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HARDY SPACES ON HOMOGENEOUS GROUPS AND

LITTLEWOOD-PALEY FUNCTIONS

SHUICHI SATO

Abstract. We establish a characterization of the Hardy spaces on the homo-
geneous groups in terms of the Littlewood-Paley functions. The proof is based

on vector-valued inequalities shown by applying the Peetre maximal function.

1. Introduction

Let Rn be the n dimensional Euclidean space. In this note we assume that
n ≥ 2. We also consider a structure on Rn which makes Rn a homogeneous group
H equipped with multiplication given by a polynomial mapping. This requires that
we have a dilation family {At}t>0 on Rn of the form

Atx = (ta1x1, t
a2x2, . . . , t

anxn), x = (x1, . . . , xn),

with some real numbers a1, . . . , an satisfying 1 = a1 ≤ a2 ≤ · · · ≤ an such that each
At is an automorphism of the group structure (see [7], [21] and [11, Section 2 of
Chapter 1]). More precisely, in addition to the Euclidean structure, H is equipped
with a homogeneous nilpotent Lie group structure and we have the following:

(1) Lebesgue measure is a bi-invariant Haar measure;
(2) the identity is the origin 0 and x−1 = −x;
(3) (αx)(βx) = αx+ βx for x ∈ H, α, β ∈ R;
(4) At(xy) = (Atx)(Aty) for x, y ∈ H, t > 0;
(5) if z = xy, then zk = Pk(x, y), where P1(x, y) = x1 + y1 and Pk(x, y) =

xk + yk +Rk(x, y) for k ≥ 2 with a polynomial Rk(x, y) depending only on
x1, . . . , xk−1, y1, . . . , yk−1, which can be written as

Rk(x, y) =
∑

|I|≠0,|J|≠0,a(I)+a(J)=ak

c
(k)
I,Jx

IyJ .

(See Sections 2.1 and 2.2 below for the notation.)

Let |x| be the Euclidean norm for x ∈ Rn. We have a norm function ρ(x) which is
homogeneous of degree one with respect to the dilation At; by this we mean that
ρ(Atx) = tρ(x) for t > 0 and x ∈ H. We may assume the following:

(6) ρ is continuous on Rn and smooth in H \ {0};
(7) ρ(x+y) ≤ ρ(x)+ρ(y) and ρ(xy) ≤ c0(ρ(x)+ρ(y)) for some constant c0 ≥ 1

and ρ(x−1) = ρ(x);
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(8) we have

c1|x|α1 ≤ ρ(x) ≤ c2|x|α2 if ρ(x) ≥ 1,

c3|x|β1 ≤ ρ(x) ≤ c4|x|β2 if ρ(x) ≤ 1,

with some positive constants cj , αk, βk, 1 ≤ j ≤ 4, 1 ≤ k ≤ 2;
(9) ρ(x) ≤ 1 if and only if |x| ≤ 1 and the unit sphere Σ = {x ∈ H : ρ(x) = 1}

with respect to ρ coincides with Sn−1 = {x ∈ Rn : |x| = 1}.
The polar coordinate expression of the Lebesgue measure dx = tγ−1 dS dt is

useful, where γ = a1 + · · · + an (the homogeneous dimension). By this we mean
that ∫

H
f(x) dx =

∫ ∞

0

∫
Σ

f(Atθ)t
γ−1 dS(θ) dt

with dS = ω dS0 for appropriate functions f , where ω is a strictly positive C∞

function on Σ and dS0 denotes the Lebesgue surface measure on Σ.
We recall the Heisenberg group H1 as an example of a homogeneous group. Let

us define the multiplication

(x1, x2, x3)(y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 + (x1y2 − x2y1)/2),

(x1, x2, x3), (y1, y2, y3) ∈ R3. Then this group law defines the Heisenberg group H1

with the underlying manifold R3, where the dilation At(x1, x2, x3) = (tx1, tx2, t
2x3)

is an automorphism.
We consider the Littlewood-Paley g function on H defined by

(1.1) gφ(f)(x) =

(∫ ∞

0

|f ∗ φt(x)|2
dt

t

)1/2

,

where f ∈ S′, φ ∈ S satisfying
∫
H φdx = 0 and φt(x) = t−γφ(A−1

t x). Here S′

denotes the space of tempered distributions and S the Schwartz space, which are
the same as those in the Euclidean case (see [19]); also the convolution F ∗ G for
F,G ∈ L1 is defined by

F ∗G(x) =
∫
H
F (xy−1)G(y) dy =

∫
H
F (y)G(y−1x) dy.

We refer to [4] and [21, 13, 14] for the study of Littlewood-Paley operators and
singular integrals, respectively, on Lp spaces for homogeneous groups, 1 ≤ p <∞.

In this note we prove a characterization of Hardy spaces Hp, 0 < p ≤ 1, on
H (see Section 2.3 below) in terms of the Littlewood-Paley g functions. We first
recall related results in the Euclidean case. Let φ(ℓ), ℓ = 1, 2, . . . ,M , be functions
in S(Rn) satisfying the non-degeneracy condition

(1.2) inf
ξ∈Rn\{0}

sup
t>0

M∑
ℓ=1

|F(φ(ℓ))(tξ)| > c

for some positive constant c, where F(ψ) is the Fourier transform:

F(ψ) = ψ̂(ξ) =

∫
Rn

ψ(x)e−2πi⟨x,ξ⟩ dx, ⟨x, ξ⟩ = x1ξ1 + · · ·+ xnξn.

The following result in the case of the Euclidean structure is known (see [22]).
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Theorem A. Let 0 < p ≤ 1. Suppose that φ(ℓ) ∈ S(Rn) with
∫
Rn φ

(ℓ) dx = 0,
ℓ = 1, 2, . . . ,M , and that the condition (1.2) holds. Then

cp∥f∥Hp ≤
M∑
ℓ=1

∥gφ(ℓ)(f)∥p ≤ Cp∥f∥Hp

for f ∈ Hp(Rn), where ∥·∥p denotes the Lp norm and gφ(ℓ)(f) is defined as in (1.1)

with φ = φ(ℓ), f ∗ φt(x) =
∫
Rn f(x− y)φt(y) dy, φt(y) = t−nφ(t−1y).

See [6] for the Hardy space Hp(Rn). Analogous results for Lp spaces, 1 < p <∞,
can be found in [1], [10] and [15].

To generalize Theorem A to the case of homogeneous groups, we note that the
condition (1.2) can be used to find b ∈ (0, 1), positive numbers r1, r2 with r1 < r2
and functions η(1), . . . , η(M) ∈ S(Rn) such that suppF(η(ℓ)) ⊂ {r1 < |ξ| < r2}, 1 ≤
ℓ ≤M , and

(1.3)

∞∑
j=−∞

M∑
ℓ=1

F(φ(ℓ))(bjξ)F(η(ℓ))(bjξ) = 1 for ξ ∈ Rn \ {0}.

See [16, Lemma 2.1] and also [20, Chap. V], [2]. From (1.3) it follows that

(1.4)

∞∑
j=−∞

M∑
ℓ=1

φ
(ℓ)
bj ∗ η(ℓ)bj = δ in S′,

where δ denotes the Dirac delta function.
Also, the condition (1.2) implies the existence of functions η(1), . . . , η(M) ∈ S(Rn)

such that suppF(η(ℓ)) ⊂ {r1 < |ξ| < r2}, with positive numbers r1, r2 with r1 < r2,
for which we have

(1.5)
M∑
ℓ=1

∫ ∞

0

φ
(ℓ)
t ∗ η(ℓ)t

dt

t
= δ in S′.

Let ∆ be the additive sub-semigroup of R generated by 0, a1, . . . , an and let Pa
be the space of polynomials on H of homogeneous degree less than or equal to
a ∈ ∆ (see Section 2.2 below for more details). We employ a version of (1.5) as a
non-degeneracy condition for φ(1), . . . , φ(M) on H and we shall prove the following
result analogous to Theorem A.

