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Brauer’s class number relation for the S-ideal class

number of an algebraic number field

Hiroshi YAMASITA

Abstract.

Let K/k be a Galois extension of algebraic number fields with a Galois

group G. Let T be the set of all the subgroups of G. Let S be a finite set of prime ideals
of k. Denote by hg(H) the S-class number of K. Let 95 be the induced character
from the trivial character of H. If a Z-linear combination ), rny¥r equals 0,

we shall show a formula giving the value of §(hs) = [[gcrhs(H)™ (Brauer’s class

number relation) and shall study its applications when G is an abelian p-group for a

prime number p.

1. Introduction. The trivial character
1y of the subgroup of a finite group G in-
duces a character of GG, which is called an
induced character. We denote this charac-
ter by ¥5. More concretely, it is the charac-
ter afforded with a Q[G]-module Q[G/H] =
Q[G] ®qin Q- If a Z-linear combination of

' ¥y is equal to 0 as a function on G, we call
a relation

1) Y nuy =0,

HeT
a character relation, where I is the set con-
sisting of évery subgroup of G. We are in-
terested in this relation if it is non-trivial.
Let 1, (resp. ¥_) be the partial sum of
ngyy such that ng > 0 (resp. ny < 0).

We have ¥, = 9_.
We suppose G is the Galois group of a
Galois extension K/k of algebraic number

fields. Let h(H) denote the class number
of the intermediate field corresponding to
a subgroup H. Then, associated with the
character relation (1), we define §(h) by

5(h) = T n(E)™.
HeT
The class number relation with respect to
(1) is a formula describing the value &(h),
coming from Artin’s L-functions L(s, ¥y )’s.
Namely, it is well-known that L(s,¥y) co-
incides with the Dedekind’s zeta function
Cx#(s) and has a multiplicative property

L(s,Yu + ¥y) = L(Yu) L(¥y),

c.f. [8, Chapter 0]. Therefore, we obtain a
relation of Artin’s L-function, and further
obtained that of zeta functions. The class
number relation yields by taking residue at
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s =1, c.f. [5, §1]. This class number rela-
tion contains a term concerning regulators
of subfields K*’s.
moved. For instance, when & = Q, there is
a unit € of K such that Z[Gle = Z[G|/Zs¢q
holds for s¢ = Y ,c;0. Thus, the unit
group E of K contains a subgroup M which
is isomorphic to Z[G]/Zs¢. In this case,
the following formula of §(h) was obtained:

This term can be re-

@) 6k =[] (B": MG : H)

HeT
c.f. [9, Theorem 4.1]. It was proved in [9]
that this formula is also valid for an arbi-
trary Galois extension K/k in [9].

On the other hand, another generaliza-
tion was showed in [5]. Let S be a finite
set of prime ideals of k. Denote by S(H)
the set of every primes of K¥ lying above
every primes contained in S. The S-ideal
class group of K¥ is the quotient group of
the ideal class group of K# by a subgroup
generated by every prime ideals contained
in S(H). Denote by hg(H) the order of the
S-ideal class group. Then, it was shown in
[5, Theorem 2.7] that a class number rela-
tion holds for the S-class number. However,
it contains terms concerning S-regulators.
The aim of the present paper is transform
this class number relation to the similar for-
mula describing 6{hs) as (2) by applying
the theory of hermitian Z[G|-modules de-
veloped in [5]. The formula is given in The-
orem 3 in §4 below. In §5, we obtain a spe-
cial character relation for abelian p-group

(G, where p is a prime number. This relation
is a generalization of the character relation
for G = (Z /pZ)™ studied in [10]. In §6, we
give two examples of class number relations
deducing from this character relation.

2. A symmetric Z[G]-module. Let
Z|G] be the group ring of a finite group G
over the ring Z of integers. A finitely gen-
erated torsion free Z[G]-module is called
a Z[G]-lattice. The contragredient mod-
ule of a Z[G]-lattice M is a Z[G]-lattice
Hom(M, Z). We identify M** to M canon-
ically, c.f. [2, §10.D]. Let V be the R[G]-
module obtained by extension of coefficients
to the field R of real numbers: V = M ®
R. The R-contragredient V* is the dual
space as an R-linear space. An R[G]-
homomorphism hy : V — V* defines a G-
invariant bilinear R-form on V X V, which
is given by

(3) (u, v} = hy(u)(v), u,veV.

