Brauer's class number relation for the S-ideal class number of an algebraic number field

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/23749

Brauer's class number relation for the S-ideal class number of an algebraic number field

Hiroshi Yamasita

Let K/k be a Galois extension of algebraic number fields with a Galois group G. Let Γ be the set of all the subgroups of G. Let S be a finite set of prime ideals of k. Denote by $h_S(H)$ the S-class number of K^H . Let ψ_H be the induced character from the trivial character of H. If a Z-linear combination $\sum_{H\in\Gamma} n_H \psi_H$ equals 0, we shall show a formula giving the value of $\delta(h_S) = \prod_{H \in \Gamma} h_S(H)^{n_H}$ (Brauer's class number relation) and shall study its applications when G is an abelian p-group for a prime number p.

1. Introduction. The trivial character 1_H of the subgroup of a finite group G induces a character of G, which is called an induced character. We denote this character by ψ_H . More concretely, it is the character afforded with a Q[G]-module Q[G/H] = $\mathbf{Q}[G] \otimes_{\mathbf{Q}[H]} \mathbf{Q}$. If a **Z**-linear combination of ψ_H is equal to 0 as a function on G, we call a relation

(1)
$$\sum_{H \in \Gamma} n_H \psi_H = 0,$$

a character relation, where Γ is the set consisting of every subgroup of G. We are interested in this relation if it is non-trivial. Let ψ_+ (resp. ψ_-) be the partial sum of $n_H \psi_H$ such that $n_H > 0$ (resp. $n_H < 0$). We have $\psi_{+} = \psi_{-}$.

fields. Let h(H) denote the class number of the intermediate field corresponding to a subgroup H. Then, associated with the character relation (1), we define $\delta(h)$ by

$$\delta(h) = \prod_{H \in \Gamma} h(H)^{n_H}.$$

The class number relation with respect to (1) is a formula describing the value $\delta(h)$, coming from Artin's L-functions $L(s, \psi_H)$'s. Namely, it is well-known that $L(s, \psi_H)$ coincides with the Dedekind's zeta function $\zeta_{KH}(s)$ and has a multiplicative property

$$L(s, \psi_H + \psi_H') = L(\psi_H)L(\psi_H'),$$

c.f. [8, Chapter 0]. Therefore, we obtain a relation of Artin's L-function, and further We suppose G is the Galois group of a obtained that of zeta functions. The class Galois extension K/k of algebraic number number relation yields by taking residue at $s=1,\ c.f.\ [5,\ \S 1].$ This class number relation contains a term concerning regulators of subfields K^H 's. This term can be removed. For instance, when k=Q, there is a unit ϵ of K such that $\mathbf{Z}[G]\epsilon\cong\mathbf{Z}[G]/\mathbf{Z}s_G$ holds for $s_G=\sum_{\sigma\in G}\sigma$. Thus, the unit group E of K contains a subgroup M which is isomorphic to $\mathbf{Z}[G]/\mathbf{Z}s_G$. In this case, the following formula of $\delta(h)$ was obtained:

(2)
$$\delta(h) = \prod_{H \in \Gamma} ([E^H : M^H][G : H])^{n_H}$$

c.f. [9, Theorem 4.1]. It was proved in [9] that this formula is also valid for an arbitrary Galois extension K/k in [9].

On the other hand, another generalization was showed in [5]. Let S be a finite set of prime ideals of k. Denote by S(H)the set of every primes of K^H lying above every primes contained in S. The S-ideal class group of K^H is the quotient group of the ideal class group of K^H by a subgroup generated by every prime ideals contained in S(H). Denote by $h_S(H)$ the order of the S-ideal class group. Then, it was shown in [5, Theorem 2.7] that a class number relation holds for the S-class number. However, it contains terms concerning S-regulators. The aim of the present paper is transform this class number relation to the similar formula describing $\delta(h_S)$ as (2) by applying the theory of hermitian Z[G]-modules developed in [5]. The formula is given in Theorem 3 in §4 below. In §5, we obtain a special character relation for abelian p-group G, where p is a prime number. This relation is a generalization of the character relation for $G = (\mathbf{Z}/p\mathbf{Z})^m$ studied in [10]. In §6, we give two examples of class number relations deducing from this character relation.

