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On Kummer extensions generated by S-units

in algebraic number fields

Hiroshi YAMASHITA

Abstract. Let K/k be a Galois extension of algebraic number fields with a Galois

group G. Let S be a finite set of places of k containing every archimedian places.

Let Egs be the group of S-units of K. We choose a normal subgroup G* in G and

fix it once for all. Denote by k. the intermediate field corresponding to G*. Let p

be a prime number. We define a subgroup @, of Eg to be {z € Eg: 2" € k,} fora
sufficiently large integer N. We study the value of a ratio |Q£I : Q{,‘I Nky|/ ks (Q{,{ ):
k.]. This ratio is a little more subtle to treat when p = 2 and k. # v/—1. We need a
certain assumption concerning ramification of prime ideals dividing 2 in the subtle

case.

1. Introduction. Let k be a finite
algebraic number field and K be its
finite Galois extension. =~ We choose
a normal subgroup G* of the Galois
group Gal(K/k) and fix it once for
all. Let k, be the intermediate field
of K/k corresponding to the normal
subgroup G*. When a subgroup H
of Gal(K/k) is given, we denote by
H* the subgroup generated by H and
G*, that is H* = HG*. Let S be a
finite set of places of k£ containing every

archimedian places. Denote by S(K)

the set of every places of K lying above
places belonging to S. Let Eg be the
group of S(K)-units of K and p be the
torsion subgroup of Es. We define a sub-
group of Es by

Q={zxcEs:z" ek}

We note that Q/QC" is a finite abelian
group and that Q¥QC"/QF" is isomor-
phic to Q¥/Q¥" for an arbitrary sub-
group H. In the present paper, we shall
study the index |Q¥ : Q¥"|. We define a
comparison constant C(H) of the index
with the extension degree [k.(QF) : k.|
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by
1Q : Q7| = C(H)[k.(QY) : Kul.

If k.(Q¥)/k. is a Kummer extension,

it is well-known that C(H) equals one.

Hence, our main concern is focused on
the case that k.(QF) is not a Kummer
extension of k.

‘We proved a formula concerning the
Brauer’s class number relation in Theo-
rem 9 of [3], where a product

HHer‘o |QH :QF

|Q% : Q|
of indices |Q¥ : Q| for a certain fam-
ily Ty of subgroups appears. We note
that Gy denotes that the intersection NH
of subgroups belonging to I'y and that
G* is the normal subgroup defined from

[y, which contains Gy. It is inevitable
for us to attempt studying the index
|Q¥ : Q7| for each subgroup H. We use
classical Kummer theory to this end, es-
pecially, the Vahlen-Capelli criterion for
reducibility of a polynomial z" — a. Ac-
cording to [1], the criterion is stated as
follows:

THEOREM. Let K be an arbitrary
field, a € K* andn € N, n > 2. Then,
X™ — a is reducible in K[X] if and only
if either (i) there exists s € N, s > 1,
s | n such that a € K*, (ii) 4 | n and
© —4a € (K*)*.

Here, K* denotes the multiplicative
group of the field, and (K*)* denotes the
subgroup consisting of sth power of every

element contained in K*. K*° is union
of (K*)* and {0}. We follow these no-
tations. We notice that the case (ii) is
reduced to the case (i) if v/—1 € K, be-
cause —4a = b* implies a € (K*)2.

In the sequel part, a field is interpreted
as a subfield of the field of complex num-
bers, p denotes a prime number and (n
denotes the complex number e2*V=1/7",
Since a finite abelian group is decom-
posed into a direct sum of the p-primary
torsion subgroups, we have

Q/Q™ =" @,/Q7,
where Q,/Q°" are p?primary torsion sub-
groups. Since QEQS" /Q" is isomorphic
to QF/Qf" for each p, we obtain

Q¥/QT =Dy /o).

P

We define a constant C,(H) to be
(1) 1QF : Q| = Co(H)[ka(@F) : k).
Note Cp(H) = 1 except of finite num-
bers of p’s. We study C,(H)’s in place

of C(H), because it equals a product of
them.