This form is non-degenerate if and only
if hy is an R-isomorphism. Conversely,
if V has a G-invariant form, an R[G]-
homomorphism Ay is defined by (3). This
notion was generalized to Z[G]-modules in
[5]. Let M be a finitely generated Z[G]-
module. We denote by M;,, the maximal
torsion submodule. We see the quotient
module M = M/M,,, is a Z[G]-lattice. So
we obtain an R[G]-module V = M ® R,
which contains M as a full sublattice. Since
an isomorphism of M @ R onto V is in-
duced from the canonical map i: M — M,
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we identify M ® R with V by this isomor-
phism. If there is a Z[G]-homomorphism
h : M — V* i factors h. Take the map
h : M — V* so that h = h o7 holds.
Thus, an R[G)-homomorphism Ay : V —
V* is yielded. A bilinear R-form is ob-
tained by means of (3) from Z[G]-lattice
M. We abuse notation and denote by
h(u,v) this G-invariant bilinear R-form on
V. According to [5, Definition 2.1], the
pair (M, h) is called an R-valued hermitian
Z[G)-module. However,we say (M, h) is an
R-valued symmetric Z[G]-module or a sym-
metric Z|[G]-module in short, because we
study the case that the R-form h(u,v) is a
symmetric form. We note that this form is
non-degenerate if and only if A is injective.
Let r be the rank of M. If & is injective,
the Gram matrix

(h(mi: mj))1gi,j57'

is defined for an arbitrary Z-basis {m; : 1 <
i <1} of M. The discriminant of the sym-

metric Z[G]-module (M, k) is defined to be

the absolute value of the determinant of the
Gram matrix,and is denoted by disc(M, h).
In general, the discriminant of a symmetric
Z|G]-module (M, h) is defined to be

. _ disc(M, h)

4) disc(M, h) = —| M)
c.f. [5, Definition 2.3]. A morphism of
a symmetric Z[G]-module (M, h;) into
(Mg, he) is a Z[G]-homomorphism o
M, — M, satisfying the relation hy(u,v) =

ho(ou, ov) for u,v € Vi*, where V; = M1 ®

R. If o is an isomorphism, we call it an
isometry and say that (Mi, hy) is isomet-
ric to (M, hg). A direct sum and a ten-
sor product of two modules are defined by
means of functorial isomorphisms:

WMeV) =
(Vi ®r V2)*

VreVs
Hompg/(Va, V)
sz* ®R Vl* o Vvl* ®R V‘Z*

IR

1R

c.f. [2, Proposition 10.30]. We identify (V;®
Va)* (resp. (Vi ®r V2)* with V' @ V5 (resp.
Vi* ®g V') by these isomorphisms. h; and
ho induce Z[G]-homomorphisms

h1 @ ho
h1 ® ho

MieM VeV
M Q My, —» Vi @gr Vs

These symmetric Z[G]-modules is denoted
by (My@M,, hi@hy) and (Mi® My, hy®hs),
respectively. Let H be a subgroup of G. hy
maps the submodule V# of H-invariant el-
ements into V*2. We have (VH)* = (V*)#
by [2, Proposition 10.28]. Since M¥ is a
submodule (M)¥ of finite index, we have
ME®R= (M) ®@ R=V¥. Thus, if we
define a homomorphism A¥ by

1
==h: M - V|
|H]|
the pair (M, h¥) is a symmetric Z[{1}]-
module. Denote this symmetric Z-module
by (M, h)H in short, c.f. [5, Notation 4.8].
The group ring is provided with involu-

tion .
(Z a,,a) = Z aoo_l.

o€G o€eG
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We have (zy)* = y*z* for product of two
elements z and y of the group ring. A non-
degenerate G-invariant symmetric bilinear
R-form (z,y) on R[G] is defined from the
trivial character 1g of G:

(5) (@,9) = loly's)

Hereafter, we denote by the symbol V this
symmetric R-space R[G]. V is self-dual,
that is V* = V. We denote a sum of every
element contained in a subset A of G by s4
or s(A). An idempotent element associated
to the subgroup H in the group ring R[G]
is defined to be

1

(6) 1@

ey = SH.