Theorem 1.1. Let 0 < p ≤ 1. We can find d ∈ ∆ with the following property.
Suppose that {φ(ℓ) ∈ S : 1 ≤ ℓ ≤M} is a family of functions such that

(1) ∫
φ(ℓ) dx = 0, 1 ≤ ℓ ≤M ;

(2) there exist functions η(ℓ) ∈ S, 1 ≤ ℓ ≤M , satisfying that

(1.6)
M∑
ℓ=1

∫ ∞

0

φ
(ℓ)
t ∗ η(ℓ)t

dt

t
= lim

ϵ→0,
B→∞

M∑
ℓ=1

∫ B

ϵ

φ
(ℓ)
t ∗ η(ℓ)t

dt

t
= δ in S′

and that ∫
η(ℓ)P dx = 0 for all P ∈ Pd, 1 ≤ ℓ ≤M .
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Then we have

(1.7) cp∥f∥Hp ≤
M∑
ℓ=1

∥gφ(ℓ)(f)∥p ≤ Cp∥f∥Hp for f ∈ Hp

with positive constants cp and Cp independent of f , where Hp is the Hardy space
on H.

Let H be a stratified group with a natural dilation and let h be the heat kernel
on H (see [7]). Define ϕ(j) ∈ S, j = 1, 2, . . . , by

ϕ(j)(x) =
[
∂jt h(x, t)

]
t=1

= (−L)jh(x, 1),

where ∂t = ∂/∂t and L is the sub-Laplacian of H. As an application of Theorem
1.1 we have the following.

Corollary 1.2. Let f ∈ Hp, 0 < p ≤ 1. Then, for any j ≥ 1, we have

cp∥f∥Hp ≤ ∥gϕ(j)(f)∥p ≤ Cp∥f∥Hp

with some positive constants cp, Cp independent of f .

This almost retrieves Theorem 7.28 of [7], where the first inequality is shown
under the condition that f ∈ S′ vanishes weakly at infinity and gϕ(j)(f) ∈ Lp.

As in the case of the Euclidean structure of Theorem A, the first inequality of
(1.7) of the theorem is more difficult for us to prove than the second one; the second
inequality can be shown by applying a theory of vector-valued singular integrals.

Let

Sφ(f)(x) =

(∫ ∞

0

∫
ρ(x−1y)<t

|f ∗ φt(y)|2t−γ−1 dy dt

)1/2

be the Lusin area integral on the homogeneous group H. Then in [7], results anal-
ogous to Theorem 1.1 were proved for Sφ(f) (see [7, Theorem 7.11 and Corollary
7.22]), while the result for the Littlewood-Paley g functions was shown only for
special Littlewood-Paley functions gϕ(j) associated with the heat kernel.

In [16] an alternative proof of the first inequality of the conclusion of Theorem
A is given by applying the Peetre maximal function F ∗∗

N,R defined by

F ∗∗
N,R(x) = sup

y∈Rn

|F (x− y)|
(1 +R|y|)N

(see [12]). The proof of [16] is expected to extend to some other situations. Indeed,
it has been applied to get the Littlewood-Paley function characterization of para-
bolic Hardy spaces of Calderón-Torchinsky [2, 3] (see [17]); see also [18] for related
results on weighted Hardy spaces.

In this note we shall show that the methods of [16] can be also applied to charac-
terize Hardy spaces on the homogeneous groups by certain Littlewood-Paley func-
tions (Theorem 1.1). One of the ingredients of the methods is to prove a vector-
valued inequality in Theorem 4.6 below in Section 4, which is stated as a weighted
inequality.

In Section 2, we shall recall some results from [7] needed in this note including
the definition of Hardy spaces on H, Taylor’s theorem and also we shall have the
definition of weight classes. In Sections 3 and 4 we shall show key estimates Lemmas
3.1 and 4.2, respectively, which will be used to prove Theorem 4.6 in Section 4
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mentioned above. The proof of Theorem 1.1 will be completed in Section 5; also
the proof of Corollary 1.2 will be given there. Finally, in Section 6 we shall employ
an analogue of (1.4) on H as a non-degeneracy condition and we shall describe
results similar to Theorems 1.1 and 4.6 (Theorems 6.1 and 6.2). Also, we shall
state discrete parameter versions of Theorems 1.1 and 4.6 (Theorems 6.3 and 6.4).

2. Some preliminaries

In this section we have some preliminary results. See [7] for results in Sections
2.1, 2.2 and 2.3.

2.1. Invariant derivatives. Let ej = (e
(j)
1 , e

(j)
2 , . . . , e

(j)
n ), 1 ≤ j ≤ n, be the

element of H such that e
(j)
j = 1 and e

(j)
k = 0 if k ̸= j. Define the left-invariant and

right-invariant differential operators, which are denoted by Xj and Yj , respectively,
by

Xjf(x) =

[
d

dt
f(x(tej))

]
t=0

,

Yjf(x) =

[
d

dt
f((tej)x)

]
t=0

.

Then we can see that Xj(f(Asx)) = saj (Xjf)(Asx), Yj(f(Asx)) = saj (Yjf)(Asx).
Let N0 denote the set of non-negative integers and let I = (i1, i2, . . . , in) ∈ (N0)

n.
Define

|I| = i1 + i2 + · · ·+ in, a(I) = a1i1 + a2i2 + · · ·+ anin.

Higher order differential operators XI and Y I are defined as

XI = Xi1
1 X

i2
2 . . . Xin

n , Y I = Y i11 Y i22 . . . Y inn .

Then |I| is called the order of XI and Y I and a(I) the homogeneous degree for
them.

Let I = (i1, i2, . . . , in) and I
′ = (in, . . . , i2, i1). Then

(XIf) ∗ g(x) = f ∗ (Y I
′
g)(x),∫

H
(XIf)(x)g(x) dx = (−1)|I|

∫
H
f(x)(XI′g)(x) dx,∫

H
(Y If)(x)g(x) dx = (−1)|I|

∫
H
f(x)(Y I

′
g)(x) dx,

XI(f ∗ g)(x) = (f ∗XIg)(x), Y I(f ∗ g) = (Y If) ∗ g

for appropriate functions f, g.

2.2. Taylor polynomials. Let

(2.1) P (x) =
∑

cIx
I , xI = xi11 x

i2
2 . . . x

in
n , I = (i1, i2, . . . in),

be a polynomial on Rn. We may also consider P (x) as a polynomial on H. The
degree of the polynomial P is max{|I| : cI ̸= 0}. Also, the homogeneous degree of
P is defined to be max{a(I) : cI ̸= 0}.

If P (x) = xJ , then Y IP and XIP are homogeneous of degree a(J)− a(I) with
respect to the dilation At. This implies, in particular, that Y IP = XIP = 0 if
a(I) > a(J).



6 SHUICHI SATO

Let ∆ = {a(I) : I ∈ (N0)
n}. Define

(2.2) ā = min{c ∈ ∆ : c > a}.

We denote by Pa the space of all polynomials P in (2.1) with a(I) ≤ a for all I.
Let a ∈ ∆. Let f be a function which has continuous derivatives XIf in a

neighborhood of x ∈ H for a(I) ≤ a. The left Taylor polynomial Px(y) of f at x
of homogeneous degree a is the unique polynomial P such that XIP (0) = XIf(x)
for all I with a(I) ≤ a. The right Taylor polynomial is defined similarly with Y I

in place of XI .
We state mean value and Taylor inequalities.

Lemma 2.1. Suppose that f is continuously differentiable on H. Then for x, y ∈ H,
we have

|f(xy)− f(x)| ≤ C

n∑
j=1

ρ(y)aj sup
ρ(z)≤C1ρ(y)

|(Xjf)(xz)|,

where the constants C,C1 are independent of x, y and f .

This can be shown by using Theorem 1.33 of [7] and the relation Yj f̃ = −X̃jf ,

where f̃(x) = f(x−1).

