have functions @0, ¥ € 8§, 1 < ¢ < H, such that

/<1><4>de = /W>de =0 foral PePr;
o &) = % a0 with a® € 8 and ) € § satisfying
/gp(f)de =0 forall PePyr;

e U® is supported on B(0,1);

[ )
H 00
Z/ % v =5 ing.
=170
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If L is sufficiently large, then by Lemma 1.60 of [7] ¢(*) can be written as
P = > X7 ¢,

A+1<a(J)<a,(A+1)

with ¢, € 8 satisfying
/¢J75de =0 forall PePy.

Thus, using a result of Section 2.1, we see that

(5.1) @¥ = > X7¢rpxa® = > e A

A+1<a(J)<an(A+1) A+1<a(J)<an(A+1)

Since a(J) > A+ 1, we have
/(YJ’a“))de = (-1l /a“)YJde =0 forall P€Py.

We rewrite the expression of ®) in (5.1) as

K
() = Z Preyp * Qg g

k=1
with
/¢k7gpd$ = /OL}C’gPdJL‘ =0 forall PePy.
Then
K
o 5 g = Z(¢k,€ * Qg ) * U,
k=1

where Y, ¢ = U for 1 < k < K. By this decomposition, obviously we obtain the
desired result. [l

By Lemma 5.1 we have the following.

Lemma 5.3. Let UV, 1 < ¢ < M, be functions in 8 with f UD dx =0 for which
there exist V©) € 8,1 < ¢ < M, such that Ik VO dz =0 and

M o
Z/ (Ut(e) *Vt(é)> = hﬁn& Z/ (é)) ?25 in 8.
=170 :

Suppose that f € SN HP, 0 < p < 1. Put h\9(y,t) = f * Ut(e)(y). Then, h'© € HE,
and

M
1fller < C S IAD s,
(=1

Proof. The fact that h(©) ¢ HY. can be shown as in the proof of Lemma 5.1 by
a theory of vector-valued singular integrals (see [7, Chap. 7]). Let ¢ € 8. If
f €8N HP, by Theorem 1.64 of [7]

<N dt
Z f*(U(é)*V(e))tT*qps—)f*z/)S as € — 0.

1=1"7¢
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It follows that

—1
¢ dt
/ f*Ut(Z)*Vt(e)t*t/)S‘.

Taking h(y,t) = f = Ut(e) (y) and ¥ = V@ in Lemma 5.1, we see that

M
s
|f 1| < hggglf;igg

e dt

P
x| da

p/2
<C/ sup (/ |f>|<U(£) ¢s|2dt> dx
$>0,6€Bn,

for sufficiently large IV,,. Therefore by Fatou’s lemma we have

M -1 p
€ dt
Pdr < Clims 0 (o)
/ sup |f xs|Pda < Chregl(?f E / sup / fxxU’ xV, " *

S>O,'¢J€BNP s>0 wEBNP €

' dr\*?
<CZ/ sup </ |f*Ut()*qu|2t> dz,

s>0 ¢€BNP

f « UL

€

/ sup
s>0,9€Bn,

dzr

which implies the conclusion, if N, is sufficiently large.
O

In proving the theorem we combine Lemmas 5.2 and 5.3 with the following result.

Lemma 5.4. Let f € 8 and N > 0. Then there exist L > 0 and a € A such that
if®=vx*a, a8 with [aPdr=0 for all P € P,, then

sup | f * Q¢ §s| < C(f % )N 4
s>0,¢0€BL

with some constant C' depending only on ||a||(r), |#]l(zy, N

Proof. To prove this we first note that
62 ClasuN)= [W+pw)laxouw)ldy<C foru>0,

if ¢, € By, and [aPdx = 0 when P € P, for some suitable L,a. This can be
seen as follows. If u € (0, 1],

(14 p) "l s 6u)] € [0+ plz )Ml )1+ p(2) 60 ()] d:
< Cllallorm / (1 -+ up(2))™ 6(2)| d=
< Cllallorm) / (1+ p(2)M6(2)| d=

< Cllalla/y /(1 +p(2) (1 (=)0 MO (2| d2

< Clledl 19l ar/q)-

This implies (5.2) for v € (0,1] if M > N +~v+ 1.
Next, let v > 1. Then, (5.2) follows from (1) of Remark 4.4 and its proof along
with Remark 3.3.
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Using (5.2), we see that
1+ By Ga(2)] = | % o 0 % ()] = ]/(f*wtxxy-l)(at v 63)(y) dy
< (005 (@) [+ 7 0) V= 6,0 dy

= ()5 (@) / (14 p)N | bu0(y)| dy
<CO(f = 1/}15)7\;‘7,&71(55)-

This implies the conclusion. (I

Proof of Theorem 1.1. Since the second inequality of the conclusion (1.7) is shown
n [7], it remains only to prove the first inequality for some d € A. Let f € 8N HP,
0<p<1 Let N>n~/p Let UV 1< ¢ < M, be as in Lemma 5.3 with M’ in
place of M. Then, by Lemma 5.3 we have, for sufficiently large N,