Denote by Z|Gleg a Z|G|-submodule gen-
erated by e. Put Vi = R|[Gley. We define
a non-degenerate G-invariant symmetric bi-

linear R-form hgy by

he(u,v) = |H| < u,v >
on Vg. We see hg(oegy,0ey) = 1 and
hH(aeH,TeH) =0 if oeg # Tey. Thus, we
have Vy is self-dual with respect to hg. The
form hpg is considered it is induced from in-
clusion Z[Gley — Vg. The inclusion map
gives a symmetric Z[GJ]-module structure.
We also denote this structure by Ag:

(7) hyg: Z[G]CH‘—) Vg = (VH)*.

Moreover, since {oey} is a Z-basis
of Z[Gley, the symmetric Z[G]-module

(Z[Gleg, hg) is unimodular, c.f. [5, Nota-
tion 5.14]. '

The following lemma is a consequence
from Corollary 4.14 in [5]. We shall give
an elementary proof following to the proof
of Proposition 10.31 in [2].

LEemMMA 1. Let (M,h) be an arbitrary
non-degenerate symmetric Z[G]-module.
Then, we have an isometry

(Z[Glen ® M,hyg ® B)S — (M, h)H.

Proof. Let [G/H] be the complete set of
representatives of right cosets. The set
{oey : 0 € [G/H|} is a Z-basis of the free
Z-module Z[Gley. Thus, each element z is
written uniquely as a sum

T = Z ceg ®mz, mz €M,
o€[G/H] =
where & denotes the right coset cH. If z is
G-invariant, we see '

gr = zgoey Kgmsz =2z
o
for every g € G. Since the coefficient m;
of each o is uniquely determined for z, we
have mz = gms. In particular, if we set
g € H, we have m; = gmy. Thus, by send-
ing z € (Z[Gleg®M)C tom; € M¥, anin-
jective mapping is defined. It is easy to ver-
ify this mapping is a surjective homomor-
phism. Therefore, (Z[Gley ® M)¢ = M¥
as Z-modules. We shall show this isomor-
phism is an isometry. Let z and y be two
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elements of (Z[Gleg ® M)C:

r = Z oeg @ om,
oceG/H

y = Z oeg @on
o€G/H

for m,n € M. Denote by 7 and 7 the
images into M ® R. We have

- hit @h(z) ()
= b 2 hraloen)ren) - hlem)(rm).

o, 7€E[G/H

= T hlom)(on)

o€[G/H]

= Lh(m)(n).

This shows the isomorphism is an isometry.
O

The subset consisting of every H such
that ng > 0 (resp. ng < 0) is denoted by
T, (resp. I'_). Associated to these subsets,
we define Z[G]-modules My to be My =
Dxer, (Z [Glen)™#!. The non-degenerate
symmetric Z[G]-module structures are de-
fined on My by

8)  (Mi,hs)= €D (Z[Glen,hu)™*

Hel'yx
from (7).
asserts there is an Q[G]-isomorphism

Since the character relation (1)

M, ®@Q=M_QQ,

there is an injective Z|G]-homomorphism of
M_into M, ®Q. Put Vo = M. QR. Let j
be an R[G]-isomorphism of V_ into V. ob-
tained from this Z[G]-homomorphism. Let

j* be the adjoint of j with respect to R-
forms on V.. Namely, j* is defined by

(9) h+(](u),v) =h_ (u’ J*(U))

j* is an R[G]-isomorphism of V, onto V_.
By [5, §5.4], the fundamental invari-
ant 6(M,,M_; M) is defined for an ar-
bitrary non-degenerate symmetric Z[G]-
module (M, h). We write it as §(M,h) or
0(M) in short. The following discriminant
relation holds from [5, Theorem 6.1]:
disc((My ® M,h, ® h)%)
disc((M_ ® M,h_ ® h)G)’
If we define a function f on I' by f(H) =
disc((M, h)H), we have by virtue of Lemma
1 a formula

s(M) = [T fu)m.

Her

We generalize this notion to an arbitrary
function f taking values in non-zero real
numbers. We define a functional § on such
f’s to be

(10) &(M,h) =

§(fy= I raE)™.
Her
This functional is multiplicative. When
f is a constant function, we see d(f) =
f(1)X 7. However, this value 6(f) equals

to 1, because we have

(16, Y nuvmde= Y nulle,¥n)e

Her Her
= nu(ly,l)m
"

from the Frobenius reciprocity law, cf [1,

)]
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REMARK 1. If M is a Z[G]-module of
finite order, it has a trivial symmetric Z[G]-
module structure, because of M ® R = 0.
We denote this structure by (M, x). Note

1

§(M,*) = H

Hel

from the definition (4).