Lemma 2.2. Let a ∈ ∆, a ≥ 0. Put k = [a], where [a] denotes the largest integer
not exceeding a. There are constants Ca and Ba such that if f is k + 1 times
continuously differentiable on H, x, y ∈ H and Px is the right Taylor polynomial of
f at x of homogeneous degree a, then

|f(yx)− Px(y)| ≤ Ca
∑

|I|≤k+1,a(I)>a

ρ(y)a(I) sup
ρ(z)≤Baρ(y)

|Y If(zx)|.

See [7, Theorems 1.33, 1.37].

2.3. Hardy spaces. We define

∥Φ∥(N) = sup
|I|≤N,x∈H

(1 + ρ(x))(N+1)(γ+1)|Y IΦ(x)|

(see [7, p. 35]). Put

BN = {Φ ∈ S : ∥Φ∥(N) ≤ 1}.
Let

M(N)(f)(x) = sup{sup
t>0

|f ∗ Φt(x)| : Φ ∈ BN}.

The Hardy space Hp on H for p ∈ (0, 1] is defined as

Hp = {f ∈ S′ : ∥f∥Hp = ∥M(Np)(f)∥p <∞},

with sufficiently large Np. The number

min
{
N ∈ N0 : N ≥ min{a ∈ ∆ : a > γ(p−1 − 1)}

}
can be taken as Np, which equals [γ(p−1 − 1)] + 1 when ∆ = N0 (see [7, Chap. 2]).

In the case of Euclidean structure, the Hp spaces can be characterized by the
radial maximal function supt>0 |f ∗ φt|, where φ ∈ S with

∫
φ = 1 (see [6]).
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2.4. Weight functions. Let B be a subset of H. Then B is a ball in H with center
x ∈ H and radius t > 0 if

B = {y ∈ H : ρ(y−1x) < t}.
We write B = B(x, t). Let −

∫
B
f(y) dy = |B|−1

∫
B
f(y) dy, where |B| denotes the

Lebesgue measure of B. Let w be a weight function on H and 1 < p <∞. We say
that w belongs to the class Ap of Muckenhoupt if

sup
B

(
−
∫
B

w(x) dx

)(
−
∫
B

w(x)−1/(p−1)dx

)p−1

<∞,

where the supremum is taken over all balls B in H.
The Hardy-Littlewood maximal operator is defined by

M(f)(x) = sup
x∈B

−
∫
B

|f(y)| dy,

where the supremum is taken over all balls B in H containing x. (See [8, 9].)
We denote by ∥f∥Lp

w
the weighted Lp norm(∫

H
|f(x)|pw(x) dx

)1/p

.

We shall apply the following weighted vector-valued inequalities.

Lemma 2.3. Let 1 < µ, ν < ∞. Suppose that w ∈ Aν . Then for appropriate
functions G(x, t) on H× (0,∞) we have(∫

H

(∫ ∞

0

M(Gt)(x)µ
dt

t

)ν/µ
w(x) dx

)1/ν

≤ C

(∫
H

(∫ ∞

0

|G(x, t)|µ dt
t

)ν/µ
w(x) dx

)1/ν

,

where Gt(x) = G(x, t).

This is a version of a result in [5] (see [9, pp. 265–267]).

3. Some basic estimates

For η, ψ ∈ S and t, L > 0, let
(3.1)

C(η, ψ, t, L, x) = (1 + ρ(x))L(η ∗ ψt(x)), C(η, ψ, t, L) =

∫
H
|C(η, ψ, t, L, x)| dx.

Define the Peetre maximal function on H by

(3.2) F ∗∗
N,R(x) = sup

y∈H

|F (xy−1)|
(1 +Rρ(y))N

= sup
y∈H

|F (y)|
(1 +Rρ(y−1x))N

.

Let f ∈ S′. We say that f vanishes weakly at infinity if f ∗ ϕt → 0 in S′ as t→ ∞
for all ϕ ∈ S (see [7, p. 50]).

Lemma 3.1. Suppose that φ(ℓ), η(ℓ) ∈ S, 1 ≤ ℓ ≤M , satisfy
∫
φ(ℓ) = 0, 1 ≤ ℓ ≤M ,

and (1.6). Suppose that f ∈ S′ vanishes weakly at infinity and that ψ ∈ S. Let
b ∈ (0, 1). Then
(3.3)

(f∗ψt)∗∗L,t−1(x) ≤
M∑
ℓ=1

∞∑
j=−∞

CLb
−Lj+

∫ 1

b

C(η(ℓ), ψ, u−1b−j , L)(f∗φ(ℓ)
ubjt)

∗∗
L,b−jt−1(x)

du

u
,
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where j+ = max(0, j).

Proof. Define ζ ∈ S by

ζ =
M∑
ℓ=1

∫ ∞

1

φ
(ℓ)
t ∗ η(ℓ)t

dt

t
.

The fact that ζ ∈ S and
∫
ζ = 1 can be seen from [7, p. 51]. We have

f ∗ ψt = lim
k→∞,
m→∞

(f ∗ ζtbm+1 ∗ ψt − f ∗ ζtb−k ∗ ψt)

= lim
k→∞,
m→∞

m∑
j=−k

M∑
ℓ=1

∫ 1

b

f ∗ φ(ℓ)
utbj ∗ (η

(ℓ) ∗ ψu−1b−j )utbj
du

u

=
∞∑

j=−∞

M∑
ℓ=1

∫ 1

b

f ∗ φ(ℓ)
utbj ∗ (η

(ℓ) ∗ ψu−1b−j )utbj
du

u
,

if f ∈ S′ vanishes weakly at infinity (see Proposition 1.49 and the proof of Theorem
1.64 in [7]). Noting that

η(ℓ) ∗ ψu−1b−j (x) = (1 + ρ(x))−LC(η(ℓ), ψ, u−1b−j , L, x),

we see that

(3.4) |f ∗ ψt(z)| ≤
M∑
ℓ=1

∞∑
j=−∞

∫ 1

b

∫
|f ∗ φ(ℓ)

utbj (y)|(1 + t−1b−jρ(y−1z))−L

× |C(η(ℓ), ψ, u−1b−j , L,A−1
utbj (y

−1z)|(utbj)−γ dy du
u
,

since b ≤ u ≤ 1 in the integral. We observe that
(3.5)
(1 + t−1b−jρ(y−1z))−L(1 + t−1ρ(z−1x))−L ≤ 2LcL0 b

−Lj+(1 + t−1b−jρ(y−1x))−L,

where c0 is as in (7) of Section 1. To see this, we first note that

(1 + t−1b−jρ(y−1z))(1 + t−1ρ(z−1x))

= b−jt−2
(
bjt2 + tρ(y−1z) + bjtρ(z−1x) + ρ(y−1z)ρ(z−1x)

)
and

I := (1 + t−1b−jρ(y−1z))(1 + t−1ρ(z−1x))(1 + t−1b−jρ(y−1x))−1

=
bjt2 + tρ(y−1z) + bjtρ(z−1x) + ρ(y−1z)ρ(z−1x)

t(bjt+ ρ(y−1x))

≥ bjt2 + tρ(y−1z) + bjtρ(z−1x)

t(bjt+ ρ(y−1x))
.

If j ≥ 0, since ρ(y−1x) ≤ c0(ρ(y
−1z) + ρ(z−1x)), c0 ≥ 1 and bj ≤ 1,

I ≥ bjc−1
0

t2 + tρ(y−1x)

t(bjt+ ρ(y−1x))
≥ bjc−1

0 .

Next let j ≤ 0. If bjt ≥ ρ(y−1x), then

I ≥ bjt2 + tρ(y−1z) + bjtρ(z−1x)

2t2bj
≥ 1

2
.
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If bjt < ρ(y−1x), since bj ≥ 1,

I ≥ bjt2 + tρ(y−1z) + bjtρ(z−1x)

2tρ(y−1x)

≥ bjt+ ρ(y−1z) + ρ(z−1x)

2ρ(y−1x)
≥ c−1

0 ρ(y−1x)

2ρ(y−1x)
≥ 1

2
c−1
0 .

