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要約

We investigate a rolling contact problem in elastodynamics. Contact problems in elasticity
appear in various fields such as manufacturing and earthquake engineering. In particular, we
have in mind the application to printers, where paper sheets are driven through the printer
by rollers. A typical problem for such printers is that the roller may produce a squeaking
sound. As a step towards preventing such a sound, we study a simplified model in which
the roller is modeled as an elastic body driven by a rotation. The paper sheets are modeled
as a rigid obstacle. For simplicity, we assume no frictional forces between the roller and the
obstacle. The resulting equations of motion are of hyperbolic type with a free boundary.

The aim of the paper is to develop a numerical scheme to solve these equations of motion.
The scheme is based on a variational method called the discrete Morse flow. The novelty is
that this scheme has not been applied to a hyperbolic system with a free boundary where
the unknown function is vector-valued.

The paper is organised as follows. First we derive the set of equations (P) for the rolling
contact problem. Next we apply the discrete Morse flow to develop a numerical scheme (Pk)
for (P). Lastly we solve (Pk) numerically and discuss the application to the rolling contact
problem.



Governing equations

Geometry Let Ω ⊂ R2 be a bounded domain representing the area occupied by an elastic
body. The closure Ω̄ of the set Ω is called the reference configuration. We denote by
φ : Ω̄ → R2 the displacement of the reference configuration Ω̄, and refer to φ(Ω̄) as the
deformed configuration. We call the components of x the Lagrangian coordinates, and
the components of X = φ(x) the Eulerian coordinates (see Figure 1) in the deformed
configuration.

At each point x ∈ Ω, the deformation gradient is given by

F (x) := ∇φ(x) =


∂φ1

∂x1

(x)
∂φ1

∂x2

(x)

∂φ2

∂x1

(x)
∂φ2

∂x2

(x)

 . (1)

We require that the determinant of the deformation gradient is positive at all points of the
reference configuration, that is

J(x) := detF (x) > 0, (2)

for all x ∈ Ω. As a consequence, the matrix F (x) is invertible.
Before linearizing, we describe the equations for mechanical equilibrium in terms of non-

linear elasticity. The Cauchy stress tensor T = (Tij) is defined in the deformed configuration

T (X) :=
1

J(x)

{
µ
(
F (x)F T (x)− I

)
+

λ

2

(
J(x)2 − 1

)
I

}
, (3)

for all x ∈ Ω, where X = φ(x), µ and λ are the Lamé constants (λ+ µ ≥ 0, µ > 0), F T (x)
is the transpose matrix of F (x), and I is the identity matrix.

In our model for the roller, the displacement naturally decomposes as

φ = R(id+ ξ) in Ω, (4)

where the matrix R = (Rij) describes the counter-clockwise rotation by angle θ (see Figure
1), id : R2 → R2 denotes the identity map, and ξ : Ω → R2 is assumed to have small
derivatives. More precisely, we assume that∣∣∣∣ ∂ξi∂xj

(x)

∣∣∣∣ < ε,

∣∣∣∣ ∂2ξi
∂xj∂ξk

(x)

∣∣∣∣ < ε, (5)

for some ε > 0 small enough, uniformly for x ∈ Ω and 1 ≤ i, j, k ≤ 2.

Equations of motion To derive the equations of motion, we change variables in (3) by
writing it in terms of ξ on Ω, and expand it in terms of ε by relying on (5). Since ∇ξ plays
the role of the deformation in linearized elasticity, we introduce the strain tensor

ϵ[ξ] :=
1

2

(
∇ξ +∇ξT

)
, (6)



Figure 1: Sketch of the reference domain Ω̄ and the deformed configuration φ(Ω̄).

and the stress tensor
σ[ξ] := 2µϵ[ξ] + λ(divξ)I, (7)

in the reference configuration.
The divergence of the Cauchy tensor T is then

(divXT )i :=
∂Tij

∂Xj

= Rik
∂

∂xℓ

σkℓ[ξ] +O(ε2). (8)

Next we derive the equations of motion. We encode the forced rotation of the elastic
body by a given smooth function θ : [0, T ) → R that corresponds to the rotation angle of R.
Then, by (4), the now time-dependent fields φ : Ω̄ × [0, T ) → R2 and ξ : Ω̄ × [0, T ) → R2

satisfy
φ(x, t) = R(θ(t))(x+ ξ(x, t)), (9)

for all x ∈ Ω̄ and all t ≥ 0. After neglecting higher order terms of ε in (8), the conservation
of linear momentum yields the equation of elastodynamics,