2. A symmetric Z[G]-module. Let Z[G] be the group ring of a finite group G over the ring Z of integers. A finitely generated torsion free Z[G]-module is called a Z[G]-lattice. The contragredient module of a Z[G]-lattice M is a Z[G]-lattice $\operatorname{Hom}(M, \mathbf{Z})$. We identify M^{**} to M canonically, c.f. [2, §10.D]. Let V be the $\mathbf{R}[G]$ module obtained by extension of coefficients to the field **R** of real numbers: $V = M \otimes$ **R**. The **R**-contragredient V^* is the dual space as an R-linear space. An R[G]homomorphism $h_V: V \to V^*$ defines a Ginvariant bilinear **R**-form on $V \times V$, which is given by

(3)
$$\langle u, v \rangle = h_V(u)(v), \quad u, v \in V.$$

This form is non-degenerate if and only if h_V is an \mathbf{R} -isomorphism. Conversely, if V has a G-invariant form, an $\mathbf{R}[G]$ -homomorphism h_V is defined by (3). This notion was generalized to $\mathbf{Z}[G]$ -modules in [5]. Let M be a finitely generated $\mathbf{Z}[G]$ -module. We denote by M_{tor} the maximal torsion submodule. We see the quotient module $\bar{M} = M/M_{tor}$ is a $\mathbf{Z}[G]$ -lattice. So we obtain an $\mathbf{R}[G]$ -module $V = \bar{M} \otimes \mathbf{R}$, which contains \bar{M} as a full sublattice. Since an isomorphism of $M \otimes \mathbf{R}$ onto V is induced from the canonical map $\bar{i}: M \to \bar{M}$,

we identify $M \otimes \mathbf{R}$ with V by this isomorphism. R. If σ is an isomorphism, we call it an phism. If there is a Z[G]-homomorphism isometry and say that (M_1, h_1) is isomet $h: M \to V^*, \bar{i}$ factors h. Take the map ric to (M_2, h_2) . A direct sum and a ten- $\bar{h}: \bar{M} \to V^*$ so that $h = \bar{h} \circ \bar{i}$ holds. Thus, an $\mathbf{R}[G]$ -homomorphism $\bar{h}_V:V\to$ V^* is yielded. A bilinear R-form is obtained by means of (3) from Z[G]-lattice We abuse notation and denote by h(u,v) this G-invariant bilinear **R**-form on V. According to [5, Definition 2.1], the pair (M, h) is called an **R**-valued hermitian Z[G]-module. However, we say (M, h) is an R-valued symmetric Z[G]-module or a symmetric Z[G]-module in short, because we study the case that the **R**-form h(u, v) is a symmetric form. We note that this form is non-degenerate if and only if h is injective. Let r be the rank of \bar{M} . If \bar{h} is injective, the Gram matrix

$$(h(m_i, m_j))_{1 \le i, j \le r}$$

is defined for an arbitrary **Z**-basis $\{m_i : 1 \leq$ $i \leq r$ of \bar{M} . The discriminant of the symmetric $\mathbf{Z}[G]$ -module (\bar{M}, \bar{h}) is defined to be the absolute value of the determinant of the Gram matrix, and is denoted by $\operatorname{disc}(\overline{M}, \overline{h})$. In general, the discriminant of a symmetric Z[G]-module (M,h) is defined to be

(4)
$$\operatorname{disc}(M,h) = \frac{\operatorname{disc}(\bar{M},\bar{h})}{|M_{tor}|},$$

c.f. [5, Definition 2.3]. A morphism of a symmetric Z[G]-module (M_1, h_1) into (M_2, h_2) is a $\mathbf{Z}[G]$ -homomorphism σ : $M_1 \to M_2$ satisfying the relation $h_1(u,v) =$ $h_2(\sigma u, \sigma v)$ for $u, v \in V_1^*$, where $V_1 = M_1 \otimes$

sor product of two modules are defined by means of functorial isomorphisms:

$$(V_1 \oplus V_2)^* \cong V_1^* \oplus V_2^*$$

$$(V_1 \otimes_{\mathbf{R}} V_2)^* \cong \operatorname{Hom}_{\mathbf{R}}(V_2, V_1^*)$$

$$\cong V_2^* \otimes_{\mathbf{R}} V_1^* \cong V_1^* \otimes_{\mathbf{R}} V_2^*$$