Combining results, we can easily get (3.5).
Multiplying both sides of (3.4) by (1 + t−1ρ(z−1x))−L and using (3.5), we have

|f ∗ ψt(z)|(1 + t−1ρ(z−1x))−L

≤ C
M∑
ℓ=1

∞∑
j=−∞

b−Lj+
∫ 1

b

∫ |f ∗ φ(ℓ)
utbj (y)|

(1 + t−1b−jρ(y−1x))L

× |C(η(ℓ), ψ, u−1b−j , L,A−1
utbj (y

−1z)|(utbj)−γ dy du
u

≤ C

M∑
ℓ=1

∞∑
j=−∞

b−Lj+
∫ 1

b

C(η(ℓ), ψ, u−1b−j , L)(f ∗ φ(ℓ)
ubjt)

∗∗
L,b−jt−1(x)

du

u
.

The inequality (3.3) follows from this by taking supremum in z. �

To estimate C(η, ψ, t, L) in (3.1) we apply the following result.

Lemma 3.2. Let η, ψ ∈ S.

(1) Let t ≥ 1. Suppose that a ∈ ∆ and
∫
ηP dx = 0 for all P ∈ Pa. Then, for

any M ≥ 0, we have

|η ∗ ψt(x)| ≤ B1(η, ψ, a,M)t−ā−γ(1 + t−1ρ(x))−M

for all x ∈ H with some constant B1(η, ψ, a,M) (see (2.2) for ā).
(2) Let 0 < t ≤ 1. If a ∈ ∆ and

∫
ψPdx = 0 for all P ∈ Pa, then, for any

M ≥ 0,

|η ∗ ψt(x)| ≤ B2(η, ψ, a,M)tā(1 + ρ(x))−M

for all x ∈ H with some constant B2(η, ψ, a,M).

Proof. Let t ≥ 1 to prove part (1). Let Px(y) be the right Taylor polynomial of ψ
at x of homogeneous degree a ∈ ∆. Then, if Rx(y) = ψ(yx)− Px(y),

(3.6) |Rx(y)| ≤ C(ψ, a,M)ρ(y)ā(1 + ρ(x))−M

for any a ∈ ∆, M > 0, provided that ρ(x) ≥ Daρ(y) with sufficiently large Da.
This can be shown by applying Lemma 2.2. Indeed, if Da ≥ 2c0Ba, ρ(z) ≤ Baρ(y)
and ρ(x) ≥ Daρ(y), where Ba is as in Lemma 2.2, then it can be easily shown that
c0ρ(zx) ≥ ρ(x)/2.

If
∫
ηP dx = 0 for P ∈ Pa,∫

η(y)t−γψ(A−1
t (y−1x)) dy =

∫
η(y)t−γRA−1

t x(A
−1
t y−1) dy =: J.

By (3.6) we have

(3.7) |RA−1
t x(A

−1
t y−1)| ≤ Ct−āρ(y)ā(1 + t−1ρ(x))−M
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if ρ(x) ≥ Daρ(y). Let J = J1 + J2, where

J1 =

∫
Daρ(y)≤ρ(x)

η(y)t−γRA−1
t x(A

−1
t y−1) dy, J2 =

∫
Daρ(y)>ρ(x)

η(y)t−γRA−1
t x(A

−1
t y−1) dy.

Then, (3.7) implies that

(3.8) |J1| ≤ Ct−ā−γ(1 + t−1ρ(x))−M
∫
ρ(y)ā|η(y)| dy ≤ Ct−ā−γ(1 + t−1ρ(x))−M .

Next we estimate J2. By Lemma 2.2

|Rx(y)| ≤ C(ψ, a)
∑

|I|≤[a]+1,a(I)>a

ρ(y)a(I),

which implies that

|RA−1
t x(A

−1
t y−1)| ≤ C

∑
|I|≤[a]+1,a(I)>a

t−a(I)ρ(y)a(I) ≤ Ct−ā
∑

|I|≤[a]+1,a(I)>a

ρ(y)a(I).

Thus

|J2| ≤ Ct−ā−γ
∫

Daρ(y)>ρ(x)

|η(y)|

 ∑
|I|≤[a]+1,a(I)>a

ρ(y)a(I)

 dy(3.9)

≤ CM,at
−ā−γ(1 + ρ(x))−M ≤ CM,at

−ā−γ(1 + t−1ρ(x))−M .

By (3.8) and (3.9) we have, for any M ≥ 0,

(3.10) |J | ≤ Ct−ā−γ(1 + t−1ρ(x))−M

for t ≥ 1. This completes the proof of part (1).
To prove part (2), let 0 < t ≤ 1. We note that

(η ∗ ψt)̃ (x) = sγψ̃ ∗ η̃s(Asx), s = t−1 ≥ 1.

Thus by (3.10), if M ≥ 0 and
∫
ψP dx = 0 for P ∈ Pa, we have, for x ∈ H,

|η ∗ ψt(x)| ≤ Csγs−ā−γ(1 + ρ(x))−M = Ctā(1 + ρ(x))−M .

This concludes the proof. �

Remark 3.3. The constants Bj(η, ψ, a,M), j = 1, 2, in Lemma 3.2 can be taken
independent of η and ψ if ∥η∥(L) ≤ 1 and ∥ψ∥(L) ≤ 1 and if L is sufficiently large
depending on a,M .

4. Maximal function of Peetre and vector-valued inequalities

For the maximal function (f ∗φt)∗∗N,t−1 we have the estimate in Lemma 4.2 below.

We first prove the following.

Lemma 4.1. Let F be continuously differentiable on H. Let r > 0, N = γ/r and
let 0 < u ≤ 1. Then for x ∈ H, we have

F ∗∗
N,1(x) ≤ Cru

−NM(|F |r)1/r(x) + Cru
n∑
j=1

(XjF )
∗∗
N,1(x).
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Proof. For u, r > 0 and x, z ∈ H we have

|F (xz−1)| =

(
−
∫
B(xz−1,u)

|F (y) + (F (xz−1)− F (y))|r dy

)1/r

(4.1)

≤ cr

(
−
∫
B(xz−1,u)

|F (y)|r dy

)1/r

+ cr

(
−
∫
B(xz−1,u)

|F (xz−1)− F (y)|r dy

)1/r

,

where cr = 1 if r ≥ 1 and cr = 2−1+1/r if 0 < r < 1.
Let w = xz−1, y ∈ B(xz−1, u). By Lemma 2.1

|F (w)−F (y)| = |F (y(y−1w))−F (y)| ≤ C

n∑
j=1

ρ(y−1w)aj sup
ρ(v)≤C1ρ(y−1w)

|(XjF )(yv)|.

Since 0 < u ≤ 1,

|F (w)− F (y)| ≤ Cu
n∑
j=1

sup
ρ(v)≤C1ρ(y−1w)

|(XjF )(yv)|.

We note that

ρ(y−1xz−1) = ρ(y−1w) < u, ρ(y−1x) = ρ(x−1y) ≤ c0(u+ ρ(z)).

Therefore

sup
ρ(v)≤C1ρ(y−1w)

|(XjF )(yv)| ≤ C sup
ρ(v)≤C1ρ(y−1w)

|(XjF )(xx
−1yv)|

(1 + ρ(x−1yv))
N
(1 + u+ ρ(z))N

≤ C(XjF )
∗∗
N,1(x)(1 + ρ(z))N .

It follows that

(4.2)

(
−
∫
B(xz−1,u)

|F (xz−1)− F (y)|r dy

)1/r

≤ Cu
n∑
j=1

(XjF )
∗∗
N,1(x)(1 + ρ(z))N .

We observe that B(xz−1, u) ⊂ B(x, c0(u + ρ(z))), since we have ρ(y−1x) ≤
c0(u+ ρ(z)) if ρ(y−1(xz−1)) ≤ u. Thus

(
−
∫
B(xz−1,u)

|F (y)|r dy

)1/r

≤ C

(
u−γ(u+ ρ(z))γ−

∫
B(x,c0(u+ρ(z)))

|F (y)|r dy

)1/r

(4.3)

≤ Cu−γ/r(1 + ρ(z))γ/rM(|F |r)(x)1/r.