2. An application of the theory of
Kummer extensions. It is obvious

that the following lemma holds:

LEMMA 1. Suppose aP" — a is irre-
ducible in klz]. Let o be a root of the
equation " —a = 0. If k(a)/k is a
Galois extension, we have (, € k and
G € k().
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We deal with a subgroup Q' of QF in
general and define a constant C,(H) by
@) 1@ :knNQ|=Cy(H)k(Q) : k]
Put k' = k.(¢n) for a sufficiently large
integer N and M = k' Nk,(Q’). We have
(3) k(@) : ki) = [K'(Q) : K|[M : K.].
Since k'(Q')/k’ is a Kummer extension
whose Kummer group is Q'(k")*/(k")*,
we have
(@) CyH) = ¥ NQ : E.NQ/IM : k.
from (2) and (3). Let A be the subgroup
of QFf /QE" generated by k¥'NQ’. We have
AZENQ/k.NQ'.

A is a finite abelian p-group. We see A =
{1} if M = k..

LEMMA 2. A is a cyclic group if M/k.
18 a cyclic extension.
Proof. We may assume M # k, and A 2
{1}. Let @ be an element of A with order
p. We see k.(a)/k, is a cyclic extension
of degree p, because k. (a) is a subfield of
M and M/k, is a cyclic extension. We
have ¢, € k. from Lemma 1, and hence
k.(c)/k« is a Kummer extension. Since
M|k, is cyclic, every elements of order p
contained in A defines the same subfield
of M. This implies that there is a unique
subgroup of order p in A. Since A is an
abelian p-group, it is a cyclic group. O

We lift the extension M/k, by adjoin-
ing (p. Denote by k, (resp. M') an
extension k.((zp) (resp. M((2p))-
M/k, is an abelian p-extension, we have

Since

MNEk, =k, if p>2 Whenp=2 we
have M Nk, = k, if and only if M % v/—1
or k. > v/—1. Let mg (resp. m ) be the
maximum of the integers t > 0 such that
ki = ki((pt) (resp. M = k. ({pt)) holds.
Weseem >mg>1andmy > 2ifp=2.
THEOREM 3. Suppose Cap € k.. We
have A is a cyclic group of order p™~™0
and Cj(H) =1 if Q' contains (ym.
Proof. Since k, =k, and M = M', we
see M/k, is a cyclic extension. Thus,
we have A is cyclic by Lemma 2. We
may assume m > mg. Let (= be an el-
ement of A which (;m generates. Since
the order is equal to p™~™°, we have
p™™ = [M : k,] divides |A|. Sup-
pose |A| > p™ ™o. There is an ele-
ment @ in A such that @ = (,m holds.
Put u = of(;l. We have u € k, and
choose a pth root so that a = (m~ u
holds. Since « is an element of &/, we see
¢/u € k'. However, ¥/u ¢ M, because of
Com+1 € M. Since k'/k. is a cyclic exten-
sion, we have k., (¢/u) = k.((ymo+1). This
implies M > ¢/u, because of (,mo+1 € M.
We are led into contradiction. Therefore,
there is no such @ in A. Since A is an
abelian p-group, it is a cyclic group of
order p™~™ generated by (ym-mo. We
have C,(H) =1 from (4). O

3. Applications of a system of cy-
clotomic extensions. We concentrate
ourselves on the case in which p = 2 and
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V=1 ¢ k.. Put L =K, Nk(QF). We
have '
(5) [ke(QFD) : k] = [KL(QF) : KUIL : ]

Let B be a subgroup of A generated by

k.NQE:

6  B=KNQ/knNQi.

Wesee B {1} when L=k,. f L=k,
B contains an element ¢, of order two.

