高速AFM計測によるKaiタンパク質のロバストな概 日周期発生機構の解明

メタデータ	言語: jpn
	出版者:
	公開日: 2020-12-14
	キーワード (Ja):
	キーワード (En):
	作成者: Uchihashi, Takayuki
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00059967

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Search Research Projects How to Use

♦ Back to previous page

高速AFM計測によるKaiタンパク質のロバストな概日周期発生機構の解明

Publicly

ΑII

Dynamical ordering of biomolecular systems for creation of integrated functions **Project Area**

16H00758 Project/Area Number

Research Category Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation Type Single-year Grants

Review Section Science and Engineering Nagova University (2017) **Research Institution** Kanazawa University (2016)

内橋 貴之 名古屋大学, 理学研究科, 教授 (30326300) **Principal Investigator**

2016-04-01 - 2018-03-31 Project Period (FY)

Completed (Fiscal Year 2017) **Project Status**

Budget Amount *help ¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)

Fiscal Year 2017: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000) Fiscal Year 2016: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)

時計タンパク質 / 高速原子間力顕微鏡 / プロテアソーム / 一分子計測 / ダイナミクス / 一分子計測(SMD) / 走査プローブ顕微鏡 / ナノバイオ / 1分子計測 Keywords

Outline of Annual Research Achievements

Kaiタンパク質の動的相互作用: KaiCのリン酸化状態に依存してKaiAとの相互作用が概日周期的に変動することを見出した(Phase Dependent Differential Affinity: PDDAと名付けた)。KaiCのリン酸化概日周期について、実験で得られたパラメーターを用いて数理シミュレイションを行い、PDDAが概日周期にどの ような影響を及ぼすのかを調べた。PDDAが無い場合には、KaiAとKaiCの濃度比が変動すると概日周期が消失するのに対して、PDDAがある場合には概日周期が 維持される濃度比が3倍程度大きくなった。このことから、PDDAは細胞内でのタンパク質濃度の揺らぎに対するKaiシステムの頑強性に寄与していることが明ら かになった。また、温度制御下でKaiA-KaiCの相互作用を調べたところ、25-29℃の温度範囲では動的親和性に大きな変化は見られえず、30℃以上では、KaiA とKaiCの親和性が大きく変化することがわかった。

プロテアソームロ7ホモ14量体のa 6 による2ステップ解体過程:領域内共同研究としてプロテアソーム構成タンパク質a7ホモ14量体がa6により解体される過程 を観察した。a7-14量体をアミノシランで化学修飾したマイカに強固に吸着させると14量体が自発的に7量体に分離する様子が見られた。さらに,a7-7量体リ ングの中心孔にa6サブユニットが結合・解離を繰り返し、時間経過とともにa6が中心孔に強固に結合することが分かった。また、積層した7量体リング間に隙 間が経時的に生じ、そこにa6が結合する様子が観察された。これらのことから、a7-14量体のa6サブユニットによる解体は、リング積層間隙へのa6の結合と解 離、7量体リング中心孔へのq6の強固な結合によるダブルリングの再生阻止の2段階の過程を経ていることを明らかにした。

Research Progress Status

29年度が最終年度であるため、記入しない。

Strategy for Future Research

Activity

29年度が最終年度であるため、記入しない。

Report (2 results)

Annual Research Report 2017

Annual Research Report

Research Products (63 results)

					All	2019	2018	2017	2016	Other
	All	Int'l Joint Research	Journal Article	Presentation	on E	Book	Patent(In	dustrial	Property	Rights)
[Int'l Joint Research] ヴァンダービルド大学(アメリカ合衆国)										~
[Int'l Joint Research] Vanderbilt University(アメリカ合衆国)										~
[Journal Article] Structural properties determining low K+ affinity of the selectivity	filter in	the TWIK1 K+ channel.							20	19 ~
[Journal Article] Applications of high-speed atomic force microscopy to real-time v	isualizat	ion of dynamic biomolecu	lar processes						20	18 ~
[Journal Article] Mechano-Sensitive Rate constants, processivity, and productive bi	inding ra	atio of chitinase A revealed	l by single-molecule	analysis. Ion (Channe	els.			20	18 ~
[Journal Article] Conversion of functionally undefined homopentameric protein Pba	A into a	proteasome activator by	mutational modifica	tion of its C-te	rminal	segment	conforma	tion	20	18 ~
[Journal Article] Dynamic clustering of dynamin-amphiphysin helices regulates me	mbrane	constriction and fission co	oupled with GTP hyd	rolysis.					20	18 ~
[Journal Article] Negatively charged lipids are essential for functional and structura	al switch	of human 2-Cys peroxire	doxin II						20	18 ~