3. The group of S-units. We assume
G is the Galois group of a finite Galois ex-
tension K/k of algebraic number fields. Let
S be a finite set of places of k& containing
all the archimedian places. Denote by Sp
the subset of every non-archimedian places.
Suppose S = {vi,---,vs}. We choose a
prolongation onto K of each v; and fix it
Denote by w; the selected
place. Let G; be the decomposition group

once for all.

of w;. Every place of K¥ lying above v; is
obtained from the decomposition into two
sided cosets:

G= L.J;f__lHOijGi.

Let u; be restriction of w; onto K. There
are s; places oyu;, j = 1,+ -+, s; over v;. De-
note by So(K*) the union of all such places
for every v; € Sp. Let Pi be the set of the
all places of k. Denote by |- |, be the nor-
malized multiplicative valuation for v € Py
so that the product formula holds. Namely,

H lzls =1
VEP;

holds for every z € k*. Further, we as-
sociate a multiplicative valuation || - ||, to
each w; so that the value ||z||,, for every

z € k argrees to the value |z],,. Denote by
hs(H) the order of the S-ideal class group
of K¥. hgs(H) is a function on I'. An el-
ement z € K is called an S-unit if an ar-
bitrary prime divisor of the principal ideal
(z) belongs to the set of valuation ideals of
places contained in Sp(K). The subgroup of
K™ generated by every S-unit of X is called
the group of S-units of K and is denoted by
Eg. We shall give two non-degenerate sym-
metric Z[G]-module structures on Fg. We
abbreviate the idempotent eg, defined by
(6) to e;. Put

S

Ls = P z(Gle,
i=1
8

Vg = @Vei.
i=1 ]

A non-degenerate symmetric R-form on Vg
is defined by

(11) (Zui,z:vi) = Zhgi(ui,vi).
i=1 i=1 i=1

The inclusion map of Lg into Vs is given by

hg = GB;?:thi :Lg =3 Vsg = V‘S’f,

which is a non-degenerate symmetric G-
invariant Z[G]-module structure on Lg.
Let [G/G;] be a complete set of representa-
tives of G/G;. Put o; = s(|G/Gy]). L§ is a
free Z-module on a basis {oge; : 1 < i < s}.
Put n = (ae;,-+- ,05e,) € L§. V§ con-
tains a one-dimensional subspa.ce generated
by 5. Since Lg NV, = Zn, there is an
injective Z[G]-homomorphism Lg/Zn —
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Vs/Vy.  Moreover, V, has an orthogonal
complement Vg in Vg:

Vg1 ={u € Vs:(ngu) =0}

with respect to (11). We observe

Y ween=Y ¥ o

i=1 0;€[G/Gi)] i=1 o;€ G/G]

Thus, if we define |u| =
u € Vg is equivalent to |u| = 0. We con-

(u,n), we see

sider V51 as a symmetric space by restrict-
ing the R-form on Vs. Since this symmetric
form is G-invariant, we have Vg, = Vg, as
R[G]-modules with respect to the symmet-
ric form. Let hg; be the composite map of
the canonical map Vg/V, — Vg induced
from the projection onto Vg; and the ho-
momorphism of Lg/Zn into Vs/V,. Put
Ls; = Lg/Zn. The pair (Lg1,hs,) is a
non-degenerate symmetric Z[G]-module.
We apply the generalized Dirichlet-
Herbrand theorem on S-units, c.f. [4, The-
orem 1.3.7]. There is a Q[G]-isomorphism

(12) Es®Q—Lg1®Q.
Thus, Es ® R = Vg;. Since Eg is mapped
into Es @ R by x — z ® 1, there is
a Z[G)-homomorphism k of Eg into Vs
This makes Es a non-degenerate symmet-
ric Z[G]-module.