LEMMA 4. We have Co(H) = |B|/2 if
L=k,

Proof. We see M’ = M and Q¥ > (om
when L = k.. Let G’ be the Galois group
of K/k(v/=1) and put (G')* = G' N G*.
(G")* is a normal subgroup of G’ corre-
sponding to k.. We have H is a subgroup
of G, because K¥ 35 \/=1. Let R be a
subgroup of Es defined for the Galois ex-
tension K/k(v/—1) and the normal sub-
group (G')*:

R={zc Es:zM ck}.

Let Ry/RE)" be the 2-primary tor-
sion subgroup of R/R©@)". Since Q¥ is
a subgroup of R containing (om, we are
able to apply Theorem 3 to the case of
Q = QF. We have

Q3 kN Q7| = [k(Q3) : K]
from (2) and

Q5 : kN QS| = 1Q3 : K. N Q7| B
from (6). We obtain
Q5" : knQF|/1B| = [k(QF) : kul/[L : k]
from (5). Therefore, Co(H) = |B|/2. O

The cyclotomic extension.Q(@n) con-
tains 7, = (on + G5t and &, = Gn — G-

We see 2 =1 +2 and €2 =1n,_; — 2.
The system of subfields is described by
the following Hasse diagram for n > 4

.Q(Cznﬂ)

Qo
() Q(én+1)

Q(Mn+1)

Q({on-1)

Q(Nn-1)

We define a chain kg C Lo C- M, these
subfields corresponding to k C L C M
by
ko =Fke N Q(Gv) C Lo = LN Q((aw)

C My=MnQ ().
Since k., does not contain v/—1, we see

ko = Q(Nm,) or ko = Q(émy). We ob-
serve the following four cases may occur:

a’) ko = Q(ﬂmo)’ Ly = Q(CT"O):
My = Q(Gom)-

b) ko = Q(mo), Lo = Q(Camo),
My = Q(Cam).

&) ko = Lo = Qima), Mo = Q).
d) ko= Lo = Q(T]mo)a MO = Q(&m)-

We notice that Ly contains v/—1 if M >

v/—1, because L is a subfield of M. L
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coincides with &, in each case of a) and
b). We can prove that B is a cyclic group
by a similar argument by which we prove
that A is cyclic if M/k, is a cyclic ex-
tension in Lemma 2. Namely, let @ be
an element of B with order 2. k.(a) is
a quadratic extension and is contained
in k.. Thus, k«(e) = L. This implies
a € v/=1(k}¥) by Kummer theory, be-
cause of L = k,(v/—1). Therefore, we
have there is a unique element of order 2
in B. It follows that B is cyclic.

Let Sy be the set of every places of k&
lying above 2.

LEMMA 5. B is a cyclic group gener-
ated by (amo in the case of b).

Proof. We prove B is cyclic in the above.
Suppose there is @ € B such that
@ = (omo. (g is
contained in k, and choose an element
Vu of k' so that & = (yme+14/u holds.
We observe that Q((on)/ko is a cyclic
extension in the above Hasse diagram.
Since k.(v/—1,/u) is a subfield of ¥,
we have k.(v/—1,/u) is also cyclic over
k.. Thus, there is x € k, such that
V4 = v/—1z holds. However, since a =
Gomo+1(v/—12) € L, we obtain (pme+1 €
L. This contradicts the definition of the
number mg. There is no such « in B.

We have u =

Hence, B is a cyclic group generated by
Gamo. O

We observe Q((ymo+1) coincides with

Q(Como, Mmg+1) from the Hasse diagram.
We see Q((ymo+1) is a quadratic exten-
sion over Q((omo) generated by (omo+1
O Nmo+1- Hence, pmy = Como+1Mmg+1 18
an element of Q({amo). We have pf,io €
Q(mamo ) if and only if £ =0 mod msy.

LEMMA 6. We suppose in the case of
a) that every prime divisors dividing 2
in k. have odd ramification indices over
ko = Q(nmo)'
cyclic group. Moreover, B is generated
bY Pmo if S D Sy and does by Cymo if
S 5 S,. '

Then, we have B is a

. Proof. Let pp,, be the prime ideal divid-

ing 2 in ky. We note that p,,, is a prin-
cipal ideal generated by 72, 1 = Tm, + 2
or €2, 11 = Nmo — 2. Let

(7) Py = PT - PY
be the factorization of p,,, to prime ideals
in k,.

