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Abstract

How many base travel groups (models) are necessary for clarifying the long-term day-to-day

dynamics of intercity travel? In the past, several travel purposes (e.g., sightseeing, business,

etc.) have been assumed. However, mobile-phone location data enables us to answer the above

question because of their detailed time-series information. In this study, we propose a method

for deriving the basic travel groups necessary for clarifying the time-series changes by applying

nonnegative tensor factorization (NTF). This method is applied to the time-series data of sev-

eral long-distance travelers to the Ishikawa prefecture, to where the Hokuriku High-speed rail

(HSR) has been newly extended. Based on this, the number of base travel groups necessary for

predicting the effect of the new HSR is estimated as twelve, which is greater than the number

used in the previous demand forecasting models. The estimated groups include components that

appear to correspond to different travel purposes (e.g., sightseeing, business, and homecoming),

as in previous surveys. These results confirm that the methodology proposed in this study can

clearly extract groups with different elasticities, due to the traffic service. The HSR effect can

be clarified by dividing it into several characteristics and detailed components. In addition, if

multiple HSR effects are analyzed, a more accurate demand-forecasting model for the new HSR

service can be proposed.
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Highlights

• We discussed the base travel groups for forecasting the new HSR effect.

• We applied the mobile phone location data and NTF for the estimation.

• The optimal number of base travel groups is twelve in the case of Hokuriku HSR.

• The estimated sensitivity to the new HSR varies between the base travel groups.

• The estimated base travel groups are related to travel purposes.
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1. Introduction

Numerous long-distance travel demand models have been proposed to evaluate nation-wide

transportation projects such as the high-speed rail (HSR). In these models, the respective param-

eters are estimated for each travel purpose, with different elasticities for certain service changes

[1, 2]. It can be presumed that the sensitivity differs among the various travel purposes (e.g.,

sightseeing, business); therefore, the different parameters are estimated and applied for each

travel purpose. Hence, the method of decomposing travel behavior into multiple purposes with

different elasticities is important for the accuracy of demand forecasting. Here, the ‘base travel

group’ is defined as a travel group with inherent sensitivity. A typical classification is the travel

purpose, but in this study, we focus on the fact that the sensitivity differs among various travel

purposes and we do not limit the study to classification based on the travel purpose.

The number of base travel group in the travel demand models has been determined empiri-

cally in the most previous studies. Three major travel purpose groups, i.e., business, sightseeing,

and private, have been frequently considered for the demand forecasting model. For example,

the ‘travel purposes’ of the national inter-regional travel survey in Japan [3] are defined as the

same three groups. The same travel group classification (business, sightseeing, and private) is

often used in any other surveys [4, 5]. However, the validity of these base travel classification is

rarely discussed.

This is owing to the difficulty in investigating the long-distance travel behavior of the entire

country in detail [6], which requires the collection of numerous samples because the behavior

occurs at low frequencies and differs depending on the individual. In addition, as Janzen et al.

(2018); Madre et al. (2007) [7, 8] have pointed out, questionnaire surveys in which journey

histories are queried tend to report an extremely low number of journeys due to high response

burden and memory issues. Therefore, to conduct a countrywide survey, it is required that the

questions are as simple as possible, which makes it difficult to detail the classification for travel

purposes.

This implies that it is difficult to understand the effect of the HSR service on travel behavior,

which is expected to have a significant nationwide impact. Therefore, in many studies, the local

impact alone of the HSR service in each destination has been analyzed (e.g. Gao et al. [9]).

Several nationwide travel models are often estimated only a few types of sensitivities in each

purpose [1, 2]. However, it is unlikely that the sensitivity to the HSR effect will remain constant
3



among different travel purposes. For example, the sensitivity of travel behaviors to the new HSR

service differs between the summer-vacation season and other seasons, even during the same

travel purpose, for example, sightseeing. Moreover, the sensitivity is different among various age

groups, depending on the differences in hobbies at the travel destination. Such variations have

been demonstrated in many studies that have analyzed the travelers’ satisfaction of HSR services

(e.g. Chou and Yeh (2013); Chou et al. (2014); High et al. (2018) [10, 11, 12]). Although

these studies have analyzed many differences in sensitivity to the HSR service, it is difficult to

understand the nationwide travel volume variation owing to the small number of samples. In

other words, although a large difference in sensitivity is expected for each “travel group” defined

by the travel purpose, season, and individual attributes, its observation is difficult by conventional

questionnaire surveys.

On the other hand, mobile-phone location data, used in recent years, enable the easy obtain-

ment of data on long-distance travel behavior at arbitrary points. This is because the location

data of numerous samples (mobile-phone users) are frequently recorded over a wide range with-

out any response burden and memory issues. However, these data include certain disadvantages;

one is that information on the intentions of people such as the travel purpose cannot be obtained.

This is inconvenient for creating a model for groups with different elasticities to service changes.

Therefore, Alexander et al. (2015); Janzen (2016) [13, 14] proposed methods for estimating the

travel purpose by combining a plurality of data.

In this study, we propose an approach to derive the base travel groups with different sensi-

tivities for the new HSR service directly from the mobile-phone location data to overcome the

difficulties in observing long-distance travel behavior. In the proposed approach, mobile-phone-

location data with time-series change and individual attribute information alone are used. In other

words, no additional information is required, unlike in the purpose estimation approach [14, 15].

The proposed approach has the following advantages. First, we can eliminate the limitation of

questionnaire surveys, which could handle only a small number of sensitivity groups, owing to

their response burden and memory issues. This leads to the creation of a more accurate long-

distance travel demand forecasting model, owing to the detailed sensitivity information. Second,

we can obtain the sensitivities of several base travel groups, which are defined by the detailed

time-series change and individual attribute information. The lack of travel purpose information

in the mobile-phone-location data is compensated by a group based on the time-series change and
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individual attribute information. Third, the proposed approach is applicable to longer time data,

and enables us to analyze longer changes that are stable for several years. In the evaluation of the

long-distance travel service, it is desirable to understand effects that last for longer periods, rather

than short-term effects, such as increases of travelers immediately after the commencement of

new HSR service. By using the proposed approach based on mobile-phone-location data alone,

it is easy to obtain and apply data at any time-point.