If N = γ/r, combining (4.1), (4.2) and (4.3), we have

|F (xz−1)

(1 + ρ(z))γ/r
≤ Cu−γ/rM(|F |r)(x)1/r + Cu

n∑
j=1

(XjF )
∗∗
N,1(x).

Taking supremum in z, we get the conclusion. �

Lemma 4.2. Let N = γ/r, r > 0, 0 < δ ≤ 1. Let f, φ ∈ S. Then we have

(f ∗ φt)∗∗N,t−1(x) ≤ Crδ
−NM(|f ∗ φt|r)1/r(x) + Crδ

n∑
j=1

(f ∗ (Xjφ)t)
∗∗
N,t−1(x)
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for all t > 0.

To prove this we apply the following.

Lemma 4.3. Define the operator Tt by (Ttf)(x) = f(Atx). Then, for appropriate
functions F, f, g on H we have

(1) (TtF
∗∗
N,R)(x) = (TtF )

∗∗
N,tR(x) for all t,N,R > 0;

(2) Tt(f ∗ g)(x) = tγ(Ttf) ∗ (Ttg)(x) for every t > 0;
(3) Tt(M(f))(x) =M(Ttf)(x) for every t > 0.

This can be shown by direct computation.

Proof of Lemma 4.2. By (1), (2) of Lemma 4.3

Tt(f ∗ φt)∗∗N,t−1(x) = (Ttf ∗ φ)∗∗N,1(x).
Using Lemmas 4.1, we have

(Ttf ∗ φ)∗∗N,1(x) ≤ Cδ−NM(|Ttf ∗ φ|r)1/r(x) + Cδ
n∑
j=1

(Ttf ∗Xjφ)
∗∗
N,1(x).

Applying Tt−1 to both sides of this inequality, we can get the conclusion, since by
Lemma 4.3 we have

Tt−1(Ttf ∗ φ)∗∗N,1(x) = (f ∗ φt)∗∗N,t−1(x),

Tt−1M(|Ttf ∗ φ|r)1/r(x) =M(|f ∗ φt|r)1/r(x),
Tt−1(Ttf ∗Xjφ)

∗∗
N,1(x) = (f ∗ (Xjφ)t)

∗∗
N,t−1(x).

�
Let a, b, L ≥ 0 and

C
(1)
a,L = {(η, ψ) ∈ S× S : sup

t≥1
taC(η, ψ, t, L) <∞},

C
(2)
b,L = {(η, ψ) ∈ S× S : sup

0<t≤1
t−bC(η, ψ, t, L) <∞},

Ca,b,L = C
(1)
a,L ∩ C

(2)
b,L,

where C(η, ψ, t, L) is as in (3.1).
By Lemma 3.2 we have the following results.

Remark 4.4. Let a, b, c, d, L,N be non-negative numbers and η, ψ ∈ S.

(1) If α ∈ ∆, ᾱ ≥ a+ L and
∫
ηP dx = 0 for all P ∈ Pα, then (η, ψ) ∈ C

(1)
a,L.

(2) If β ∈ ∆, β̄ ≥ b and
∫
ψP dx = 0 for all P ∈ Pβ , then (η, ψ) ∈ C

(2)
b,N . In

particular, (η, ψ) ∈ C
(2)
ϵ,N for some ϵ > 0 and for all N if

∫
ψ dx = 0.

(3) We have C
(j)
a,L ⊂ C

(j)
b,L if a ≥ b and C

(j)
a,L ⊂ C

(j)
a,N if L ≥ N for j = 1, 2. The

set Ca,b,L is decreasing in each of the parameters a, b, L when the other two
are fixed.

Here we give a proof of part (1). Part (2) can be shown similarly. Let t ≥ 1. By
part (1) of Lemma 3.2, if M > L+ γ and ᾱ ≥ a+ L, we have

C(η, ψ, t, L) ≤ Ct−ᾱ−γ+M
∫
ρ(x)≥t

ρ(x)L−M dx+ Ct−ᾱ−γ
∫
ρ(x)≤t

(1 + ρ(x))L dx

≤ Ct−ᾱ+L ≤ Ct−a.
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This completes the proof.

Using Lemmas 3.1 and 4.2, we can prove the following result.

Theorem 4.5. Let q ≥ 1, r > 0 and N = γ/r. Let φ(ℓ) ∈ S,
∫
φ(ℓ) = 0, 1 ≤ ℓ ≤M .

Suppose that there exist η(ℓ) ∈ S, 1 ≤ ℓ ≤M , for which we have (1.6). Let f ∈ S. If

(η(m), Xkφ
(ℓ)) ∈ C

(1)
N+ϵ,N with some ϵ > 0 for all k = 1, . . . , n and ℓ,m = 1, . . . ,M ,

then

(4.4)
M∑
ℓ=1

∫ ∞

0

(f ∗ φ(ℓ)
t )∗∗N,t−1(x)q

dt

t
≤ C

M∑
ℓ=1

∫ ∞

0

M(|f ∗ φ(ℓ)
t |r)(x)q/r dt

t
.

Proof. By the assumption of the theorem and (2), (3) of Remark 4.4 we have
(η(m), Xkφ

(ℓ)) ∈ CN+ϵ,ϵ,N for some ϵ > 0. Thus by (3.3) of Lemma 3.1 we have

(f ∗ (Xkφ
(ℓ))t)

∗∗
N,t−1(x)

≤
M∑
m=1

∞∑
j=−∞

CNb
−Nj+

∫ 1

b

C(η(m), Xkφ
(ℓ), u−1b−j , N)(f ∗ φ(m)

ubjt)
∗∗
N,b−jt−1(x)

du

u

≤
M∑
m=1

∞∑
j=−∞

CN,bb
ϵ|j|
∫ 1

b

(f ∗ φ(m)
ubjt)

∗∗
N,b−jt−1(x)

du

u
.

Using this and Lemma 4.2, we see that

(f ∗ φ(ℓ)
t )∗∗N,t−1(x) ≤ Cδ−NM(|f ∗ φ(ℓ)

t |r)1/r(x)

+ Cδ
M∑
m=1

∞∑
j=−∞

CN,bb
ϵ|j|
∫ 1

b

(f ∗ φ(m)
ubjt)

∗∗
N,b−jt−1(x)

du

u
.

Thus, applying Hölder’s inequality when q > 1, we have

(f ∗ φ(ℓ)
t )∗∗N,t−1(x)q ≤ Cδ−NqM(|f ∗ φ(ℓ)

t |r)(x)q/r

+ CN,b,q,Mδ
q
M∑
m=1

∞∑
j=−∞

bqϵ|j|/2
(∫ 1

b

(f ∗ φ(m)
ubjt)

∗∗
N,b−jt−1(x)

du

u

)q
.

Since q ≥ 1, Hölder’s inequality implies that
(4.5)(∫ 1

b

(f ∗ φ(m)
ubjt)

∗∗
N,b−jt−1(x)

du

u

)q
≤ (log(1/b))q/q

′
∫ 1

b

(f ∗ φ(m)
ubjt)

∗∗
N,b−jt−1(x)q

du

u
.

So we see that

(4.6) (f ∗ φ(ℓ)
t )∗∗N,t−1(x)q ≤ Cδ−NqM(|f ∗ φ(ℓ)

t |r)(x)q/r

+ CN,b,q,Mδ
q
M∑
m=1

∞∑
j=−∞

bqϵ|j|/2
∫ 1

b

(f ∗ φ(m)
ubjt)

∗∗
N,b−jt−1(x)q

du

u
.
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By integration of both sides of the inequality (4.6) over (0,∞) with respect to the
measure dt/t, it follows that

M∑
ℓ=1

∫ ∞

0

(f ∗ φ(ℓ)
t )∗∗N,t−1(x)q

dt

t
≤ Cδ−Nq

M∑
ℓ=1

∫ ∞

0

M(|f ∗ φ(ℓ)
t |r)(x)q/r dt

t

+ Cδq

 ∞∑
j=−∞

bqϵ|j|/2

 M∑
ℓ=1

∫ 1

b

∫ ∞

0

(f ∗ φ(ℓ)
t )∗∗N,ut−1(x)q

dt

t

du

u

≤ Cδ−Nq
M∑
ℓ=1

∫ ∞

0

M(|f ∗ φ(ℓ)
t |r)(x)q/r dt

t

+ Cδq
(∫ 1

b

u−Nq
du

u

) ∞∑
j=−∞

bqϵ|j|/2

 M∑
ℓ=1

∫ ∞

0

(f ∗ φ(ℓ)
t )∗∗N,t−1(x)q

dt

t
,

where the inequality

(f ∗ φ(ℓ)
t )∗∗N,ut−1(x) ≤ u−N (f ∗ φ(ℓ)

t )∗∗N,t−1(x)

has been used. The inequality (4.4) follows from this by taking δ sufficiently small,
since the last sum of integrals is finite, which can be easily seen under the conditions
that f, φ(ℓ) ∈ S and

∫
φ(ℓ) dx = 0.