c.f. [2, Proposition 10.30]. We identify $(V_1 \oplus$ $(V_2)^*$ (resp. $(V_1 \otimes_{\mathbf{R}} V_2)^*$ with $V_1^* \oplus V_2^*$ (resp. $V_1^* \otimes_{\mathbf{R}} V_2^*$) by these isomorphisms. h_1 and h_2 induce Z[G]-homomorphisms

$$h_1 \oplus h_2$$
 : $M_1 \oplus M_2 \to V_1^* \oplus V_2^*$
 $h_1 \otimes h_2$: $M_1 \otimes M_2 \to V_1^* \otimes_{\mathbf{R}} V_2^*$.

These symmetric Z[G]-modules is denoted by $(M_1 \oplus M_2, h_1 \oplus h_2)$ and $(M_1 \otimes M_2, h_1 \otimes h_2)$, respectively. Let H be a subgroup of G. \bar{h}_V maps the submodule V^H of H-invariant elements into V^{*H} . We have $(V^H)^* = (V^*)^H$ by [2, Proposition 10.28]. Since \overline{M}^H is a submodule $(\bar{M})^H$ of finite index, we have $\overline{M^H} \otimes \mathbf{R} = (\overline{M})^H \otimes \mathbf{R} = V^H$. Thus, if we define a homomorphism h^H by

$$\frac{1}{|H|}h:M^H\to V^{*H},$$

the pair (M^H, h^H) is a symmetric $Z[\{1\}]$ module. Denote this symmetric Z-module by $(M, h)^H$ in short, c.f. [5, Notation 4.8].

The group ring is provided with involution

$$\left(\sum_{\sigma \in G} a_{\sigma} \sigma\right)^* = \sum_{\sigma \in G} a_{\sigma} \sigma^{-1}.$$

We have $(xy)^* = y^*x^*$ for product of two elements x and y of the group ring. A non-degenerate G-invariant symmetric bilinear \mathbf{R} -form $\langle x, y \rangle$ on $\mathbf{R}[G]$ is defined from the trivial character 1_G of G:

(5)
$$\langle x, y \rangle = 1_G(y^*x)$$

Hereafter, we denote by the symbol V this symmetric \mathbf{R} -space $\mathbf{R}[G]$. V is self-dual, that is $V^* = V$. We denote a sum of every element contained in a subset A of G by s_A or s(A). An idempotent element associated to the subgroup H in the group ring $\mathbf{R}[G]$ is defined to be

(6)
$$e_H = \frac{1}{|H|} s_H.$$

Denote by $\mathbf{Z}[G]e_H$ a $\mathbf{Z}[G]$ -submodule generated by e_H . Put $V_H = \mathbf{R}[G]e_H$. We define a non-degenerate G-invariant symmetric bilinear \mathbf{R} -form h_H by

$$h_H(u, v) = |H| < u, v >$$

on V_H . We see $h_H(\sigma e_H, \sigma e_H) = 1$ and $h_H(\sigma e_H, \tau e_H) = 0$ if $\sigma e_H \neq \tau e_H$. Thus, we have V_H is self-dual with respect to h_H . The form h_H is considered it is induced from inclusion $\mathbf{Z}[G]e_H \to V_H$. The inclusion map gives a symmetric $\mathbf{Z}[G]$ -module structure. We also denote this structure by h_H :

(7)
$$h_H: \mathbf{Z}[G]e_H \to V_H = (V_H)^*.$$

Moreover, since $\{\sigma e_H\}$ is a Z-basis of $Z[G]e_H$, the symmetric Z[G]-module

 $(\mathbf{Z}[G]e_H, h_H)$ is unimodular, c.f. [5, Notation 5.14].

The following lemma is a consequence from Corollary 4.14 in [5]. We shall give an elementary proof following to the proof of Proposition 10.31 in [2].