This approach is the same as mechanically extracting an activity pattern (factorization) from

long-term travel data, and has already been applied for travel data in many studies. For example,

micro travel history data have been used for analyzing the ‘activity-patterns’ in many studies, and

various models for the analysis have been proposed [16, 17, 18]. In contrast, this study involves

the application of passively-recorded data without travel purpose information. Therefore, the

travel purpose information needs to be inferred from pattern-mining. Ahas et al. (2008); Yao et

al. (2015); Sun and Axhausen (2016); Chen et al. (2019) [19, 20, 21, 22] attempted to mine the

travel patterns from a similar dataset, and successfully obtained useful travel behavior patterns

using several decomposition methods, such as principal component analysis (PCA). However,

the approach proposed by Ahas et al. (2008); Yao et al. (2015); Sun and Axhausen (2016)

[19, 20, 21] has the following two limitations, which can be overcome by our proposed approach.

First, the decomposition result contains several negative values. This is inappropriate when

discussing the travel volume and the difference in sensitivity against the new HSR service, be-

cause it does not satisfy the additive property of the number of travelers. Let us consider the data

in Table 1 as an example. Here, there are two zones A and B, two seasons 1 and 2, and two base

travel groups with different sensitivities to the new HSR service. The values in the table indicate

the number of travelers from zones A and B to zone D at the corresponding time. The two travel

groups are assumed to have different sensitivities to HSR and spatiotemporal distributions before

the commencement of the new HSR service. After the commencement of the new HSR service

(connecting from zones A and B to zone D), the number of travelers varies depending on the

sensitivity.

We can only observe the total number of two travel groups from the mobile-phone-location
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Table 1: The sample of time-series change of travel volume to zone D where connected by new HSR service

total High sensitivity Low sensitivity
Time (Observed) (Not observed) (Not observed)

Zone: A Zone: B Zone: A Zone: B Zone: A Zone: B
Before commencement of service

Season 1 12 18 8 2 4 16
Season 2 44 26 40 10 4 16

After commencement of service
Season 1 21 24 16 4 5 20
Season 2 85 40 80 20 5 20

data. The observed data can be decomposed by factor analysis, as follows:

12 18

44 26

21 24

85 40


−



40.5 27

40.5 27

40.5 27

40.5 27


=



0.97 29.87

1.91 −3.10

−2.38 19.59

−0.50 −46.36


 0.27 −0.96

−0.97 −0.27

 (1)

=



0.97

1.91

−2.38

−0.50


[

0.27 −0.96
]
+



29.87

−3.10

19.59

−46.36


[
−0.97 −0.27

]

(2)

Here, the difference between the observed total travel volume and the average value for each zone

is expressed as the product of two matrices. There are negative values in one of the matrices on

the right-hand-side of the equation. These decompositions enable us to understand the existence

of two different trends in the observed data. However, unlike the unobserved data of decomposed

groups in Table 1, it is difficult to answer the following questions: ‘How many sensitive travelers

are present in a certain season/area?’ ‘What is the sensitivity of each travel group?’ This is

because the additive property and units of data are not retained after the factor analysis. It is

important to answer the above questions quantitatively for the evaluation and prediction of new

6



HSR services. To answer these questions, the following non-negative decomposition is desirable:

12 18

44 26

21 24

85 40


=



10 20

50 20

20 25

100 25


 0.80 0.20

0.20 0.80

 (3)

=



10

50

20

100


[

0.80 0.20
]
+



20

20

25

25


[

0.20 0.80
]

(4)

Here, in equation (4), the observed matrix is decomposed into two travel groups represented by

the product of the temporal vector (left-hand-side) and the spatial distribution vector (right-hand-

side). These matrices directly yield the sensitivity, spatiotemporal distribution, and quantity of

each travel group. Therefore, in this research, we propose an approach for directly estimating the

unobserved base travel groups in Table 1.

The second limitation is the difficulty in extracting information while focusing on the sensi-

tivity to the new HSR service, even with the additivity property and units being retained. Because

long-distance travel behavior varies significantly with time, a large number of time-series com-

ponents may be detected during the decomposition of the time-series data. In particular, if the

new HSR effect is less significant than the seasonal fluctuations, it is difficult to extract the new

HSR effect from a large amount of detection results. Therefore, in this research, we propose a

method to identify and extract the changes in the number of travelers before and after the com-

mencement of the new HSR service by combining models representing some specific time-series

patterns. Furthermore, we propose an efficient algorithm for this non-negative decomposition

approach as an extension of Lee and Seung (2001) [23].

The proposed approach is applied to the time-series data of a number of long-distance trav-

elers to the Ishikawa Prefecture, to where the Hokuriku HSR has been newly extended on 15th

March 2020. Based on this, the number of base travel groups necessary for predicting the effect

of a new HSR is estimated. Furthermore, the characteristics of the change in the travel demand

due to the new HSR are clarified.

The remainder of this paper is organized as follows: The Japanese mobile-phone location

data are described, and the basic information directly obtained from these data are presented.
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Subsequently, the developed decomposition method for extracting a couple of base travel groups

is presented. Based on the decomposed results, several features of the base groups derived from

the time-series of the long-distance travel data are described.