When S D 9,, we see pp, € Q. Sup-
pose there is @ in B such that @ = p,;
holds. We have u = a®p,} is an element
of k.. We choose a square root so that

(8) a =/ Cz'"oﬂ\/"m

holds. Put 0 = /fm1u. We see
6 € k', because a and /{omo+1 belong
to k. If 6 is an element of k, (Nmy41), We
have € ki(Thmg+1) such that Nmy41u =
z? holds. Thus, we obtain pn,,(u?) =

(@*) in kc(mo+1)-  Since ku(Mmo+1)/ ks
is a quadratic extension, we see that
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the ideal (z) is invariant by action of
Gal(k+(Tmo+1)/k«) and that (z2) is a nat-
ural extension of an ideal of k.. Hence,
Pmo 1S @ square of an ideal in k.. This
implies every e;’s in (7) are even. There-
fore, if one of e;’s is odd, we have § ¢
k«(Mme+1)- Thus, k.(f) is a quadratic
extension of k.(Mme+1) and is a quartic
extension over k,. This implies z* — 6%
is irreducible over k,. Since § € ¥/,
we have k.(0)/k. is an abelian exten-
sion. It follows from Lemma 1 that k. (6)
contains v/—1. Since k(v =1, Nmg+1) i8
also quartic over k., we have k.() =
ko(vV=1,0mg41) = ku(Como+1). However,
since « € L = ki((mo) and since
Vimot1 = b7t from (8), ki((amo+1)
must contain (yme+2. We are led into con-
tradiction. Therefore, there is no @ in B
such that @ = p,,, holds. B is a cyclic
group generated by pm,

~ We suppose there is @ in B such that
@2 = (gmo holds when S does not con-
tain Sy. u = a2(sm, is an element of k.
and there is \/u satisfying a = (mo+14/u.
We see \/u € k', v/u & k.(+/—1), because
of a € k.(v/~1) and (mo+r & ku(v/=1).
Hence, k.(v/—1, /u) is a biquadratic ex-
tension of k. contained in k’. Since
Q(Camo+1)/ko is a biquadratic extension,
we have k. ({ymo+1)/k. is also biquadratic.
Thus, k*(\/—_l, \/’l_b) = k*(<2mo+l). We
observe ki((omo+1) = ku(V/—=1,Mme+1) =
k(v/=1,&mo+1)- This implies v/uns,; €

k. or \/ué,t ., € ki by Kummer theory,
because of Nmo+&mot+1 = Emg & ki If
T = /Uy € ky (Tesp.y = \/ung i, €
k. ), we have pp,, = (uz2) (resp. pmy =
(uy~2)). Let B; be a prime divisor in k,
dividing 2 such that 3; # u. The expo-
nent e; of the prime divisor in (7) must
be even. This is impossible. Therefore,
there is no @ in B such that @ = (3mo
holds. B is a cyclic group generated by

Camo. O

By Lemma 4, 5 and 6, we obtain

THEOREM 7. We have Cy(H) = 2™0—2
in the case b). If every prime ideals of
k. dividing 2 have odd ramification in-
dices over ko, we have in the case a) that
Cy(H) equals 2™~ when S D S,, and
equals 2™~2 when S 2 Ss.

REMARK 1. Set k = Q(Nmo+1) and
K = k(Cymo+1,+/Pmg)- Let o be restric-
tion onto K of the complex conjugation

map. o generates the Galois group of

k({gmo+1)/k and pZ, = (32 11 pmq- There-
fore, K/k is a Galois extension. Set
G* = Gal(K/k) and S to union of the
set consisting of every archimedian places
and a set {pm,}. Put H = {idx}. We see
ke =k, L = k({gmo+1) and |/Pm, € QF .
Then, \/Pm, is an element of order 2mo*?
in B.