�

We have some vector-valued inequalities, which are stated in more general forms
as weighted inequalities than needed in proving Theorem 1.1.

Theorem 4.6. Let N > 0, γ/N < p, q < ∞, q ≥ 1 and w ∈ ApN/γ . Let φ(ℓ) ∈ S,∫
φ(ℓ) dx = 0, 1 ≤ ℓ ≤ M . Suppose that there exist η(ℓ) ∈ S, 1 ≤ ℓ ≤ M , for

which we have (1.6). Also, suppose that (η(m), Xkφ
(ℓ)) ∈ C

(1)
N+ϵ,N with some ϵ > 0

for k = 1, . . . , n and ℓ,m = 1, . . . ,M . Let ψ ∈ S and
∫
ψ dx = 0. Suppose that

(η(ℓ), ψ) ∈ C
(1)
N+ϵ,N for some ϵ > 0 for 1 ≤ ℓ ≤M . Let f ∈ S. Then we have∥∥∥∥∥

(∫ ∞

0

(
(f ∗ ψt)∗∗N,t−1

)q dt
t

)1/q
∥∥∥∥∥
Lp

w

≤ C

M∑
ℓ=1

∥∥∥∥∥
(∫ ∞

0

|f ∗ φ(ℓ)
t |q dt

t

)1/q
∥∥∥∥∥
Lp

w

with a positive constant C independent of f .

Proof. Since, as in the proof of Theorem 4.5, (η(ℓ), ψ) ∈ CN+ϵ,ϵ,N , 1 ≤ ℓ ≤ M , for
some ϵ > 0, by (3.3) of Lemma 3.1 we have

(f ∗ ψt)∗∗N,t−1(x) ≤
M∑
ℓ=1

∞∑
j=−∞

CNb
−Nj+

∫ 1

b

C(η(ℓ), ψ, u−1b−j , N)(f ∗ φ(ℓ)
ubjt)

∗∗
N,b−jt−1(x)

du

u

≤
M∑
ℓ=1

∞∑
j=−∞

CN,bb
ϵ|j|
∫ 1

b

(f ∗ φ(ℓ)
ubjt)

∗∗
N,b−jt−1(x)

du

u
.

Thus, as in the proof of Theorem 4.5, we can get

(4.7)

∫ ∞

0

(f ∗ ψt)∗∗N,t−1(x)q
dt

t
≤ C

M∑
ℓ=1

∫ ∞

0

(f ∗ φ(ℓ)
t )∗∗N,t−1(x)q

dt

t
.
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Let r = γ/N < q, p < ∞ and w ∈ ApN/γ . Then by (4.7), Theorem 4.5 and
Lemma 2.3, it follows that(∫

H

(∫ ∞

0

(
(f ∗ ψt)∗∗N,t−1(x)

)q dt
t

)p/q
w(x) dx

)1/p

≤ C

∫
H

(
M∑
ℓ=1

∫ ∞

0

(f ∗ φ(ℓ)
t )∗∗N,t−1(x)q

dt

t

)p/q
w(x) dx

1/p

≤ C
M∑
ℓ=1

(∫
H

(∫ ∞

0

M(|f ∗ φ(ℓ)
t |r)(x)q/r dt

t

)p/q
w(x) dx

)1/p

≤ C

M∑
ℓ=1

(∫
H

(∫ ∞

0

|(f ∗ φ(ℓ)
t )(x)|q dt

t

)p/q
w(x) dx

)1/p

.

This completes the proof of Theorem 4.6. �

5. Proofs of Theorem 1.1 and Corollary 1.2

Suppose that Ψ ∈ S and
∫
Ψ dx = 0. Let ϵ ∈ (0, 1) and

SΨ,ϵ(h)(x) =

∫ ϵ−1

ϵ

h(·, t) ∗Ψt(x)
dt

t
,

for appropriate functions h on H× (0,∞). Let H be the Hilbert space of functions

ℓ(t) on (0,∞) such that ∥ℓ∥H =
(∫∞

0
|ℓ(t)|2 dt/t

)1/2
< ∞. Let Hp

H be the Hardy

spaces of distributions onH with values inH and let L2
H be the L2 space of functions

on H with values in H.
We state some lemmas for the proof of Theorem 1.1.

Lemma 5.1. Let 0 < p ≤ 1. If h ∈ Hp
H ∩ L2

H, then

sup
ϵ∈(0,1)

∥SΨ,ϵ(h)∥Hp ≤ C∥h∥Hp
H
,

where C is a constant independent of h.

Proof. First we show that

∥SΨ,ϵ(h)∥2 ≤ C∥h∥L2
H
.

To see this, we note that∫
SΨ,ϵ(h)(x)g(x) dx =

∫ ϵ−1

ϵ

∫
h(y, t)g ∗ Ψ̃t(y) dy

dt

t
.

So, Schwarz’s inequality implies that∣∣∣∣∫ SΨ,ϵ(h)(x)g(x) dx

∣∣∣∣ ≤ ∥h∥L2
H

(∫ ∫ ∞

0

|g ∗ Ψ̃t(y)|2 dy
dt

t

)1/2

.

It is known that (∫ ∫ ∞

0

|g ∗ Ψ̃t(y)|2 dy
dt

t

)1/2

≤ C∥g∥2.

(See [7, pp. 223–224].) Thus the result follows from the converse of Hölder’s
inequality.
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Since Y IΨt = t−a(I)(Y IΨ)t, we easily see that∫ ∞

0

∣∣Y IΨt(x)ℓ(t)∣∣ dt
t

≤
∥∥Y IΨt(x)∥∥H ∥ℓ∥H ≤ C∥ℓ∥Hρ(x)−γ−a(I).

Thus if we define K : H → B = B(H,C) (the space of bounded linear operators
from H to C) by

K(x)ℓ =

∫ ϵ−1

ϵ

Ψt(x)ℓ(t)
dt

t
,

then

∥K(x)∥B ≤ Cρ(x)−γ , ∥Y IK(x)∥B ≤ Cρ(x)−γ−a(I).

Therefore the conclusion of the lemma follows from a vector-valued version of [7,
Theorem 6.10] (see [7, Theorem 6.20]). �

Also, we need the following result in proving the theorem.

Lemma 5.2. Let A be a non-negative integer. We can find functions U (ℓ), V (ℓ) ∈ S,
1 ≤ ℓ ≤M , such that

(1) ∫
U (ℓ)P dx =

∫
V (ℓ)P dx = 0

for all P ∈ PA;
(2) U (ℓ) = u(ℓ) ∗ v(ℓ), with u(ℓ), v(ℓ) ∈ S(Rn) satisfying∫

u(ℓ)P dx =

∫
v(ℓ)P dx = 0

for all P ∈ PA;
(3) supp(V (ℓ)) ⊂ B(0, 1);
(4)

M∑
ℓ=1

∫ ∞

0

(
U

(ℓ)
t ∗ V (ℓ)

t

) dt

t
= lim

ϵ→0,
B→∞

M∑
ℓ=1

∫ B

ϵ

(
U

(ℓ)
t ∗ V (ℓ)

t

) dt

t
= δ in S′.