Es is provided with another non-

degenerate symmetric Z[G]-module struc-
ture. Let I : Es — Vs be a Z[G-

homomorphism defined to be

= (Z log ]]0_1u]|w,.aei> .
1<i<s

oeG

We see

| 1(u) |= log (H I ||a;1u|]1,§jil).
i=10:€[G/Gi]

The product formula of the multiplicative
valuations normalized to the algebraic num-
ber field K asserts this value is equal to
Since S
contains every archimedian place, Kerl =
Eior.  Thus, Z[|G]-module (Es,l) is a
non-degenerate symmetric.

{{{u),(v)) and obtain

0. Hence, ! takes values in Vg.

We compute

(13) (l(w),l(v)) =
s
=1 0;€[G/Gi]

This shows (I(u),l(v)) coincides with the

form pg(u,v) defined in [5, (8.1)]. We re-

state here the following formula obtained
in [5, Theorem 2.7

o7l |u; 10g []o7 0] |as; |G-

THEOREM 2 (Kani). Let w be the func-
tion on T defined to be w(H) = |E{,,|.
Then, we have

6(Z)b(w)

2 _
o) = 5B, o(Ls)”

REMARK 2. If H is cyclic, we have
0(Z[Gleg) = 1 by [5, Example 2.13. a)].
Therefore, 6(Z[Gle;) = 1 if v; is archime-
dian. We see §(Lg) = §(Ls,)-
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REMARK 3. We define a function ng on
T to be ng(H) = |G : H|. We have

8(2) = [] 1HI™ = é(nc),
Hell

ef 5, (2.7)).

REMARK 4. Let wy be the 2-part of w.
We have 6(w) = d(w;) from [1, §2.5].

4. Brauer’s class number relations.
Vi, = Vs, contains a Z|G]-lattice isomor-
phic to Lsy = Lg/Zn. The inverse image
M' by h : Es — Vg, of the lattice is a
submodule containing Eg ;.. Since Ker h =
Egior, M’ 18s.tor| ig torsion free and is isomor-
phic to Lg;. Hence, Eg contains a Z[G]-
submodule isomorphic to Lg;. Let Mg be
an arbitrary such Z[G]-submodule. By re-
stricting the two symmetric Z[G]-module
structures of Eg, Mg is also provided with
two structures. We denote them by (Mg, h)
and (Mg,1), respectively. We shall prove
the following class number relation holds:

THEOREM 3. We define a function
ige s on T to be igg s (H) = [BY « ME].
Then, we have

8(igs,Ms)8(nG)
5 h — 5,18
(hs) T iTs)

This theorem is a generalization to S-
class numbers of Brauer’s class number re-
lation proved in [9, Theorem 4.1]. The key
of the proof is the following lemma:

LEmMA 4. (S(Ms,h) = 5(Ms,l)

Proof. Let « (resp. t+) be identity map
(resp. identity maps) on Vg, (resp. V).
Since the adjoint map j* in (9) is an isomor-
phism, j*®¢ is an isomorphism of Vy®g V¢,
onto V* ®g Vg,. Denote by (j* ® ¢)(G) re-
striction of (j* ® ¢) on the G-invariant sub-
modules. Let & be an automorphism on
V¢ 1 which is induced from an isomorphism
loh™!: h(Ms) — I(Mg) of sublattices. We
abbreviate 14+ ® a to a4 in short and denote
by a+(G) restriction onto (Vi ®r V4§,)°.
We have

a4(G) = (7" @ )(G) " 0 a_(G) o (7" ® )(G).
Thus, detay(G) = deta_(G). Concern-
ing two symmetric Z[G]-module structures
(hi®h)c and (hi®l)G on (M:E®M5)G, we
have the following commutative diagram:

(M:® Ms)® ——— (VI®VF))°

(h+®h)C
lid lai(G)
My ® Ms)¢ ———— (VieVe)C.
(My s) haone (Vi® Vs

Thus, a relation between the Gram matrices

disc({My ® Mg, hy ® )C) =
(det @+ (@))%disc((My ® Mg, he @ B)).

is obtained. Hence, it follows 6(Ms, h) =
§(Ms,1) from (10). ' O

Proof of Theorem 8. The quotient module
Eg/Mg is of finite order.
ial non-degenerate symmetric Z[G]-module
(ES / M S *)

It is a triv-

Thus, we have an exact se-
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quence in the category of symmetric Z[G]-
modules:

(14) 1— (Mgs,h) = (Es,h)
— (Bs/Mg,*) = 1.

For each H € T, the following sequence is
exact:

1— Z[Gley ® Mg — Z|Gley ® Eg
— Z[Gleg ® Es/Mg — 1.