THEOREM 8. We have 2™0™ <
Co(H) < 2mo—m+1 in cases ¢) and d).



Hiroshi Yamashita : On Kummer extensions generated by S-units in algebraic number felds 61

Proof. Since k' = ki((ov) and k' DO M,
we have Mok, = M. We observe that
v/—1 is not contained in M and that
M/k, is a cyclic extension of degree
2m~mo. If m = mg, wesee | A|=1
and Co(H) = 1. Let @ be an element
of order 2" in A. Suppose n > 1 when
m > my. We have k,(a) is an abelian ex-
tension of k., because it is a subfield of
M. If ° — o?" is irreducible over k,, we
obtain k() 3 v/—1 by Lemma 1. How-
ever, this is not the case. If 22" — o*"
is reducible, we have —402" = b* holds
for b € kX by the Vahlen-Capelli crite-
rion, we also have v/—1 € k,. This is not
possible. Hence, there is no such @ in A.
This proves every element of A have or-
der less than 4. Since A is a cyclic group
by Lemma 2, we see |A| < 2. The asser-

tion follows from the formula (4). a

4. Degree of a Kummer exten-
sion. Let u, be the maximal p-primary
torsion subgroup of k). Let p® be the or-
der. We have s = my if k, contains (.
Let = be an element of k, which is not
contained in k? U p,. There is a unique
integer ng > 0 satisfying
(9) o e (k*)pnoﬂ _ (k*)pn0+s+1.

We solve the equation 27" = y?™*", y €
k, and obtain ¢ € p, such that z = (yP"°
holds. We note ¢ & u? if ng > 0. If there
~ is another expression z = Cﬂ/{m for (; €

. ng+s ni+s
iy« and n; > 0, we see yP =47 .

It follows from (9) that n, is not greater
than ng. We have ¢/ = 419! € . and
¢ = (¢"P™if ng = n;. Hence, the order
of ¢ is uniquely determined if nog > 0.
Based on these observations, we classify
elements o of QF — k, U p, U QE" into

the following three types:

(1) o =a,a” € k""" ng=0.
() o =G R,
n >ng > 0.
(i) o =ha™, 0" ¢k,
0 <n < ng.

We note that the order of @ in QF/QF
is p", h is prime to p and that k.(a) is
a subfield of ¥’ if « is of the type (iii).
We call « is regular if it is of the type
(i) or of the type (ii). If o is of the type
(ii), there are integers h; and h,; which
are not divided by p and satisfy
10 a7 =,

1) @ =0 tE,
where /a is a solution of zP — a. Since
k'/k, is a Galois extension, ¥/a & k' is
equivalent to that 2P — @ has no solution
in k.

LEMMA 9. Let o be a regular element.
We have ¥/a & k' if Cop € ku, or if p=2,
V=1¢&k. and a & (1, £ 2)(kX)>.
Proof. When (o, € k., we have k, =
k«(Gmo) and k'/k. is a cyclic extension.
Since k.(¥/a) is of degree p over k., we
have k.(¥/a) = ku((omo+1) if ¢/a € K.
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Thereat, there is an integer j and b € k,
such that p [ 7 and such that ¢/a =
(Zngurb.  This implies a?™ = ™"
Since s = my, this is not true. There-
fore, we have ¥/a & k.

When p =
have b € k, such that /a = /~—1b
holds if k¥, = k.(y/a). This is also not
true. Hence, we have k. # k.(1/a) and
k.(v—1,+/a) is a biquadratic extension
of k.. If \/a € K/, the biquadratic ex-
tension is a subfield of k'. Since k'/k.

Q(Mme)-

We observe from the Hasse diagram that

is not cyclic, we have ky =

Q(Cymo+1) is a biquadratic extension over
ko. Tt follows k.(v/—1,1/a) = ki(Como+1).
Since k. ({ymo+1) is generated by v/—1 and
Tmo+1 OF by /=1 and &,,41, We have
Vant., or ag,l,, is an element of
k.. This implies a € (M + 2)(kX)?
or a € (Mmy — 2)(kX)%. Therefore, if
a & (Mme£2)(kX)2, wehave Ja g k. O

PRrROPOSITION 10.-Let a be a regular

element. We have [k'(c) : k'] = p™™™ if

Jadk.