ρφ̈ = divX T ≈ R(θ)divσ[ξ] in Ω× (0, T ), (10)

where ρ > 0 is the density, superposed dots denote partial differentiation with respect to
time (i.e., φ̈ := ∂2φ/∂t2), and

divσ :=


∂σ11

∂x1

+
∂σ12

∂x2

∂σ21

∂x1

+
∂σ22

∂x2

 . (11)

Calculating (10), we obtain

ρξ̈ = divσ[ξ] + ρ
(
θ̈R(−π/2)(id+ ξ) + θ̇2(id+ ξ) + 2θ̇R(−π/2)ξ̇

)
in Ω× (0, T ). (12)

We note that if θ is linear in time, then in the right-hand side the second term vanishes, the
third term is the centrifugal force, and the last term is the Coriolis force. To abbreviate the
term in parentheses, we define the function f by

f(t,x, ξ, ξ̇) := θ̈(t)R(−π/2)(x+ ξ) + θ̇(t)2(x+ ξ) + 2θ̇(t)R(−π/2)ξ̇. (13)



We remark that the time dependence of the rotation angle is not covered by the setting in
[21, 16].

Boundary conditions We subdivide the boundary ∂Ω into ΓD and ΓC (see Figure 2),
where

ΓD ∪ ΓC = ∂Ω, ΓD ∩ ΓC = ∅, ΓD ̸= ∅. (14)

On the boundary ΓD we model the forced rotation of Ω by imposing the Dirichlet boundary
condition

φ(x) = Rx for x ∈ ΓD, (15)

which is equivalent to
ξ = 0 on ΓD. (16)

We describe the height of the obstacle by a smooth function g : [0, T ) → R. The condition
that the deformed configuration remains above the obstacle is given by

φ2(x) = (x+ ξ(x)) ·
(
RTe2

)
≥ g for all x ∈ ΓC , (17)

where ei ∈ R2 are the unit vectors of the canonical basis in the Lagrangian frame. We call

{φ(x) : x ∈ ΓC , φ2(x) = g}

the contact zone, and note that it is an unknown subset of ΓC .
Using the contact zone, we describe the boundary conditions on ΓC . Outside of the

contact zone, we impose homogeneous Neumann boundary conditions (i.e., zero traction).
At the contact zone, we impose zero traction in tangential direction (i.e., no friction force
between the elastic body and the obstacle), and require the normal force of the obstacle on
the elastic body to be non-negative. This leads to the following boundary conditions on ΓC :

(id+ ξ) ·
(
RTe2

)
≥ g

(σ[ξ]n) ·
(
RTe1

)
= 0

(σ[ξ]n) ·
(
RTe2

)
≥ 0(

(id+ ξ) ·
(
RTe2

)
− g
)
(σ[ξ]n) ·

(
RTe2

)
= 0

on ΓC , (18)

where n is the unit outward normal vector to ΓC .

Full model Summarizing the equations above, and adding initial conditions, we obtain
the complete system

(P)



ρξ̈ − divσ[ξ] = ρf(·, ·, ξ, ξ̇) in Ω× (0, T )

ξ = 0 on ΓD × [0, T )

(id+ ξ) ·
(
RT (θ)e2

)
≥ g on ΓC × [0, T )

(σ[ξ]n) ·
(
RT (θ)e1

)
= 0 on ΓC × [0, T )

(σ[ξ]n) ·
(
RT (θ)e2

)
≥ 0 on ΓC × [0, T )(

(id+ ξ) ·
(
RT (θ)e2

)
− g
)
(σ[ξ]n) ·

(
RT (θ)e2

)
= 0 on ΓC × [0, T )

ξ(·, 0) = ξ0 in Ω,

ξ̇(·, 0) = η0 in Ω.



	
contact	zone

Figure 2: Sketch of the boundary components ΓD, ΓC and the contact zone.

where θ, g : [0, T ) → R and ξ0,η0 are given functions, and f is defined in (13). (P) describes
the complete set of equations of motion for ξ which we solve numerically in the remainder
of this paper.

Numerical method

Time-discretized problem For the discretization in time, let T > 0 be the end time,
M ∈ N be the number of time steps, and ∆t := T/M the time step size. For each time step
k = 0, 1, · · · ,M , we set

θk := θ(k∆t), gk := g(k∆t),

and denote by ξk : Ω → R2 the time-discretized approximation of the solution ξ of (P) at
time k∆t. For convenience, we set ξk|k=−1 := ξ0 −∆tη0.