2. Data: Mobile phone location data

The ‘mobile spatial statistics’ (MSS) by NTT DOCOMO, INC. provides the population of

the residence (location of permanence) and staying area (location of temporality)pairs. Nakan-

ishi et al. (2018) [24] estimated this population through the following procedure using the pe-

riodic communication records between mobile phones and base stations, as follows: First, the

number of mobile phones for each base station was obtained by aggregating the records. Next,

the population was calculated by multiplying by the reciprocal of the share of each attribute,

such as the place of residence. These communication records are called “network-driven cellular

network-based data” in inWang et al. (2018) [25]. The other type of cellular network-based data

is “event-driven data”, such as CDRs [7, 26]. Network-driven data are collected periodically 1

without event triggers such as incoming calls; the temporal granularity of network-driven data is

higher and more stable than that of event-driven data.

As the number of communication between the mobile terminal network and approximately

50 million mobile phones are recorded for the service operation of NTT DOCOMO, INC., the

population in any residence-staying area pair can be obtained at any time using this method.

This type of data can provide more comprehensive new insights into travel patterns, e.g., under-

standing the seasonal variations, and discovering the correlations and time-series changes in the

patterns. This section presents the nationwide population distribution data used for examining

the effects of the Hokuriku HSR in Japan. The MSS data is the aggregated population distribution

data estimated using the operation data of the NTT DOCOMO mobile terminal network. The es-

timation methodology of the MSS data is presented in Terada et al. (2013) [27]. The aggregated

population distribution data sample used in our analysis is presented in Table 2. This study uses

the estimated population for each combination of time, detected (staying) zone, residence zone,

age, and gender. Here, the detected (staying) zone indicates the location at which each mobile

phone is present at a given time. The residence zone, age, and gender information are obtained

1In the case of NTT Docomo, the records are collected every hour.
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from the contract information. The detected and residence zones are classified in the prefecture,

where Japan is divided into 47 zones.

Table 2: The sample of MSS data

Date time detected zone residence zone age gender estimated
population

2014/03/01 13:00 Ishikawa Tokyo 20-29 male 111
2014/03/01 13:00 Ishikawa Tokyo 20-29 female 111
2014/03/01 13:00 Ishikawa Tokyo 30-39 male 111
2014/03/01 13:00 Ishikawa Tokyo 30-39 female 111
2014/03/01 13:00 Ishikawa Tokyo 40-49 male 111
2014/03/01 13:00 Ishikawa Tokyo 40-49 female 111

In this study, we analyze the changes in the travel groups caused by the Hokuriku HSR

(denoted by the blue line in Figure 1). This new HSR service, which has been operational since

May 14, 2015, has reduced the travel time by railway between Tokyo and Kanazawa (main city of

the Ishikawa Prefecture) from 230 min to 150 min. As a result, the group of long-distance travel

behavior to the Ishikawa Prefecture (green zone in Figure 1) is expected to change significantly.

To analyze the changes in the travel behavior, we analyze the three-way tensor Y obtained

from the MSS. Each component (yd,i,a) indicates the number of travelers staying at the Ishikawa

Prefecture at 13:00 on day d ∈ D; this number is divided by their residence zone i ∈ I and

individual attribute (age and gender) a. i ∈ I indicates the residence zone of the traveler. Here, as

the spatial-zone, we use the prefecture unit (Japan is divided into 47 prefectures); we use 44 zones

excluding Ishikawa, and two adjacent zones (Toyama and Fukui prefectures) as the residence

zone set I, for analyzing long-distance travel. Attribute a ∈ A is defined as a combination of the

gender and age. Here, five age groups (20-29, 30-39, 40-49, 50-59, 60-69) are considered in the

analysis. Therefore, the attribute set A contains 10 = 2 × 5 components.

We analyze the time-series changes for four years, (i.e., 1,461 days, D = [Mar. 1, 2014,

. . . , Feb. 28, 2018]). Hence, the target three-way tensor Y has 1,461 (number of days) × 44

(residence zone) × 10 (attributes) components.

To understand the basic time-series pattern, we overview the total number of travelers ỹd to

the Ishikawa prefecture. This value is defined by following equation:

ỹd =
∑
i∈I

∑
a∈A

yd,i,a. (5)
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New Hokuriku HSR links
     (The service beginning date: 15th March 2020.)

Ishikawa Prefecture

Tokyo (TYO)

Kanazawa

Osaka (OSA)

Fukui Prefecture

Toyama Prefecture

Figure 1: The high-speed rail (HSR) network in Japan and the new Hokuriku high-speed rail links

Figure 2, which displays ỹd, indicates the following four features of long-distance travelers:

1) There are numerous travelers, particularly during the following three periods: year-end and

new year, summer vacation (Obon: religious vacations in Japan), and the golden week (several

consecutive national holidays in early May). 2) The number of travelers is more in the spring and

summer seasons compared to the others. 3) The time-series change in the 7-day cycle is large,

and is higher on weekends compared to weekdays. (see Figure 2 (b)) 4) Overall, the number of

travelers was more in 2017 compared to 2014, and this increase includes the effect of the new

HSR.

3. Non-negative tensor factorization for time-series data

3.1. NTF model for time-series data

In this study, several travel groups are extracted from tensor Y through NTF, which is the

generalized model from the non-negative matrix factorization [28] to tensor data. In simple NTF
10
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Figure 2: Time-series change in the total number of travelers ỹd to the Ishikawa prefecture

(CP decomposition), tensor Y ∈ R#(D)×#(I)×#(A)
+ is decomposed into the products of three non-

negative matrices, U ∈ R#(D)×k
+ , V ∈ R#(I)×k

+ , and W+ ∈ R#(A)×k, as follows:

Y = Z + E =
k∑

k=1

uk ◦ vk ◦ wk + E. (6)

Here, Y is the observed tensor of the MSS data, Z is the tensor composed of three non-negative

components, ◦ is the outer product, #(D) is the number of components in set D (here, #(D) =

1, 461), and E ∈ R#(D)×#(I)×#(A) is the error tensor. Vectors {uk, vk,wk} are treated as the column

vectors of the factor matrices, such as U = [u1,u2, . . . , uk]. Figure 3 is the graphical represen-

tation of this CP decomposition. As depicted in this figure, this approach divides the observed

tensor Y into several components (travel groups) and an error tensor E, where k is the number of

base travel groups.