Proof. Let ¥/a be a solution of the equa-
tion z°P—a = 0 in k() and j be an integer
such that " ™" = c;’,,+no+1 #/a holds. If
a is of type (i), we may choose j = p**!.
We have o#" ™™ € k' and o™ ¢ K/,
because of ¥/a & k'. By Vahlen-Capelli
criterion, zP" ° — o" "° is irreducible
over k'. We have [k/(c) : K] =p" ™. O

2 and v-1 & k,, we

We set @’ to a subgroup of Q;I gener-
ated by a regular element « in the for-

mula (2). Suppose ¥/a & k'. We have

B =aP"™ is an element of k¥’ NQ’ and B
generates A. Hence, |A| = p™. It follows
from (4) that
(12) - C(H)=p™/IM : k],
holds, where M = k’'Nk.(a), which coin-
cides with k.(o?" ™). We have Cp(H) =
1 if and only if 2P™ — o®" is irreducible
over k. If (3, € k. or if o is of type
(i), the equation is irreducible. If p = 2,
V=1 ¢ k. and if « is of type (ii), we
observe that 2 — " is irreducible and
that 2" — a?" for ny > 2 is reducible by
the Vahlen-Capelli criterion if and only
if there is b € k, such that 44%™ = b*
holds. Hence, %" — o?" is irreducible
for ng > 2 if and only if vVE2 ¢ k,.
REMARK 2. Let my be an integer
greater than 2. Set K to a Galois ex-
tension Q((amomo-1), 2"YTImy) OVer k =
Q(Mm,)- Let o be an automorphism of
Q(Gov) defined by (g = C&F¥™7. We
see ngm'= ~Nme- Hence, \/Mm,° is not
real and /7, is real. Since Q((pv) is
a CM-field, we have /N, & Q(({n).

Therefore, \/m, & Q((e~). Suppose
S D 8. a= )Py, is an element
of @, such that @™ = —p2ro
and 72, & k*. Put G, = G, H =
Gal(K/k(c)). We see M = k.(({amo)
from (11). Hence, C4(H) = 2™~2 from
the formula (12). We note v2 € Q (7, )-
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5. Posets of subfields. The set
consisting of every intermediates fields of
k.«(a)/k, is a set equipped with partial
order which inclusion defines. The struc-
ture of this poset influences the value of
C,(H) when Q' is a subgroup of Q¥ gen-
erated by a. We study its structure in
this section. Denote by I/, the poset of
intermediate fields for an extension L/k,.

PROPOSITION 11. Suppose (op € ki
and 2P" — a is irreducible over k,. Let
a be a root of z?" — a. Then, we have
Ieu@yk. = {ko(a?') : 0.< i < n}, which
1s totally ordered set.

Proof. By the Vahlen-Capelli criterion,
2P" " —aq is irreducible for each 0 < i < n.
Hence, [k, (o?") : k,] = p™*. This implies
k.(at) # k.(a?) if i # j. The assertion is
obvious when n = 1. We prove by induc-
tion. Let n > 2. Suppose there is a max-
imal intermediate field M in k.(a)/k.
which is different from k.(a?). We see
L = M N k,(aP) is a proper subfield of
k.(a?). Hence, we have L = k,(a™) for
m > 2 by hypothesis of induction. Let ¢y
be the minimum of integers ¢ > 0 such
that o € M. Wesee 2 < tg < m
and o € M Nk (a?’) C L. Thus,
Ea(0®®) : K] < [ke(a®™) : k). We
~ have ty > m. Therefore, {p = m. If
2P —aP™ is irreducible over M, we have
" = [k(@) : M] < [k(a) : L] < p™
This implies M = L. This is not the
case. Hence, 2P" —a®” must be reducible

over M. By the Vahlen-Capelli criterion,
there is y € M such that o = yP.
We have o™ belongs to M, because of
(p € M. This contradicts the definition
of the number m. We conclude that the
maximal subfield M dose not exists in
k.(c). Therefore, an intermediate field of
k«(c)/ks is a subfield of k.(a?) if it does
not coincide with k,(a). This proves the
proposition. O

Now, we assume p=2and k., Z /-1
Let o be an element such that ‘
(13) o = —a®",a®> g kin>ny > 1.