Using the Crank-Nicholson scheme, we discretize the elastodynamics equation in time as

ρ
ξk − 2ξk−1 + ξk−2

(∆t)2
= divσ

[
ξk + ξk−2

2

]
+ ρfk−1 in Ω, (19)

where we define

fk−1(x) := f((k − 1)∆t,x, ξk−1, (ξk−1 − ξk−2)/∆t). (20)

Using the definition of f , (20) reads

fk−1(x) = θ̈k−1R(−π/2)(x+ ξk−1) + (θ̇k−1)2(x+ ξk−1) + 2θ̇k−1R(−π/2)
ξk−1 − ξk−2

∆t
. (21)

The advantage of the Crank-Nicholson scheme in contrast to the purely implicit scheme
used in previous works [28] is that it conserves the time-discrete energy in the case when
θ ≡ 0 with homogeneous Dirichlet boundary conditions:



Theorem 1. If θ ≡ 0, ξk = 0 on ∂Ω for k = 0, 1, · · · ,M , and ξk satisfies (19) for k =
1, 2 · · · ,M , then the time-discrete energy

Ek :=
1

2

∫
Ω

|ξk − ξk−1|2

(∆t)2
dx+

1

2

∫
Ω

σ[ξk] : ϵ[ξk] + σ[ξk−1] : ϵ[ξk−1]

2
dx for k = 1, 2, · · · ,M

(22)
does not depend on k. Here, σ : ϵ := σijϵij.

The Crank-Nicholson discretization above yields the following time-discretized scheme for
(P). The choice of (ξk + ξk−2)/2 in the boundary conditions is motivated by the variational
formula. Let ξ0,η0 ∈ W 1,2(Ω;R2) be given, and set ξk|k=−1 := ξ0 − ∆tη0. For k =
1, 2, · · · ,M , find ξk : Ω → R2 such that the following equations are satisfied:

(Pk)



ρ
ξk − 2ξk−1 + ξk−2

(∆t)2
− divσ

[
ξk + ξk−2

2

]
= ρfk−1 in Ω

ξk = 0 on ΓD

(id+ ξk) ·
(
RT (θk)e2

)
≥ gk on ΓC(

σ

[
ξk + ξk−2

2

]
n

)
·
(
RT (θk)e1

)
= 0 on ΓC(

σ

[
ξk + ξk−2

2

]
n

)
·
(
RT (θk)e2

)
≥ 0 on ΓC(

(id+ ξk) ·
(
RT (θk)e2

)
− gk

)(
σ

[
ξk + ξk−2

2

]
n

)
·
(
RT (θk)e2

)
= 0 on ΓC

Variational structure (Pk) For any k = 1, 2, · · · ,M , problem (Pk) is an elliptic problem
with an obstacle. It is the Euler-Lagrange equation for the minimizer of the functional

J k(ξ) := ρ

∫
Ω

|ξ − 2ξk−1 + ξk−2|2

2(∆t)2
dx+

1

2

∫
Ω

(
1

2
σ[ξ] + σ[ξk−2]

)
: ϵ[ξ] dx− ρ

∫
Ω

fk−1 · ξ dx

(23)
over to the admissible set

Kk :=
{
ξ ∈ W 1,2(Ω;R2); ξ = 0 a.e. on ΓD, (id+ ξ) ·

(
RT (θk)e2

)
≥ gk a.e. on ΓC

}
. (24)

Indeed, by calculating the first variation of J k over Kk we obtain that any minimizer ξk

satisfies (Pk). The existence of a unique minimizer follows from the facts that J k is weakly
lower-semicontinuous on W 1,2(Ω;R2), is bounded from below, has bounded sublevel sets,
and that Kk is convex and closed in W 1,2(Ω;R2).

Numerical method for solving the minimization problem The aim is to minimize
J k over Kk numerically using the finite element method.

Given a space discretization parameter ∆x > 0, the domain Ω is approximated by a tri-
angular mesh giving a numerical domain Ω̃. We first distribute equispaced nodes of distance
approximately ∆x on ΓD and ΓC and then we generate the interior nodes by applying the



Poisson disk sampling algorithm due to [4] with parameter r = 2
3
∆x. The triangular mesh

is then given by the Delaunay triangulation [25] on the constructed nodes.