Residence zone
（44 prefectures）

10 Attributes

～ ＋  　・・・　＋

u1

v1

w1 wk

vk

uk1,
46

1 
da

te
s

Y E＋

Figure 3: Time-series change in the total number of travelers ỹd to the Ishikawa prefecture

11



In an component-wise form, equation (6) can be expressed as follows:

zd,i,a =

k∑
k=1

ud,i,kvi,kwa,k, (7)

∑
i∈I

vi,k = 1, ∀k ∈ [1, . . . , k], (8)

∑
a∈A

wa,k = 1, ∀k ∈ [1, . . . , k], (9)

ud,i,k ≥ 0, ∀(d, i, k) ∈ (D × I × [1, . . . , k]), (10)

vi,k ≥ 0, ∀(i, k) ∈ (I × [1, . . . , k]), (11)

wa,k ≥ 0, ∀(a, k) ∈ (A × [1, . . . , k]). (12)

Here, equations (10–12) are non-negative constraints which are the major features of the NTF.

Vectors {vk,wk} constituting matrices V and W indicate the travel groups expressed by a configu-

ration of the travel origin and traveler attribute; the sum of components in each vector {vk,wk} is

equal to one, as shown in equations (8, 9). Each component vi,k,wa,k indicates the ratio occupied

by the residence zone i or attribute a in base travel group k. Component ud,i,k of matrix U indi-

cates the number of travelers who visited to the Ishikawa prefecture by base travel group k on

day d. k is the number of base travel groups. It is necessary to determine this number in advance;

the method used to obtain this number in this study is described later.

Matrix uk ◦ vk is further decomposed into periodic patterns and changes before and after

the commencement of the new HSR service for extracting the representative temporal changes.

Specifically, we employ an approach to explain the time-series changes in the number of travel-

ers, using several periodic (calendar) components and the HSR effect alone. Denoting the peri-

odic components and HSR effect by a dummy variable matrix M, equation (7) can be rewritten

12



as follows:

zd,i,a =

k∑
k=1

αd,i,k

∑
p∈P

md,pxp,k

 vi,kwa,k, (13)

xp,k ≥ 0, ∀(p, k) ∈ (P × [1, . . . , k]), (14)

md,p ∈ (0, 0.5, 1), ∀(d, p) ∈ (D × P), (15)

P = Pweek ⊔ Pyear, (16)

Pweek = [Mon.,Tue., . . . , Sun.]. (17)

Pyear = [Jan.1, Jan.2, . . . ,Mar.31], (18)

Here, a set P of periodic components p is composed of two types of cycles, as formulated in

equations (16 – 17); ⊔ is the union of the two sets. The first periodic pattern (set Pweek that

includes seven components) represents the time-series changes in a one-week cycle, whereas

the second pattern (set Pyear that include 365 components) represents that in a one-year cycle.

Variables md,p are dummy variables representing the relationship between the date d and periodic

component p (1 for the corresponding day and 0 otherwise). The exception is a leap day, where

the average value of the components of the previous and following days is applied for md,p as

follows:

m(d=Feb.29,2016),p=Feb.28) = m(d=Feb.29,2016,p=Mar.1) = 0.5. (19)

In this model,
∑

p∈P md,p = 2 is satisfied because there are two types of periodic components. xp,k

is a parameter that directly indicates the number of travelers per day for each periodic component

p and base travel group k.

Furthermore, αd,i,k depict the change caused by the HSR in travel group k. These variables

are formulated as follows:

αd,i,k =


1 (∀d ∈ Dbef.)

1 + γi,k (∀d ∈ Daft.)
∀(i, k) ∈ (I × [1, . . . , k]), (20)

γi,k ≥ 0, ∀k ∈ [1, . . . , k], (21)

Dbef. = [Mar.1, 2014, . . . ,Mar.14, 2015], (before the HSR extension), (22)

Daft. = [Mar.15, 2015, . . . , Feb.28, 2018],(after the HSR extension). (23)

. Parameter γi,k is applied to αd,i,k on the date on which the HSR service commenced (Daft.).
13



Hence, this parameter represents the change rate of travel group k before and after the com-

mencement of the HSR service. Here, this parameter is defined in each residence zone i because

the new HSR effect is expected to be different for each OD pair. For example, a particularly large

change is expected in the residence-destination pair to which the new HSR is directly connected.

Moreover, equation (21) indicates that this parameter has a constraint wherein it denotes the pos-

itive changes alone. This constraint renders it possible to output a common travel group before

and after the commencement of the new HSR service. 2

3.2. Estimation method

Based on the above assumption, unknown matrices Γ, X, V, and W are estimated to minimize

the Frobenius norm of error tensor E as follows:

[Γ∗, X∗,V∗,W∗] = argmin
{∥Y − Z∥2 | equations (8), (9), (11), (12), (14), (20), (21)

}
. (24)

Here, tensor Y represents the input data and the four matrices Γ∗, X∗, V∗, and W∗ represent the

output data for understanding the new HSR effects included in Y.