We have a cohomology long exact sequence

1 (Z[Gler ® Ms)C — (Z[Glen ® Es)® —
(Z|Glen®Es/Ms)C 8 HY(G, Z|Glen®Ms)

from this sequence. We can apply "exact
sequence formula”, c.f. [5, Theorem 6.21].
We have

(15) 6(Es,h)d(Es,ior) =
6(Ms, h)6(Es /Ms)*4?,

where

P = H |Im 85 |™# .
HeT
We notice that the first three terms in a

cohomology long exact sequence

1— ME - B 5 (Es/Ms)®

M gY(H, M)

are equal to those in the above cohomol-
ogy exact sequence by virtue of Lemma 1.
Hence, |Im x| = [Im fg| and

IIm 6H| _ |Im fHI
[(Bs/Ms)®|  |(Es/Ms)H|’

Therefore, we obtain

1 . IIm (SHI

U0) E L arE) T s M) ]

and an auxiliary formula

(17) §(Es/Ms)p = 6(igs )"

Moreover, since Lg/Zn = Mg, we also have
) n ’

(18) 6(Ls) = 0(ng)0(Ms, h)

from ”exact sequence formula”. Combining
(15), (17) and (18), we have

§(Es,h) _ §(Ls)
5(w) 8(na)é(iss,ms)?

because of §(Fsysr) = 8(w)~!. Moreover,
in account of Lemma 4, we can substitute
8(Es, h) for §(Es,!) in the formula of The-
orem 2. In consequence, we have a formula

8(ng)?(igs ms)*
3(Ls)?

8(hg)? =

This proves the theorem. O

We shall give two applications of Theo-
rem 3.

LEMMA 5. 6(hs) is a unit in the ring Z,
of p-adic integers for every prime number p
not dividing |G|.

Proof. Let p be a prime not dividing |G|.
We see 6(ng) € Z,. By the formula of
0(Z[G/H]) in [5, Example 2.1, b)], we have
6(Z[Gle;) € Z; for i = 1,---,s. Let fy
be a function on I' defined by fo(H) =
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|(Es/Ms)®|. Since p { |H'(H, Mg)|, we
have from (16) that 6(iggm,) is a p-adic
integer if and only if §(fy) is also. Let Y be
the p-primary submodule of Es/Ms. Let
7™ be the exponent of Y. Put Y, = Y?"
forn = 0,---,m. Y,_1/Y, is an F,[G]-
module. Let x, be the character of G af-
forded with an F,|G]-module Y,,_;/Y,. Let
¢, ... ¢ be a basic set of irreducible
Qp-qhairacters of G, where Q, denotes the
field of p-adic numbers. Since p t |G|, an
F-irreducible character is obtained from
each ¢ by reduction with respect to

mod p. Denote by {® the Fy-irreducible
character. 1y, is a linear combination of
¢’s with non-negative integral coefficients:

Xn = i Cié(i)~
=1

The dimension of (Yy_1/Yn)? over F, is

given by the value of

Z cb(C(l)7 ’l/)H)G dime Uia

=1
where U; are simple F,[G)-modules afford-
ing the characters (’s. We see

> np dimp, (Yo1/Y2)" =0

Her
from (1). Thus, if we define a function f,
on T by f.(H) =_|(Yn_1/Yn)Hl, we have
6(fn) = 1. Since fo(H) = [T, fu(H), we
see p{ 8(igg,ms)- O

COROLLARY 6. Let h¥) (H) be the highest
power of hs(H) with respect to a prime p.
Ifpt|G|, we have §(hP) = 1.

We assume K is a CM-field and k is a to-
tally real subfield. The Galois group G con-
tains the complex conjugation map 7. By
Lemma 8 in the next section, the character
relation (1) holds if and only if

Z’nHEH =0

holds. Denote by H™ a subgroup generated
by H and 7. Put e* = £(1 + 7). Since

e+ = €H€+,

we have Y . ngéy+ = 0 from the above
idempotent relation. Thus, by Lemma 8§,
a character relation 0 = Y . np¥p+ is
yielded. Hence,

(19) 0= nulpn —py+)-

HeTl
Let I'; be a subset of I consisting of H such
that H & H*. We define functions f* from

an arbitrary function f on I' to be

f(H)
fHT)

Then, the functional ¢’ defined from (19)
satisfies &'(f*) =1, 8'(f) =8 (f~) and

s(fy=8(n=[[ r =™

Hel

fT(H) =

and f7(H) = f(HT).