T <OZ/ su (/ |f*U“>*¢|2‘”)p/2d
Hp p t s t Z.

s>0 ¢€BNP

By Lemma 5.2 we can find such U®) and we may assume that U® = (9 «¢(©) as
in Lemma 5.2 (2). For v(*)| we use Lemma 5.2 (2) with a number A large enough
and we apply the property [ u® dz = 0 for u®). If A of Lemma 5.2 (2) and N, are
sufficiently large, by Lemma 5.4 we have

p/2
Z/ sup (/ |f*Ut(£)*¢s|2dt) dx
s>0, (z)EBNp t
M/

([ (i) )"

(/oOc <(f*“n(sz))7\?‘,t,l)2 ?)1/2 P

Combining this with Theorem 4.6 with ¢ = v(©, ¢ = 2 and w = 1 and recalling
Remark 4.4, if d of Theorem 1.1 is sufficiently large, we get the first inequality of
(1.7) for f € SN HP. So we have (1.7) for f € § N HP, from which we can deduce
(1.7) for general f € HP, since SN H? is dense in H? (see [7]). This completes the
proof of Theorem 1.1. O

p

)

p

which implies

/1%

Proof of Corollary 1.2. Let ¢\9), j = 1,2,..., be as in the corollary. Then it is
known that

/ (b(j)(x)P(x) dx =0 forall P € Pyj_y
H

dt
ch/ ¢t *¢(k)

and
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for all positive integers j,k with some non-zero constant c;; (see [7, Chap. 7]).
Thus we can apply Theorem 1.1 with M =1, 1) = ¢$() and V) = ¢(¥) | taking a
sufficiently large number &, to get the desired result.

O

6. ANOTHER FORMULATION FOR NON-DEGENERACY

In this section we employ a version of (1.4) as a non-degeneracy condition. We
first state results analogous to Theorems 1.1 and 4.6.

Theorem 6.1. Let 0 < p < 1. There exists d € A with the following property. If
{tp(e) €8:1<{t< M} is a family of functions such that

1)
/ga(e)dx:(), 1<l¢< M;
(2)
(6.1) Z Z‘pr *néf) = hm Z Zapg) *an in 8

j=—00 {=1 m—)oo j=—k (=1

for some b € (0,1) with some ) € 8§, 1 < £ < M, satisfying that
/U(Z)dezo forallPe Py, 1</l<M.

Then we have

cpll fllme < Z 9o ()llp < Cpll fllaw for f e HP,

where ¢, and C, are positive constants independent of f.

Theorem 6.2. Suppose that o) € 8, f(p(f) der=0,1</{¢< M, and that we can
find n\©) € 8 for which (6.1) holds with b € (0,1). Let N > 0, v/N < p,q < o0
and w € Apn/. Let B, 0 satisfy that (n™, X)) € (‘35\% . for some e >0,

1<k<n,1<tm<M. Letv €8 with [dr =0. If (nV), ) € N%Nﬁr
1 < ¢ < M with some € > 0, then for f € § we have

’(/Om((f*wt)m l)qcff)l/q sci (/Ooofwi%cit)”q

for some positive constant C independent of f.

LY,

For ¢ >0 and b € (0,1), let

1/q

AN @) = 3 1w

j=—o0

Put A,u(f) = Ag’)b(f). Then we can regard A, ;(f) as a discrete parameter
analogue of g, (f). We have discrete parameter versions of Theorems 6.1 and 6.2
as follows.
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Theorem 6.3. Let 0 < p < 1. There exists d € A such that if functions ¢©) € 8,
1 < ¢ < M, satisfy the conditions (1) and (2) of Theorem 6.1, then we have

M
ol flme <D NALw 4 (Al < Cpllfllae  for f € HP.
=1
Theorem 6.4. Let N > 0, v/N < p,q < o0 and w € Apn/y. Let o €8,
fgo(e) dr=0,1<¢< M. Suppose that (6.1) holds with some n®e8, 1<l<M.
We also assume that (n(m),ngo(é)) IS GS&,LQN for somee >0,1<k<n, 1<
tom < M. Lety € 8 and [¢dz = 0. If (f0, ) € €4\ for 1 < £ < M with
some € > 0, then we have
- 1/q

S (e SO%HA%N)]
£=1

j=—o00

L%,
L,
for f € 8§ with a positive constant C independent of f.

We can prove Theorems 6.1 and 6.2 similarly to Theorems 1.1 and 4.6, respec-
tively. Let
0

M
=3 Y el
j=—o0 f=1
where p© n(® are as in Theorem 6.1. To prove Theorem 6.1 similarly to Theorem
1.1, it will be useful to note that ¢ € 8. Also, methods which prove Theorems 6.1
and 6.2 can be applied to show Theorems 6.3 and 6.4, respectively. The restriction
q > 1 is not needed in Theorems 6.2 and 6.4, which is assumed in Theorem 4.6,
since estimates like (4.5) are not needed in the situation under the non-degeneracy
condition (6.1). We can find relevant arguments in [16, 17]. We omit the details
for the proofs of the results stated in this section.
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