[Journal Article] Sweeping of adsorbed therapeutic proteins on prefillable syringe enhances subvisible particles generation	2018 ~
[Journal Article] Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export	2018 ~
[Journal Article] Translating MOF chemistry into supramolecular chemistry: soluble coordination nanofibers showing efficient photon upconversion	2018 ~
[Journal Article] Quantum-dot antibody conjugation visualized at the single-molecule scale with high-speed atomic force microscopy	2018 ×
[Journal Article] Visualization of Protein Dynamics using High-Speed Atomic Force Microscopy and Image Analysis	2018 ×
[Journal Article] High-Resolution Imaging of a Single Gliding Protofilament of Tubulins by HS-AFM	2017 ×
[Journal Article] Fast Adsorption of Soft Hydrogel Microspheres on Solid Surfaces in Aqueous Solution	2017 ×
[Journal Article] Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis	2017 ×
[Journal Article] Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT	2017 ×
[Journal Article] Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy	2017 ×
[Journal Article] High-speed atomic force microscopy imaging of live mammalian cells	2017 ×
[Journal Article] Na+-induced structural transition of MotPS for stator assembly of Bacillus flagellar motor.	2017 ×
[Journal Article] Oriented Reconstitution of the Full-Length KcsA Potassium Channel in a Lipid Bilayer for AFM Imaging.	2017 ×
[Journal Article] A natural light-driven inward proton pump.	2016 ×
[Presentation] Direct observation of self-assembly process of biological and artificial fibrils using high-speed atomic force microscopy	2018 ×
[Presentation] 生命の構成部品を直接みて理解する ~ 顕微鏡技術で可視化するタンパク質のダイナミクス現象 ~	2018 ×
[Presentation] Structural Flexibility and Chaperone Activity of TClpB revealed by High-Speed AFM	2017 ×
[Presentation] Direct visualization of dynamic molecular interactions using HS-AFM	2017 ×
[Presentation] Direct visualization of single molecule dynamics by high-speed atomic force microscopy	2017 ×
[Presentation] Oligomeric state and conformational dynamics of eubacterial ion-pumping rhodopsin studied by high-speed AFM	2017 ×
[Presentation] High-speed atomic force microscopy for a tool to visualize dynamic events on biological systems from single molecules to living cells	2017 ×
[Presentation] Direct observation of single molecule dynamics at work with high-speed atomic force microscopy	2017 ×
[Presentation] Visualization of Single-Molecule Dynamics Using High-Speed Atomic Force Microscopy	2017 ×
[Presentation] High-speed atomic force microscopy: A tool for visualizing dynamic behavior from proteins to cells	2017 ×
[Presentation] In-line Force Measurements with High-speed AFM	2017 ×
[Presentation] Two-step process for disassembly mechanism of proteasome a7 homo-tetradecamer by a6 revealed by high-speed atomic force microscopy	2017 ×
[Presentation] Development of new mirro-tilter unit for tip-scanning high-speed atomic force microscopy	2017 ×
[Presentation] Dynamic Observationb of Kai Proteins by HS-AFM Reveales a Mechanism of the Robustness in the Cyanobacterial Circadian Oscillator	2017 ×
[Presentation] 高速AFMで明らかにするKaiタンパク質間の動的相互作用	2017 ×
[Presentation] 高速原子間カ顕微鏡で可視化するタンパク質の動的秩序	2017 ×
[Presentation] 高速AFMを用いた生体分子のその場観察	2017 ×
[Presentation] 高速原子間カ顕微鏡で可視化する生体・人工高分子の動態	2017 ×
[Presentation] 高速原子間カ顕微鏡による生体分子のダイナミクス計測	2017 ~
[Presentation] Analysis of Rotational Dynamics of Rotorless Enterococcus hirae V1-ATPase using High-Speed Atomic Force Microscopy	2017 ~
[Presentation] Dynamic remodeling of Dynamin complexes during membrane fission	2017 ~
[Presentation] High-Speed AFM Observation of Domain Flexibility Related to Enzymatic Function of CRISPR-Cas9	2017 ~

[Presentation] 高速原子間力顕微鏡で可視化する Kai タンパク質間相互作用のダイナミクス	2017 ×
[Presentation] Visualization of protein molecules in action by high-speed atomic force microscopy	2016 ×
[Presentation] Direct Visualization of Single Molecule Dynamics at Work with High-Speed Atomic Force Microscopy	2016 ×
[Presentation] タンパク質のダイナミクスを可視化する高速原子間力顕微鏡	2016 🗸
[Presentation] 高速原子間力顕微鏡で可視化する生体分子のダイナミクス	2016 🗸
[Presentation] 高速AFMによる生体分子ダイナミクスのその場観察	2016 Y
[Presentation] 高速AFMによる生体試料の動態イメージング	2016 🗸
[Presentation] Dynamic interaction between Kai proteins dependent on phosphorylation states of KaiC revealed by HS-AFM	2016 🗸
[Presentation] Direct Visualization of Single Molecule Dynamics by High-Speed Atomic Force Microscopy	2016 🗸
[Presentation] Visualization of Functional Dynamics of Biological Molecules by High-Speed AFM	2016 🗸
[Presentation] 高速原子間力顕微鏡で調べる回転分子モーターの構造ダイナミクス	2016 🗸
[Presentation] 高速AFMによる膜タンパク質のダイナミクス観察	2016 ×
[Presentation] Direct Observation of Single Molecule Dynamics at Work with High-Speed Atomic Force Microscopy	2016 🗸
[Book] "High-Speed Atomic Force Microcopy in "Compendium of Surface and Interface Analysis	2018 ×
[Book] パリティ、「高速原子間力顕微鏡によるタンパク質の動画撮影」	2018 ×
[Patent(Industrial Property Rights)] 走査型プローブ顕微鏡	2016 ×
[Patent(Industrial Property Rights)] 昇温ホルダおよびプローブ顕微鏡	2016 ∨
[Patent(Industrial Property Rights)] チャンパーアレイの製造方法	2016 ×

[Presentation] 高速原子間力顕微鏡で可視化する生体膜反応ダイナミクス

URL: https://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-16H00758/

2017 ~