Suppose S is the set of all the archimedian
places. We put E& = ES™. Since ng(l) -
E;, we can choose Mg from a subgroup of
EY. We observe an index relation

igs,ms(H) = [BY : pREXF|[pk BT : My)
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holds, where p is the subgroup of Eg con-
sisting of every root of unity. Let Q be a
function on I' whose value is equal to the
unit index of K¥ if 7 ¢ H and which takes
1 when H = H*. We have
QUHYw(Hipg, s (HY)

2

1B, Mg (H) =

Therefore, we obtain

COROLLARY 7. Let K be a CM-field

which is a Galois extension on a totally real

subfield k. If S is the set of all the archi-
median places, then we have

d(hg) = 6(Q7)6(w™)é(ng)
with respect to the character relation (1).

REMARK 5. Bach of §(Q), §(w™) and
d(ng) takes a value of an integral power of
2.

5. Character relétions. The induced

character 1y is defined to be

Y (o) = ]Hl Y iklgTleg)
. e
where 1y is a function on G taking value

1 for every element of H and taking O for
elements in G\H, c.f. [2, (10.3)]. Let x be a
linear combination of ¥y with integral co-
efficients ng. We have

S (o) =Y (z nH¢H<a>) -

oEG [ HeT

—Z il z S ialgtog)o

o geG

Z|H|Z > o

9 oegHg™1

= Z ng deHg_l
H g

Put ég = ilﬁl > gcc €glg-1- We have

Z x(o)o™t = Z ngéq.

oG HeT
Let {¢®,...,¢™M} be the basic set of ir-
reducible C-characters of G. Put z =
> ner nuén. We have

= 17 LX)k

oc€G

x. ¢

lalcw(z x(@)o ™)

=1 GI ¢9(2).
By [2, Proposition 9.23], we have every
class function on C[G] takes value 0 at z
if (x,(®g =0fori=1,---,r. Further-
more, this condition implies z = 0, because
z is an element of the center of C[G]. Con-
versely, if z = 0, we also have x = 0. Thus,
we have ’

LEMMA 8. The character relation (1)
holds if and only if Y yer ngén = 0.

REMARK 6 (norm relations). Let U(G)
be a subset of ZI"! consisting of & = (ay)
such that aysy = 0. This subset is a sub-
module and is called the module of norm
relations in [7]. Let Ay be the subset of
T’ consisting of every cyclic subgroup of G.
Denote by Ay p for each cyclic subgroup U
the subset {N € Ay : N > U}. In [7, Satz
1], an element v¥ of U(G) was defined by

0 ifU ¢ Ag\{H},
ifU = H,

~LNeay y MINU]) iU € Ag\{H},
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and it was proved the set {y7 : H ¢ Ag}
is a Z-basis of U(G).

REMARK 7 (the formula of Kani-Rosen).
Let R(G) be a Q-linear subspace of
Q™ consisting of 5 = (By) such that
Y werBuvn = 0. Let A/ ~ be the set
of conjugacy classes of cyclic subgroups.
Then, the dimension of R(G) is given by

dimR(G) = || — A/ ~ |

c.f. [6, the formula (6)].

Hereafter, we restrict our concern onto
abelian p-groups for a fixed prime p. Sup-
pose

(20) GeZ/p™MZx---xZ[p™Z,

>m, > 1. Let G
be the group of all the characters, that is
G = Hom(G,C*). Denote by H* (resp.
X1 for a subgroup H (resp. X) of G (resp.
G) the annihilator of H (resp. X). We have
(XYYt = X and Hif N Hy = (H Hy)*
for subgroups Hy, and H; of G. Put G* =
(GP)*. We denote by H* the subgroup HG*

for integers m; > ---

for H. Put Z = G\G?. Let Ty be the sub-

set of I consisting of Ker x for every x € Z.
We have

HnG* = H*-
Thus, if H = {{)* for ( € Z, we have
H* = (¢P).

LeMMmA 9. If Hy, Hy € Ty are distinct,
we have Hi* N Hy- < Hy+ n Hyt.