Proof. This follows from [7, Theorem 1.62] except for the vanishing moment prop-
erty of v(ℓ) in (2), which can be easily shown as follows by using Lemma 1.60 of [7].
Let L be a sufficiently large number with L ≥ A. By the remark above, for this L
we have functions Φ(ℓ),Ψ(ℓ) ∈ S, 1 ≤ ℓ ≤ H, such that

• ∫
Φ(ℓ)P dx =

∫
Ψ(ℓ)P dx = 0 for all P ∈ PL;

• Φ(ℓ) = φ(ℓ) ∗ α(ℓ), with α(ℓ) ∈ S and φ(ℓ) ∈ S satisfying∫
φ(ℓ)P dx = 0 for all P ∈ PL;

• Ψ(ℓ) is supported on B(0, 1);
•

H∑
ℓ=1

∫ ∞

0

Φ
(ℓ)
t ∗Ψ(ℓ)

t = δ in S′.
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If L is sufficiently large, then by Lemma 1.60 of [7] φ(ℓ) can be written as

φ(ℓ) =
∑

A+1≤a(J)≤an(A+1)

XJϕJ,ℓ,

with ϕJ,ℓ ∈ S satisfying ∫
ϕJ,ℓP dx = 0 for all P ∈ PA.

Thus, using a result of Section 2.1, we see that

(5.1) Φ(ℓ) =
∑

A+1≤a(J)≤an(A+1)

XJϕJ,ℓ ∗ α(ℓ) =
∑

A+1≤a(J)≤an(A+1)

ϕJ,ℓ ∗ Y J
′
α(ℓ).

Since a(J) ≥ A+ 1, we have∫
(Y J

′
α(ℓ))P dx = (−1)|J|

∫
α(ℓ)Y JP dx = 0 for all P ∈ PA.

We rewrite the expression of Φ(ℓ) in (5.1) as

Φ(ℓ) =
K∑
k=1

ϕk,ℓ ∗ αk,ℓ

with ∫
ϕk,ℓP dx =

∫
αk,ℓP dx = 0 for all P ∈ PA.

Then

Φ(ℓ) ∗Ψ(ℓ) =
K∑
k=1

(ϕk,ℓ ∗ αk,ℓ) ∗ ψk,ℓ,

where ψk,ℓ = Ψ(ℓ) for 1 ≤ k ≤ K. By this decomposition, obviously we obtain the
desired result. �

By Lemma 5.1 we have the following.

Lemma 5.3. Let U (ℓ), 1 ≤ ℓ ≤M , be functions in S with
∫
U (ℓ) dx = 0 for which

there exist V (ℓ) ∈ S, 1 ≤ ℓ ≤M , such that
∫
V (ℓ) dx = 0 and

M∑
ℓ=1

∫ ∞

0

(
U

(ℓ)
t ∗ V (ℓ)

t

) dt

t
= lim

ϵ→0,
B→∞

M∑
ℓ=1

∫ B

ϵ

(
U

(ℓ)
t ∗ V (ℓ)

t

) dt

t
= δ in S′.

Suppose that f ∈ S ∩Hp, 0 < p ≤ 1. Put h(ℓ)(y, t) = f ∗ U (ℓ)
t (y). Then, h(ℓ) ∈ Hp

H

and

∥f∥Hp ≤ C
M∑
ℓ=1

∥h(ℓ)∥Hp
H
.

Proof. The fact that h(ℓ) ∈ Hp
H can be shown as in the proof of Lemma 5.1 by

a theory of vector-valued singular integrals (see [7, Chap. 7]). Let ψ ∈ S. If
f ∈ S ∩Hp, by Theorem 1.64 of [7]

M∑
ℓ=1

∫ ϵ−1

ϵ

f ∗ (U (ℓ) ∗ V (ℓ))t
dt

t
∗ ψs → f ∗ ψs as ϵ→ 0.
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It follows that

|f ∗ ψs| ≤ lim inf
ϵ→0

M∑
ℓ=1

sup
s>0

∣∣∣∣∣
∫ ϵ−1

ϵ

f ∗ U (ℓ)
t ∗ V (ℓ)

t

dt

t
∗ ψs

∣∣∣∣∣ .
Taking h(y, t) = f ∗ U (ℓ)

t (y) and Ψ = V (ℓ) in Lemma 5.1, we see that∫
sup

s>0,ψ∈BNp

∣∣∣∣∣
∫ ϵ−1

ϵ

f ∗ U (ℓ)
t ∗ V (ℓ)

t

dt

t
∗ ψs

∣∣∣∣∣
p

dx

≤ C

∫
sup

s>0,ϕ∈BNp

(∫ ∞

0

|f ∗ U (ℓ)
t ∗ ϕs|2

dt

t

)p/2
dx

for sufficiently large Np. Therefore by Fatou’s lemma we have∫
sup

s>0,ψ∈BNp

|f ∗ ψs|p dx ≤ C lim inf
ϵ→0

M∑
ℓ=1

∫
sup

s>0,ψ∈BNp

∣∣∣∣∣
∫ ϵ−1

ϵ

f ∗ ∗U (ℓ)
t ∗ V (ℓ)

t

dt

t
∗ ψs

∣∣∣∣∣
p

dx

≤ C

M∑
ℓ=1

∫
sup

s>0,ϕ∈BNp

(∫ ∞

0

|f ∗ U (ℓ)
t ∗ ϕs|2

dt

t

)p/2
dx,

which implies the conclusion, if Np is sufficiently large.
�

In proving the theorem we combine Lemmas 5.2 and 5.3 with the following result.

Lemma 5.4. Let f ∈ S′ and N > 0. Then there exist L > 0 and a ∈ ∆ such that
if Φ = ψ ∗ α, ψ, α ∈ S with

∫
αP dx = 0 for all P ∈ Pa, then

sup
s>0,ϕ∈BL

|f ∗ Φt ∗ ϕs| ≤ C(f ∗ ψt)∗∗N,t−1

with some constant C depending only on ∥α∥(L), ∥ϕ∥(L), N .

Proof. To prove this we first note that

(5.2) C(α, ϕ, u,N) =

∫
(1 + ρ(y))N |α ∗ ϕu(y)| dy ≤ C for u > 0,

if ϕ, α ∈ BL and
∫
αP dx = 0 when P ∈ Pa for some suitable L, a. This can be

seen as follows. If u ∈ (0, 1],

(1 + ρ(y))M |α ∗ ϕu(y)| ≤ C

∫
(1 + ρ(yz−1))M |α(yz−1)|(1 + ρ(z))M |ϕu(z)| dz

≤ C∥α∥(M/γ)

∫
(1 + uρ(z))M |ϕ(z)| dz

≤ C∥α∥(M/γ)

∫
(1 + ρ(z))M |ϕ(z)| dz

≤ C∥α∥(M/γ)

∫
(1 + ρ(z))−γ−1(1 + ρ(z))(γ

−1M+1)(γ+1)|ϕ(z)| dz

≤ C∥α∥(M/γ)∥ϕ∥(M/γ).

This implies (5.2) for u ∈ (0, 1] if M ≥ N + γ + 1.
Next, let u > 1. Then, (5.2) follows from (1) of Remark 4.4 and its proof along

with Remark 3.3.
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Using (5.2), we see that

|f ∗ Φt ∗ ϕs(x)| = |f ∗ ψt ∗ αt ∗ ϕs(x)| =
∣∣∣∣∫ (f ∗ ψt)(xy−1)(αt ∗ ϕs)(y) dy

∣∣∣∣
≤ (f ∗ ψt)∗∗N,t−1(x)

∫
(1 + t−1ρ(y))N |αt ∗ ϕs(y)| dy

= (f ∗ ψt)∗∗N,t−1(x)

∫
(1 + ρ(y))N |α ∗ ϕs/t(y)| dy

≤ C(f ∗ ψt)∗∗N,t−1(x).