The iterative algorithm proposed by Lee and Seung (2001) [23] can be applied for this esti-

mation. The algorithm derived from the auxiliary function method and Jensen’s inequality can

be applied directly to nonnegative tensor decomposition with additional conditions, such as our

proposed model. In this approach, the following update formulas are obtained from equation

(24) (the detailed are written in Appendix A.):

γi,k ←
∑

(d,a)∈(Daft.×A) yd,i,a

(∑
p∈P md,pxp,k

)
vi,kwa,k∑

(d,a)∈(Daft.×A) zd,i,a

(∑
p∈P md,pxp,k

)
vi,kwa,k

(γi,k + 1) − 1, (25)

xp,k ←
∑

(d,i,a)∈(D×I×A) yd,i,aαd,i,kvi,kwa,kmd,p∑
(d,i,a)∈(D×I×A) zd,i,aαd,i,kvi,kwa,kmd,p

xp,k. (26)

vi,k ←
∑

(d,a)∈(D×A) yd,i,aαd,i,k

(∑
p∈P md,pxp,k

)
wa,k∑

(d,a)∈(D×A) zd,i,aαd,i,k

(∑
p∈P md,pxp,k

)
wa,k

vi,k. (27)

wa,k ←
∑

(d,i)∈(D×I) yd,i,aαd,i,k

(∑
p∈P md,pxp,k

)
vi,k∑

(d,i)∈(D×I) zd,i,aαd,i,k

(∑
p∈P md,pxp,k

)
vi,k

wa,k. (28)

2When we decompose using a model that does not include this constraint, some of the components are almost zero
after the commencement of the HSR service, indicating that the model describes the changes due to the new HSR service
by replacing the components. However, this result is inconvenient for estimating the sensitivity of each travel group
because it is unlikely that a defined specific travel group will disappear before and after the commencement of the new
HSR service. Therefore, it is assumed that the new HSR has no effect in reducing the OD travel volume.
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The calculation load for this update is considerable with a large-sized tensor. However, using the

partitioned parallel computing algorithm for CUDA (computation framework for GPU) proposed

by Antikainen et al. (2011) [29], it can be calculated with sufficient speed.

The solution and convergence provided by this iterative algorithm is highly dependent on the

initial conditions as discussed in literature [30]. In our study, the initial value is set by ‘multistart

initialization’ [30]. Specifically, the initial parameters are randomly set 40 times, and the update

algorithm expressed by equations 25–28 is executed 20 times with each randomly initialized

parameter. Subsequently, the parameter set with the least mean square error (MSE) is adopted,

and the update algorithm is executed until convergence.

3.3. Optimal number of base travel groups

The number of travel groups k must be determined to perform the abovementioned calcula-

tion. Several methods to determine k for NMF have been proposed [31, 32]; we use the Bayesian

information criterion (BIC) because this model is specifically intended for future HSR effect

prediction. The MSE and BIC in this model are calculated using the following equations:

MSE =
∥Y − Z∥2

#(Y)
=

∑
d∈D

∑
i∈I

∑
a∈A(yd,i,a − zd,i,a)2

#(Y)
, (29)

BIC = #(Y) ln(MSE) + {#(Γ) + #(X) + #(V) + #(W)} ln {#(Y)} , (30)

where #(Y), #(Γ), #(X), #(V) and #(W) are the number of components in tensor Y, Γ, X, V and

matrix W, respectively.

Figures 4 and 5 depict the calculated results of the minimum MSE and BIC on varying k

from 1 to 30. Next, we discuss the relationship between k and the BIC based on Figure 4 which

indicates that the optimal k is twelve. Additionally, we consider the relationship between k and

the Frobenius norm (MSE) shown in Figure 5. This figure indicates that if k = 12, the MSE

value is 70% lesser that than when k = 1. It can be observed that even if k is increased further,

the MSE does not change significantly. Therefore, we set k = 12 in this study. Moreover, k = 12

coincides with the value proposed by Hutchins et al. (2008) [32] which is the minimum value of

the MSE curve inflection point.

Here, Figure 4 indicates that the demand forecast models (such as that proposed by Fu et al.

(2014); Yao and Morikawa (2005) [1, 2]) lack the number of base travel groups (purpose) in BIC.

As a result, the time change represented by the three groups exhibits an error approximately 1.6
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times that obtained in the case of Figure 5. Therefore, we set 12 base travel groups to accurately

forecast the demand in this case.

4. Factorization results

4.1. Average travel volume for each travel group

We analyze the results of the twelve decomposed travel groups. Table 3 lists the average

daily travel volume for each decomposed group. These values are calculated using the following

equations:

ubef.,k =

∑
p∈Pyear

xp,k

365
+

∑
p′∈Pweek

xp′,k

7
, (31)

uaft.,k =
∑
i∈I

vi,k(γi,k + 1)
(∑

p∈Pyear
xp,k

365
+

∑
p∈Pweek

xp,k

7

)
. (32)
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Here, group no.k is assigned a number in descending order, before and after the commencement

of the HSR service. Table 3 indicates two features of the decomposed travel groups. The first

feature is that the changes in the travel volume before and after the commencement of the HSR

service are different among the twelve travel groups. For example, the travel volume of group

k = 12 has almost no change, whereas those of three other groups increase more than 1.5 times.

In our model, the observed change of 1.21 times is represented as a summary of these travel

groups with different sensitivities.

The second feature is that group k = 1 alone differs considerably. The volume of travel group

k = 1 are very different between before and after the commencement of the new HSR service

(between ubef.,k=1 and uaft.,k=1). Moreover, the volume increases 12 times from before to after.

These features indicate that group k = 1 is a new travel group created by the commencement of

the new HSR service.