LEMMA 1. Let (M,h) be an arbitrary non-degenerate symmetric $\mathbf{Z}[G]$ -module. Then, we have an isometry

$$(\mathbf{Z}[G]e_H\otimes M, h_H\otimes h)^G\to (M,h)^H.$$

Proof. Let [G/H] be the complete set of representatives of right cosets. The set $\{\sigma e_H : \sigma \in [G/H]\}$ is a \mathbf{Z} -basis of the free \mathbf{Z} -module $\mathbf{Z}[G]e_H$. Thus, each element x is written uniquely as a sum

$$x = \sum_{\sigma \in [G/H]} \sigma e_H \otimes m_{\bar{\sigma}}, \quad m_{\bar{\sigma}} \in M,$$

where $\bar{\sigma}$ denotes the right coset σH . If x is G-invariant, we see

$$gx = \sum_{\sigma} g\sigma e_H \otimes gm_{\bar{\sigma}} = x$$

for every $g \in G$. Since the coefficient $m_{\bar{\sigma}}$ of each σ is uniquely determined for x, we have $m_{\bar{g}} = gm_{\bar{1}}$. In particular, if we set $g \in H$, we have $m_{\bar{1}} = gm_{\bar{1}}$. Thus, by sending $x \in (\mathbf{Z}[G]e_H \otimes M)^G$ to $m_{\bar{1}} \in M^H$, an injective mapping is defined. It is easy to verify this mapping is a surjective homomorphism. Therefore, $(\mathbf{Z}[G]e_H \otimes M)^G \cong M^H$ as \mathbf{Z} -modules. We shall show this isomorphism is an isometry. Let x and y be two

elements of $(\mathbf{Z}[G]e_H \otimes M)^G$:

$$egin{array}{lll} x & = & \displaystyle\sum_{\sigma \in G/H} \sigma e_H \otimes \sigma m, \\ y & = & \displaystyle\sum_{\sigma \in G/H} \sigma e_H \otimes \sigma n \end{array}$$

for $m, n \in M^H$. Denote by \bar{m} and \bar{n} the images into $\bar{M} \otimes \mathbf{R}$. We have

$$\begin{split} &\frac{1}{|G|} \cdot h_H \otimes h(x)(y) \\ &= \frac{1}{|G|} \sum_{\sigma, \tau \in [G/H]} h_H(\sigma e_H)(\tau e_H) \cdot h(\sigma \bar{m})(\tau \bar{n}). \\ &= \frac{1}{|G|} \sum_{\sigma \in [G/H]} h(\sigma \bar{m})(\sigma \bar{n}) \\ &= \frac{1}{|H|} h(\bar{m})(\bar{n}). \end{split}$$

This shows the isomorphism is an isometry.

The subset consisting of every H such that $n_H > 0$ (resp. $n_H < 0$) is denoted by Γ_+ (resp. Γ_-). Associated to these subsets, we define $\mathbf{Z}[G]$ -modules M_{\pm} to be $M_{\pm} = \bigoplus_{H \in \Gamma_{\pm}} (\mathbf{Z}[G]e_H)^{|n_H|}$. The non-degenerate symmetric $\mathbf{Z}[G]$ -module structures are defined on M_{\pm} by

(8)
$$(M_{\pm}, h_{\pm}) = \bigoplus_{H \in \Gamma_{\pm}} (Z[G]e_H, h_H)^{n_H}$$

from (7). Since the character relation (1) asserts there is an Q[G]-isomorphism

$$M_+ \otimes \mathbf{Q} \cong M_- \otimes \mathbf{Q},$$

there is an injective $\mathbf{Z}[G]$ -homomorphism of M_{-} into $M_{+} \otimes \mathbf{Q}$. Put $V_{\pm} = M_{\pm} \otimes \mathbf{R}$. Let j be an $\mathbf{R}[G]$ -isomorphism of V_{-} into V_{+} obtained from this $\mathbf{Z}[G]$ -homomorphism. Let (4)].

 j^* be the adjoint of j with respect to Rforms on V_+ . Namely, j^* is defined by

(9)
$$h_+(j(u), v) = h_-(u, j^*(v)).$$

 j^* is an R[G]-isomorphism of V_+ onto V_- .