Proof. There are (; € Z such that ((;) =
H TG ¢ (G), we see (G) N{G) < (G-
Thus, we have Hi* N Hi- < H3*. Similarly,
we have Hi- N Hy < HiL. O

THEOREM 10. We have a character rela-
tion

¥ —ver = Y (Yu —pu-)-

HeTlp

Proof. By Lemma 9, we have

(HI\H{H) N (Hy \H3*) =0

for every pair (Hy, Hy) € T'y x [y such that
H, # H,. Since H** =G NH, Zisa
disjoint union of H+\H*L:

(1) Z=G\G**=u H-H\H'

HeTly
Every induced character ¥y is a linear com-
bination of ( € G with non-negative inte-
gral coefficients m,. The value of m, is com-
puted by the Frobenius reciprocity law:

m¢ = (Yu, e = (1u, da)H,

where ¢ gy denotes restriction onto H.
Clearly, m; = 1if ( € H+, and m¢ = 0
if (lg is not trivial. Therefore, ¥p =
> cens € By (21), we have

hr—ve = Y (- >, ¢
CG@ CteG*.L
-z xe)
HeTo \¢eHL  (*eH**
= > (¥u —vu-).
HeTy
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6. Examples.

ExAMPLE 1. Suppose n > 2 and m; =
--v =mp =m > 2 in (20). We have G* =
G and Ty = {H : G/H = Z[p™Z}.
Put K* = K¢ . If H € Ty is the kernel of a
character x, we have H*L = (x?). Thus, we
see Hy = Hj is equivalent to (x}) = (d).

of complete representatives of Z/ ~ is given
by

{p, °xs px xh
For each character ¢, we associate a sub-
group H' = Ker ¢ and a subfield L = K as

follows.

PX,

2. 4
If we choose H € I'y arbitrarily, the number IiT ;;1 ZZ i{j i{: ;3
of subgroups H' € I'y such that H* = H™ LK, K Ki K& K
is equal to p”~!. By Theorem 10, we obtain cls s 4 2 2
a character relation
K
0= (1 —a+) = Y (¥n — i)
HeTg
Put Iy = {H* : H € Tx}. Since é(ng) = Kz
p"~ITol| the corresponding class number re-
lation is
Ky X,
hs(K) _
hs(K*)
HI;IFth(KH) 8(igg M) K Ks K;
ot 5(L5'0)
(H hs(KH ")\)
H*ery Q
i

ExaMPLE 2. Set p = 2. Let ¢ be a pos-
itive integer such that 8 | ¢(g). Let m be
a square free integer prime to g. Let K7 be
the cyclic extension of degree 8 and of con-
ductor ¢ over Q. Put K = K;(y/m) and
k=Q. Weseen=2,m; =8 and my = 2.
Put K3 = Q(+/m). We define x; ~ xz for
xi € G to be {(x1) = (x2). Let p (resp.
x) be a Dirichlet character corresponding
to K (resp. K3) of order 8 (resp. 2). A set

We observe G* = (p?)* and
H} = H} = G*,H} = H} = G, H} = {p*)*.

Write K for K#i. Theorem 10 yields a
character relation

5 .

(22) 0=11 - vm + v + ¥u; + 2.
i=1

Since 6(ng) = 871, the corresponding class

number relation is

hs(K)hs(K$)hs(K*) _ 8(igs,ms)

B T bk 80(Ls)




36 SRKEAMHSFRFEFTFRICE

®£28 FER2E

We compute the norm relation ¥¢ and ob-
tain
5 .
0=s¢— ZSH; + 8Hy, + SHy 4 + 251,
i=1
where H3y and Hj,4 are terms of the com-
position series .

Hs > H3,2 > H3’4 > {1}

Denote by K32 and K34 the fixed field by
H;, and Hjy, respectively. Since éy =
|Glen, the character relation

0="191—Ym —¥m — W,

- 2y, — Wy + 2¥m5, + VHy, + 8%
yields from Lemma 8. If we apply The-
orem 10 to Galois extension K34/K} and
K32/Q and lift the obtained character re-
lations onto those of G, we can transform
the above relation to (22).

We assume K is real abelian and Kj is
imaginary quadratic and Sy = 8. We see K
and K, K;, K4, K5 are imaginary abelian
field. By Corollary 7, we have

K) _ 8(@)8wT)
TT5-s h™(K) 8
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