Table 3: Number of travelers per day in each decomposed group

group no.(k) Average (before) Average (after) Change ratio
ubef.,k uaft.,k uaft.,k/ubef.,k

1 236.2 2,989.6 12.655
2 2,433.2 3,897.2 1.602
3 1,689.3 2,680.6 1.591
4 1,014.5 1,423.1 1.401
5 1,492.3 1,988.8 1.336
6 4,524.3 4,740.7 1.046
7 3,145.0 3,264.3 1.042
8 2,624.8 2,707.0 1.033
9 1,826.9 1,871.9 1.025

10 1,994.3 2,001.2 1.004
11 2,235.2 2,236.8 1.002
12 1,998.6 1,995.4 1.000

Total 25,214.7 31,796.6 1.261
Observed 25,430.8 30,770.0 1.210

4.2. Features of the base travel groups

In this subsection, four groups with different new HSR effects are selected and their features

are discussed. In addition, considering all the travel groups, the characteristics of those that have

changed significantly due to the new HSR are described.
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Figure 6: Residence zone and attribute components of travel group k = 1

4.2.1. Base group no.1

Let us consider base group no.1. This is a new travel group created by the commencement

of the new HSR service, as shown in Table 3. Figure 6 (a) depicts the residence composition,

and change before and after the commencement of the new HSR service, for group no.1. In this

figure, we can find an expected increase in the number of trips from TYO (Tokyo) to Ishikawa,

which are directly connected by the new HSR. A distinct change due to the new HSR effect is also

indicated in this travel group; its peculiarity is that there is a considerable increase in travel from

places that are not directly connected by the new HSR. A typical example is the increase in travel

from the OSA (Osaka) zone. As shown in Figure 1, the Hokuriku HSR is not generally used for

travel from the Osaka (OSA) to Ishikawa zones because another direct railway service arrives

within a shorter duration. Hence, almost no time-saving effect is expected by the new HSR

between the Osaka (OSA) and Ishikawa zones. Nevertheless, in base group no.1, the volume of
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travel from Osaka and the other western zones unrelated to the new HSR, also increases.

Figures 6 (b) and (c) depict the attribute composition and time change in total travel volume

of this base group, respectively. The attribute composition indicates that base group no.1 includes

all the attributes almost equally. The time-series change does not exhibit any weekly cycle trend,

but occurs at several points in the yearly cycle.

4.2.2. Base group no.2
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Figure 7: Residence zone and attribute components of travel group k = 2

Let us consider base group no.2. Figure 7 (a) shows the increase in the volume of travel by

group no.2 in zones directly connected by the new HSR. These change are the expected travel-

time saving effects of the new HSR service.

The attribute composition of group no.2, depicted in 7 (b), is mostly occupied by elder people.

The periodic time-series change of group no.2, depicted in 7 (c), is considerable in spring (Apr.

―Jun.) and autumn (Oct.–Nov.), and rare in winter (Jan.–Mar.). The change in the weekly cycle
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is almost zero. Based on the above, this group can be summarized as the travel group of elderly

people who visit the Ishikawa prefecture during periods other than the summer vacation and

snow season. This travel group is highly sensitive to the travel time reduction by the new HSR

service.

4.2.3. Base group no.6
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Figure 8: Residence zone and attribute components of travel group k = 6

Travel group no.6 does not exhibit considerable change before and after the commencement

of the new HSR service, unlike the above two groups, as shown in Figure 8 (a).

Figures 8 (b–c) indicate three features of the attribute component and the periodic time-series

change in travel group no.6. The first feature is that this travel group is occupied by 30―50-year

old men. The second feature is that the travel volume in weekdays is more than that during

weekends. The third feature is that the travel volume of the one-year cycle is almost stable

during all the seasons, with certain exceptions. The exception periods match the three special
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seasons (Golden-week, Obon, and year-end and new year days) and consecutive holidays due to

national holidays. During these days, the volume of travel by group no.6 is less. Based on the

above three characteristics, it can be inferred that this travel group has a strong relationship with

business-purpose factors, with relatively low-sensitivity to the travel time reduction by the new

HSR service.

4.2.4. Base group no.12
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Figure 9: Residence zone and attribute components of travel group k = 12

Travel group no.12 also does not change considerably before and after the commencement

of the new HSR service, as shown in Figure 9 (a).

Figures 9 (b–c) indicate two features of the attribute component and periodic time-series

change in travel group no.12. The first feature is that this travel group is occupied by younger

people. The second is that there are three major peaks in the annual cycle. These three peaks

occur are during the Golden-week, Obon, and year-end and new year days. The travel volume
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by group no.12 during these periods is more than five times those in the other periods.

In these three seasons, many Japanese return to their hometowns for religious and customary

reasons. It can be inferred that travel group no.12 represents the above-mentioned travel behavior

to the hometown. This travel group has almost no sensitivity to the travel time reduction by the

new HSR service. In other words, travel behavior to hometown at three peaks may be extremely

less sensitive to travel time.

4.2.5. Summary of all the base groups

Table 4: Main indicators of all the travel groups

group no. Change ratio Time-series rate (/average) Attribute component ratio
uaft.,k/ubef.,k Weekday Three seasons 2 Over 50 years old Male

1 12.66 1.07 2.33 0.29 0.50
2 1.60 0.98 0.53 0.81 0.55
3 1.59 0.72 1.75 0.45 0.42
4 1.40 1.12 0.90 0.23 0.90
5 1.34 0.75 2.28 0.21 0.47
6 1.05 1.15 0.57 0.32 0.97
7 1.04 0.61 2.21 0.33 0.50
8 1.03 0.84 0.80 0.39 0.66
9 1.02 0.98 5.49 0.17 0.42

10 1.00 0.98 2.75 0.61 0.76
11 1.00 0.88 5.78 0.15 0.45
12 1.00 0.77 5.79 0.17 0.64

Table 4 lists the five indicators of all the decomposed travel groups. The figures depicting

detailed information on the other estimated base travel groups are presented in Appendix B.

These indicators are selected for depicting the features of the above-mentioned four travel groups.

This table indicates the following three points regarding the effect of the new HSR service on the

travel groups.

First, the base travel groups no.9, 10, 11, and 12, where travel is concentrated in three special

seasons, are less sensitive to the new HSR service. The travel volume of these base travel groups

during these three special seasons (Golden-week, Obon, and new-year days) is more than 2.5

times that at other times. The amount of changes in the number of travelers before and after the

commencement of the new HSR service is generally less than 1%. Thus, these results indicate

that base travel groups, where travel is concentrated in special seasons, are extremely inelastic to
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new HSR services.