We approximate the minimizer of J k by a continuous function on Ω̃ that is linear on
each element of the mesh. We denote the space of such functions V . Let N ∈ N be the
number of the nodes, {xn}Nn=1 be the nodes, and ID and IC be defined

ID := {n;xn ∈ ΓD}, IC := {n;xn ∈ ΓC}. (25)

We define the basis functions ζn : R2 → R as the continuous functions, linear on each
element, satisfying

ζn(xm) = δnm. (26)

For the vector
ξ̃ = (ξ̃1,1, ξ̃1,2, · · · , ξ̃1,N , ξ̃2,1, · · · , ξ̃2,N) ∈ R2N ,

we define the operator P : R2N → V as

P (ξ̃)(x) :=

(
N∑

n=1

ξ̃1,nζn(x),
N∑

n=1

ξ̃2,nζn(x)

)
. (27)

We set ξ̃0, ξ̃−1 ∈ R2N as
ξ̃0d,n := ξ0d(xn), ξ̃−1

d,n := ξ−1
d (xn), (28)

for d = 1, 2, n = 1, 2, · · · , N . Then for any k = 1, 2, · · · ,M , we seek inductively a minimizer
ξ̃k of the discrete functional

J̃ k(ξ̃) := ρ

∫
Ω̃

∣∣∣P (ξ̃)− 2P (ξ̃k−1) + P (ξ̃k−2)
∣∣∣2

2(∆t)2
dx

+
1

2

∫
Ω̃

(
1

2
σ[P (ξ̃)] + σ[P (ξ̃k−2)]

)
: ϵ[P (ξ̃)] dx

− ρ

∫
Ω̃

f
(
(k − 1)∆t, ·, P (ξ̃k−1), (P (ξ̃k−1)− P (ξ̃k−2))/∆t

)
· P (ξ̃) dx,

(29)

over the admissible set

K̃k :=
{
ξ̃ ∈ R2N ; ξ̃1,n = ξ̃2,n = 0 for n ∈ ID, (xn + (ξ̃1,n, ξ̃2,n)) ·

(
RT (θk)e2

)
≥ gk for n ∈ IC

}
.

(30)

For fixed k ≥ 1, we approximate the minimizer of the functional J̃ k in the admissible
set K̃k using a variant of the nonlinear conjugate gradient method with a projection given
by the following steps (ε > 0 is a given stopping tolerance):

(1) initial guess ξ̃0 ∈ K̃k (for example, ξ̃0 = ProjK̃k(ξ̃k−1))

(2) g1 = −∇J̃ k(ξ̃0)

(3) p1 = T k
ξ̃0
(g1)



(4) e = ∥p1∥; if e ≤ ε then set ξ̃k = ξ̃0 and proceed to next time step k + 1

(5) For m = 1, 2, . . .:

(i) αm = argminα>0J̃ k(ξ̃m−1 + αpm) (Exact solution as the function is quadratic.)

(ii) ξ̃m = ProjK̃k(ξ̃m−1 + αmpm)

(iii) gm+1 = −∇J̃ k(ξ̃m)

(iv) βm = max
{
0, (gm+1−gm)·gm+1

∥gm∥2

}
(v) pm+1 = T k

ξ̃m
(gm+1 + βmpm)

(vi) e = ∥T k
ξ̃m
(gm+1)∥; if e ≤ ε then set ξ̃k = ξ̃m and proceed to next time step k + 1

where(
ProjK̃k(ξ̃)

)
(n,n+N)

:=

 (ξ̃1,n, ξ̃2,n)−min
{
0, gk − (xn + (ξ̃1,n, ξ̃2,n)) · (RT (θk)e2)

}
(RT (θk)e2) if n ∈ IC ,

(ξ̃1,n, ξ̃2,n) otherwise

for any ξ̃ ∈ R2N and

(
T k
ξ̃
(p)
)
(n,n+N)

:=


(p1,n, p2,n)−min

{
0, (p1,n, p2,n) · (RT (θk)e2)

}
(RT (θk)e2)

if n ∈ IC , (xn + (ξ̃1,n, ξ̃2,n)) · (RT (θk)e2) ≤ gk,

(p1,n, p2,n) otherwise,

for any p ∈ R2N . The operator ProjK̃k is the orthogonal projection onto the set K̃k. The
operator T k

ξ̃
(p) restricts the search direction (p)(n,n+N) for n ∈ IC so as not to jump over

the obstacle gk.
We choose the domain Ω as the annulus

Ω := {x ∈ R2; rD < |x| < rC}, ΓD := {x ∈ R2; |x| = rD}, ΓC := {x ∈ R2; |x| = rC},

where rD = 0.25 and rC = 0.5. We further set the initial data as ξ0 = 0 and η0 = 0.

Numerical results We simulate two cases. In the first case we remove the obstacle, and
study the sensitivity of the roller’s dynamics with respect to the parameters. In particular,
we are interested in the vibrations in the radial and tangential displacements, because the
understanding of these vibrations might help in removing the squeaking sound of printer
rollers. As feedback on these simulations, we add a vibration to the given rotation θ(t) to
investigate the occurrence of resonance.

In the second case we add the obstacle. We are interested in the shape of the deformed
domain and the size of the stress tensor σ[ξ] as a function on the deformed domain, especially
in the region close to the contact zone.
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