This implies the conclusion. �

Proof of Theorem 1.1. Since the second inequality of the conclusion (1.7) is shown
in [7], it remains only to prove the first inequality for some d ∈ ∆. Let f ∈ S∩Hp,
0 < p ≤ 1. Let N > γ/p. Let U (ℓ), 1 ≤ ℓ ≤ M ′, be as in Lemma 5.3 with M ′ in
place of M . Then, by Lemma 5.3 we have, for sufficiently large Np,

∥f∥pHp ≤ C
M ′∑
ℓ=1

∫
sup

s>0,ϕ∈BNp

(∫ ∞

0

|f ∗ U (ℓ)
t ∗ ϕs|2

dt

t

)p/2
dx.

By Lemma 5.2 we can find such U (ℓ) and we may assume that U (ℓ) = u(ℓ) ∗ v(ℓ) as
in Lemma 5.2 (2). For v(ℓ), we use Lemma 5.2 (2) with a number A large enough
and we apply the property

∫
u(ℓ) dx = 0 for u(ℓ). If A of Lemma 5.2 (2) and Np are

sufficiently large, by Lemma 5.4 we have

M ′∑
ℓ=1

∫
sup

s>0,ϕ∈BNp

(∫ ∞

0

|f ∗ U (ℓ)
t ∗ ϕs|2

dt

t

)p/2
dx

≤ C
M ′∑
ℓ=1

∥∥∥∥∥
(∫ ∞

0

(
(f ∗ u(ℓ)t )∗∗N,t−1

)2 dt

t

)1/2
∥∥∥∥∥
p

p

,

which implies

∥f∥pHp ≤ C
M ′∑
ℓ=1

∥∥∥∥∥
(∫ ∞

0

(
(f ∗ u(ℓ)t )∗∗N,t−1

)2 dt

t

)1/2
∥∥∥∥∥
p

p

.

Combining this with Theorem 4.6 with ψ = u(ℓ), q = 2 and w = 1 and recalling
Remark 4.4, if d of Theorem 1.1 is sufficiently large, we get the first inequality of
(1.7) for f ∈ S ∩Hp. So we have (1.7) for f ∈ S ∩Hp, from which we can deduce
(1.7) for general f ∈ Hp, since S ∩Hp is dense in Hp (see [7]). This completes the
proof of Theorem 1.1. �

Proof of Corollary 1.2. Let ϕ(j), j = 1, 2, . . . , be as in the corollary. Then it is
known that ∫

H
ϕ(j)(x)P (x) dx = 0 for all P ∈ P2j−1

and

cjk

∫ ∞

0

ϕ
(j)
t ∗ ϕ(k)t

dt

t
= δ
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for all positive integers j, k with some non-zero constant cjk (see [7, Chap. 7]).

Thus we can apply Theorem 1.1 with M = 1, φ(1) = ϕ(j) and η(1) = ϕ(k), taking a
sufficiently large number k, to get the desired result.

�

6. Another formulation for non-degeneracy

In this section we employ a version of (1.4) as a non-degeneracy condition. We
first state results analogous to Theorems 1.1 and 4.6.

Theorem 6.1. Let 0 < p ≤ 1. There exists d ∈ ∆ with the following property. If
{φ(ℓ) ∈ S : 1 ≤ ℓ ≤M} is a family of functions such that

(1) ∫
φ(ℓ) dx = 0, 1 ≤ ℓ ≤M ;

(2)

(6.1)
∞∑

j=−∞

M∑
ℓ=1

φ
(ℓ)
bj ∗ η(ℓ)bj = lim

k→∞,
m→∞

m∑
j=−k

M∑
ℓ=1

φ
(ℓ)
bj ∗ η(ℓ)bj = δ in S′

for some b ∈ (0, 1) with some η(ℓ) ∈ S, 1 ≤ ℓ ≤M , satisfying that∫
η(ℓ)P dx = 0 for all P ∈ Pd, 1 ≤ ℓ ≤M.

Then we have

cp∥f∥Hp ≤
M∑
ℓ=1

∥gφ(ℓ)(f)∥p ≤ Cp∥f∥Hp for f ∈ Hp,

where cp and Cp are positive constants independent of f .

Theorem 6.2. Suppose that φ(ℓ) ∈ S,
∫
φ(ℓ) dx = 0, 1 ≤ ℓ ≤ M , and that we can

find η(ℓ) ∈ S for which (6.1) holds with b ∈ (0, 1). Let N > 0, γ/N < p, q < ∞
and w ∈ ApN/γ . Let φ(ℓ), η(ℓ) satisfy that (η(m), Xkφ

(ℓ)) ∈ C
(1)
N+ϵ,N for some ϵ > 0,

1 ≤ k ≤ n, 1 ≤ ℓ,m ≤ M . Let ψ ∈ S with
∫
ψ dx = 0. If (η(ℓ), ψ) ∈ C

(1)
N+ϵ,N for

1 ≤ ℓ ≤M with some ϵ > 0, then for f ∈ S we have∥∥∥∥∥
(∫ ∞

0

(
(f ∗ ψt)∗∗N,t−1

)q dt
t

)1/q
∥∥∥∥∥
Lp

w

≤ C
M∑
ℓ=1

∥∥∥∥∥
(∫ ∞

0

|f ∗ φ(ℓ)
t |q dt

t

)1/q
∥∥∥∥∥
Lp

w

for some positive constant C independent of f .

For q > 0 and b ∈ (0, 1), let

∆
(q)
φ,b(f)(x) =

 ∞∑
j=−∞

|f ∗ φbj (x)|q
1/q

.

Put ∆φ,b(f) = ∆
(2)
φ,b(f). Then we can regard ∆φ,b(f) as a discrete parameter

analogue of gφ(f). We have discrete parameter versions of Theorems 6.1 and 6.2
as follows.
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Theorem 6.3. Let 0 < p ≤ 1. There exists d ∈ ∆ such that if functions φ(ℓ) ∈ S,
1 ≤ ℓ ≤M , satisfy the conditions (1) and (2) of Theorem 6.1, then we have

cp∥f∥Hp ≤
M∑
ℓ=1

∥∆φ(ℓ),b(f)∥p ≤ Cp∥f∥Hp for f ∈ Hp.

Theorem 6.4. Let N > 0, γ/N < p, q < ∞ and w ∈ ApN/γ . Let φ(ℓ) ∈ S,∫
φ(ℓ) dx = 0, 1 ≤ ℓ ≤M . Suppose that (6.1) holds with some η(ℓ) ∈ S, 1 ≤ ℓ ≤M .

We also assume that (η(m), Xkφ
(ℓ)) ∈ C

(1)
N+ϵ,N for some ϵ > 0, 1 ≤ k ≤ n, 1 ≤

ℓ,m ≤ M . Let ψ ∈ S and
∫
ψ dx = 0. If (η(ℓ), ψ) ∈ C

(1)
N+ϵ,N for 1 ≤ ℓ ≤ M with

some ϵ > 0, then we have∥∥∥∥∥∥∥
 ∞∑
j=−∞

(
(f ∗ ψbj )∗∗N,b−j

)q1/q
∥∥∥∥∥∥∥
Lp

w

≤ C

M∑
ℓ=1

∥∥∥∆(q)

φ(ℓ),b
(f)
∥∥∥
Lp

w

for f ∈ S with a positive constant C independent of f .

We can prove Theorems 6.1 and 6.2 similarly to Theorems 1.1 and 4.6, respec-
tively. Let

ζ =
0∑

j=−∞

M∑
ℓ=1

φ
(ℓ)
bj ∗ η(ℓ)bj ,

where φ(ℓ), η(ℓ) are as in Theorem 6.1. To prove Theorem 6.1 similarly to Theorem
1.1, it will be useful to note that ζ ∈ S. Also, methods which prove Theorems 6.1
and 6.2 can be applied to show Theorems 6.3 and 6.4, respectively. The restriction
q ≥ 1 is not needed in Theorems 6.2 and 6.4, which is assumed in Theorem 4.6,
since estimates like (4.5) are not needed in the situation under the non-degeneracy
condition (6.1). We can find relevant arguments in [16, 17]. We omit the details
for the proofs of the results stated in this section.
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