Second, the travel groups no.4 and 6, in which males travel on weekdays, appear to denote

business purposes. While in group no.6, the change before and after the commencement of the

new HSR service is small, the change in group no.4 increases approximately 1.4 times. Thus,

the groups that travel on weekdays can be decomposed into two groups: one (no.4) with high

sensitivity to the new HSR and another (no.6) with low sensitivity.

The third point is that the change ratios are different among the other groups (no.2, 3, 4, 7, 8).

these groups appear to represent the sightseeing purpose because the volume during weekdays is

less; the increase ratios before and after the commencement of the new HSR service vary from

1.03–1.60, depending on the attributes and time characteristics. The differing sensitivity indicates

the necessity for decomposing and extracting these travel groups with different sensitivities using

the proposed approach.

5. Conclusions

This study proposed a methodology for deriving the base travel groups necessary for clarify-

ing the time-series changes of the spatial distribution of travelers, applying NTF. This methodol-

ogy was applied to the time-series data of long-distance travel to the Ishikawa prefecture, where

a new Hokuriku HSR service was initiated. The following three conclusions can be drawn from

this study: 1) Based on the BIC criteria, the optimum number of base travel groups is twelve. This

number is larger than the number of models in previous studies (e.g., [4, 5] use only two models).

These detailed sensitivities enable us to make highly accurate forecasts. 2) These groups include

components that appear to correspond to different travel purposes (e.g., sightseeing, business,

and homecoming), as in previous surveys. These results confirm that the methodology proposed

in this study can clearly extract groups with different elasticities, due to the HSR service. In

addition, as we had determined similar information on the travel purposes through the proposed

methodology, this methodology can be utilized for estimating the travel purpose in detail. 3) The

HSR effect can be clarified by dividing it into several characteristics and detailed components.

These estimated groups and their sensitivities to the new HSR service are essential not only

for accurate forecasting but also for maximizing the positive effects of the new HSR service in

some base travel groups. For example, this information on sensitivities enables us to prepare the

2Three special seasons of the Golden week, Obon (summer vacation), and new year holidays.
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facilities for traveler groups with higher sensitivity, thereby maximizing the effects of the new

HSR. Moreover, this research indicates that we need to focus on the number of travelers traveling

from areas that are not connected by the new HSR service, as seen in travel group no.1 in Figure

6. Newly connected areas may increase the number of travelers not only from areas connected by

the HSR service but also from other areas. This implies that the launch of the new HSR service

is an important opportunity for regions newly connected to the HSR service network, which is

required for maximizing its effect to prepare facilities, including other related travel services and

advertisements.

In addition, the travel groups obtained in this research enable us to identify the areas that

require new HSR services, because new HSR services have a significant impact on travel be-

havior and individual attributes in certain seasons. In these areas, a considerable amount of

long-distance travel is restricted in certain groups owing to the lack of HSR services.

These sensitivity results are estimated from only one addition of the new HSR service. This

means that these sensitivities may not be spatially transferred. Therefore, it is required to ana-

lyze multiple HSR effects for a more accurate demand-forecasting model in future study. Mul-

tiple new HSR effects can be easily analyzed with the proposed model provided the spatial and

temporal data of the target range is available.

Most of the interpretations of the base travel groups in this study are supposition. This is the

limit of mobile phone location data without information on intentions like travel purposes. On

the other hand, prediction of travel volume is reliable, because the traffic volumes for each travel

group can be estimated by using similar types of time-series data.

Based on the above research results, we make the following two suggestions to the policy

makers. 1) When you are planning a new HSR service, please keep in mind that the new HSR

service does not increase all travels. In the case of Japan, long-distance travels by young people

during the 3 seasons (Golden week, Obon (summer vacation), Year-end and New Year holidays)

did not increase, even between before and after the commencement of new HSR service. Based

on this evidence, you need to be careful not to overestimate the effect of the new HSR. 2) Once

you have decided to build the HSR, you need to prepare the capacity of the relevant facilities for

long-distance travelers. The new HSR only sharply increases travelers for certain seasons and

attributes, as seen in figure 6. Furthermore, it may increase the number of travelers from regions

not related to new HSR. You need to be prepared to handle these increasing numbers of travelers.
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[26] M. C. González, C. A. Hidalgo, A.-L. Barabási, Understanding individual human mobility patterns, Nature 453
(2008) 779–782. doi:10.1038/nature06958.

[27] M. Terada, T. Nagata, M. Kobayashi, Population Estimation Technology for Mobile Spatial Statistics, Docomo
Technical Journal 14 (3) (2013) 10–15.
URL https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/rd/technical_

journal/bn/vol14_3/vol14_3_010en.pdf,(lastaccess:2020/05/04)

[28] D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature 401 (6755)
(1999) 788–791. doi:10.1038/44565.
URL http://www.nature.com/articles/44565

[29] J. Antikainen, J. Havel, R. Josth, A. Herout, P. Zemcik, M. Hauta-Kasari, Nonnegative tensor factorization
accelerated using GPGPU, IEEE Transactions on Parallel and Distributed Systems 22 (7) (2011) 1135–1141.
doi:10.1109/TPDS.2010.194.

[30] A. Cichocki, R. Zdunek, A. H. Phan, S.-i. Amari, Nonnegative matrix and tensor factorizations: applications to
exploratory multi-way data analysis and blind source separation, John Wiley & Sons, 2009.

[31] J.-P. Brunet, P. Tamayo, T. R. Golub, J. P. Mesirov, Metagenes and molecular pattern discovery using matrix
factorization, Proceedings of the national academy of sciences 101 (12) (2004) 4164–4169.