We see k.(a) 2 +/—1. . Let | be the
minimum of integers ¢ > 0 such that
o € kK = k(v/=1) holds.
o ¢ k., we have z2 — o
ducible over k., by the Vahlen-Capelli cri-

Since
is irre-

terion. Hence, k.(a) is of degree 2! over
k.. Let M be a maximal intermediate
field of k.(a)/k. which does not contain
v/—1. By virtue of Proposition 11, we
have an integer m such that 0 < m <
and M(v/=1) = k.(@®™) hold. Put
Ki = K.(o® ") and M; = K; N M for
0<i<m. Wesee M,, = M, My =k,
and K,, = M,,(v/—1). Since M;(/—1)
is a quadratic extension of M; contained
in K;, we have [K; : M;] > 2. Put
ag = o ™. There is a conjugate ele-
ment By over M of ag in k,(ag). We no-
tice that 2" belongs to k., because k.

is a Galois extension of k, and o2 is an
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element of k.. Hence, z2' — 82" is con-
jugate to z2° — a2™ over k.. We have
[KL(B2"7") : K] = 2¢ from irreducibility
of 22 — o™,
tion 11 that k,(62"") is consistent with

2m—i m—1i

E(a2™"). Set 4 = @™ + 62" and

6 = (Bo)*™". We have v,0; € M;,

because 7; and §; belong to M. Since
2™ is a root of a quadratic equation
z2—v;z+6; = 0, we obtain [K; : M;] < 2,
and hence K;/M; is a quadratic exten-
sion.

PROPOSITION 12. Ipy, is totally or-

dered.
Proof. We have [M; : M;_1] = 2, because
[Ki . M'_l] = [K, N M,] [M, : M'_l]
= [K; : Ki1][Ki-1 : Mi_4)
holds. Suppose there is a maximal inter-
mediate field M’ in M;/k, which is differ-
ent from M;_,. We see M'(v/—1) C K;.
Since the poset I, (o)/x; is totally ordered
by Proposition 11, M’(y/—1) must be
contained in K;_; if M'(v/—1) # K.
Furthermore, M’ C M;_, follows from
M'(v/-1) C K;—;. This is not true.
We have M’(v/—1) = K;. Nevertheless,
there exists the following contradiction:
[K;: M'| = [K; : Mj][M; : M'] > 4,
[K;: M| = [M'(v/-1): M'] = 2.

Therefore, such maximal intermediate
field M’ does not exist. M;_; is a unique
maximal intermediate field of M;/k..
- This proves Iy, is totally ordered, [

It follows from Proposi-

When « is of the type (i) for p = 2,
we have V-1 ¢ k.(va). If 22" —a
is reducible over k., = k.(v/—1), there
is B € k. such that 2 = a. Since
B € K.(y/a), we obtain k.(8) C k. N
k«(v/a). Hence, 8 € k.. This implies
that « is not of the type (i). We con-
clude z¥" — a is irreducible over k.. Let
M be an intermediate field of k.(a)/k..
By Proposition 11, there is an inte-
ger m such that 0 < m < n and
M(v/-1) = K.(a®™). Let o be a gener-
ator of the Galois group of k. (a)/k.(a).
o also generates Gal(M(v/—1)/M) and
Gal(k.(a®")/k«(a*™)). Hence, M =
k.(a®™). We notice that there is a bi-
jection between I (o)/x, and Lk (o) /K-
Therefore, we have I, (a)/k, = {k(®) :
0<i<n} »
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