[32] L. N. Hutchins, S. M. Murphy, P. Singh, J. H. Graber, Position-dependent motif characterization us-
ing non-negative matrix factorization., Bioinformatics (Oxford, England) 24 (23) (2008) 2684–90.
doi:10.1093/bioinformatics/btn526.
URL http://www.ncbi.nlm.nih.gov/pubmed/18852176http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=PMC2639279

Appendix A. Derivation of NTF algorithm

Here, the derivations of update formulas (25) - (28) for solving the optimization problem

(equation (24)) are shown. Basically, this process is similar to the iterative algorithm proposed

by Lee and Seung (2001) [23].
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The objective function f (Γ, X,V,W) in the problem is as follows:

f (Γ, X,V,W) = ∥Y − Z∥2 (A.1)

=
∑

(d,i,a)∈(D×I×A)

(yd,i,a − zd,i,a)2 (A.2)

=
∑

(d,i,a)∈(D×I×A)

{
y2

d,i,a − 2yd,i,azd,i,a + z2
d,i,a

}
. (A.3)

When we maximize this function, the difficulty of calculation is in the third term (z2
d,i,a), be-

cause we need to consider all combinations of terms in zd,i,a(equation (13)). Therefore, we use

Jensen’s inequality and auxiliary function method to approximate this term with a simpler func-

tion. Jensen’s inequality of convex function h is the theorem formulated as follows:

h

∑
i

λizi

 ≤∑
i

λih (zi) . (A.4)

Based on this inequality, the following inequality is obtained:

z2
d,i,a =


k∑

k=1

αd,i,k

∑
p∈P

md,pxp,k

 vi,kwa,k




2

, (A.5)

≤
k∑

k=1

∑
p∈P

α2
d,i,km2

d,px2
p,kv2

i,kw2
a,k

λd,i,a,k,p
, ∀(d, i, a) ∈ D × I × A, (A.6)

λd,i,a,k,p ≥ 0, ∀(d, i, a, k, p) ∈ D × I × A × [1, · · · , k] × P, (A.7)∑
k,p∈[1,··· ,k]×P

λd,i,a,k,p = 1, ∀(d, i, a) ∈ D × I × A. (A.8)

Here, we define function g as follows:

g(Θ, λ) = y2
d,i,a − 2yd,i,a

k∑
k=1

αd,i,k

∑
p∈P

md,pxp,k

 vi,kwa,k

 + k∑
k=1

∑
p∈P

α2
d,i,km2

d,px2
p,kv2

i,kw2
a,k

λd,i,a,k,p
(A.9)

Θ = [Γ, X,V,W]. (A.10)

This function g satisfies the equation (A.11).

f (Θ) ≤ min
λ

g(Θ, λ) (A.11)

The optimal parameters Θ∗ = argminΘ f (Θ) can be estimated by an algorithm that alternately
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and repeatedly updates by following two formulas (auxiliary function method).

λ← arg min
λ
{g(Θ, λ) | equations (A.7), (A.8)}, (A.12)

θl ← arg min
θl

{g(Θ, λ) | equations (8-12), (20-21)}, ∀l ∈ L. (A.13)

Here, θl is one of the unknown variables [Γ, X,V,W]. From formula (A.12), the following

equation can be obtained analytically.

λ∗d,i,a,k,p =
αd,i,kmd,pxp,kvi,kwa,k∑k

k=1
∑

p∈P αd,i,kmd,pxp,kvi,kwa,k

, ∀(d, i, a, k, p) ∈ D× I × A× [1, · · · , k]× P. (A.14)

The update formula of vi,k can be obtained from formula (A.13) as follows:

∂

∂vi,k
g(Θ, λ) = 0, (A.15)

v∗i,k =

∑
(d,a,p)∈(D×A×P) αd,i,kmd,pxp,kwa,k∑

(d,a,p)∈(D×A×P)
αd,i,kmd,p xp,kwa,k

λd,i,a,k,p

. (A.16)

Then, we can obtain the update formula (27) by substituting equation (A.14) for equation (A.16).

The other update formulas (25) - (28) can be derived by the same procedure.
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Appendix B. Decomposed results of other travel groups

Appendix B.1. Decomposed travel group no.3

Zones directly connected to the Ishikawa pref. by the new HSR
Component ratio (before HSR) Component ratio × HSR effect
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Figure B.10: Residence zone and attribute components of travel group k = 3
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Appendix B.2. Decomposed travel group no.4

Zones directly connected to the Ishikawa pref. by the new HSR
Component ratio (before HSR) Component ratio × HSR effect
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Figure B.11: Residence zone and attribute components of travel group k = 4
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Appendix B.3. Decomposed travel group no.5

Zones directly connected to the Ishikawa pref. by the new HSR
Component ratio (before HSR) Component ratio × HSR effect
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Figure B.12: Residence zone and attribute components of travel group k = 5
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Appendix B.4. Decomposed travel group no.7

Zones directly connected to the Ishikawa pref. by the new HSR
Component ratio (before HSR) Component ratio × HSR effect
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Figure B.13: Residence zone and attribute components of travel group k = 7
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Appendix B.5. Decomposed travel group no.8

Zones directly connected to the Ishikawa pref. by the new HSR
Component ratio (before HSR) Component ratio × HSR effect
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Figure B.14: Residence zone and attribute components of travel group k = 8
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Appendix B.6. Decomposed travel group no.9

Zones directly connected to the Ishikawa pref. by the new HSR
Component ratio (before HSR) Component ratio × HSR effect
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Figure B.15: Residence zone and attribute components of travel group k = 9
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Appendix B.7. Decomposed travel group no.10

Zones directly connected to the Ishikawa pref. by the new HSR
Component ratio (before HSR) Component ratio × HSR effect
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Figure B.16: Residence zone and attribute components of travel group k = 10
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Appendix B.8. Decomposed travel group no.11

Zones directly connected to the Ishikawa pref. by the new HSR
Component ratio (before HSR) Component ratio × HSR effect
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Figure B.17: Residence zone and attribute components of travel group k = 11
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