By [5, §5.4], the fundamental invariant $\delta(M_+, M_-; M)$ is defined for an arbitrary non-degenerate symmetric $\mathbf{Z}[G]$ -module (M, h). We write it as $\delta(M, h)$ or $\delta(M)$ in short. The following discriminant relation holds from [5, Theorem 6.1]:

(10)
$$\delta(M,h) = \frac{\operatorname{disc}((M_{+} \otimes M, h_{+} \otimes h)^{G})}{\operatorname{disc}((M_{-} \otimes M, h_{-} \otimes h)^{G})}.$$

If we define a function f on Γ by $f(H) = \operatorname{disc}((M,h)^H)$, we have by virtue of Lemma 1 a formula

$$\delta(M) = \prod_{H \in \Gamma} f(H)^{n_H}.$$

We generalize this notion to an arbitrary function f taking values in non-zero real numbers. We define a functional δ on such f's to be

$$\delta(f) = \prod_{H \in \Gamma} f(H)^{n_H}.$$

This functional is multiplicative. When f is a constant function, we see $\delta(f) = f(1)^{\sum n_H}$. However, this value $\delta(f)$ equals to 1, because we have

$$\begin{split} \langle \mathbf{1}_G, \sum_{H \in \Gamma} n_H \psi_H \rangle_G &= \sum_{H \in \Gamma} n_H \langle \mathbf{1}_G, \psi_H \rangle_G \\ &= \sum_{H} n_H \langle \mathbf{1}_H, \mathbf{1}_H \rangle_H \end{split}$$

from the Frobenius reciprocity law, c.f. [1, (4)].

Remark 1. If M is a $\mathbf{Z}[G]$ -module of finite order, it has a trivial symmetric $\mathbf{Z}[G]$ -module structure, because of $M \otimes \mathbf{R} = 0$. We denote this structure by (M, *). Note

$$\delta(M,*) = \prod_{H \in \Gamma} rac{1}{|M^H|^{n_H}}$$

from the definition (4).

3. The group of S-units. We assume G is the Galois group of a finite Galois extension K/k of algebraic number fields. Let S be a finite set of places of k containing all the archimedian places. Denote by S_0 the subset of every non-archimedian places. Suppose $S = \{v_1, \dots, v_s\}$. We choose a prolongation onto K of each v_i and fix it once for all. Denote by w_i the selected place. Let G_i be the decomposition group of w_i . Every place of K^H lying above v_i is obtained from the decomposition into two sided cosets:

$$G = \dot{\cup}_{j=1}^{s_i} H \sigma_{ij} G_i.$$

Let u_i be restriction of w_i onto K^H . There are s_i places $\sigma_{ij}u_i$, $j=1,\dots,s_i$ over v_i . Denote by $S_0(K^H)$ the union of all such places for every $v_i \in S_0$. Let \mathcal{P}_k be the set of the all places of k. Denote by $|\cdot|_v$ be the normalized multiplicative valuation for $v \in \mathcal{P}_k$ so that the product formula holds. Namely,

$$\prod_{v\in\mathcal{P}_k}|x|_v=1$$

holds for every $x \in k^{\times}$. Further, we associate a multiplicative valuation $||\cdot||_{w_i}$ to each w_i so that the value $||x||_{w_i}$ for every

 $x \in k$ argrees to the value $|x|_{v_i}$. Denote by $h_S(H)$ the order of the S-ideal class group of K^H . $h_S(H)$ is a function on Γ . An element $x \in K$ is called an S-unit if an arbitrary prime divisor of the principal ideal (x) belongs to the set of valuation ideals of places contained in $S_0(K)$. The subgroup of K^{\times} generated by every S-unit of K is called the group of S-units of K and is denoted by E_S . We shall give two non-degenerate symmetric $\mathbf{Z}[G]$ -module structures on E_S . We abbreviate the idempotent e_{G_i} defined by (6) to e_i . Put

$$L_S = \bigoplus_{i=1}^{s} \mathbf{Z}[G]e_i,$$

$$V_S = \bigoplus_{i=1}^{s} Ve_i.$$

A non-degenerate symmetric R-form on V_S is defined by

(11)
$$\langle \sum_{i=1}^{s} u_i, \sum_{i=1}^{s} v_i \rangle = \sum_{i=1}^{s} h_{G_i}(u_i, v_i).$$

The inclusion map of L_S into V_S is given by

$$h_S = \bigoplus_{i=1}^s h_{G_i} : L_S \to V_S = V_S^*,$$

which is a non-degenerate symmetric G-invariant $\mathbf{Z}[G]$ -module structure on L_S . Let $[G/G_i]$ be a complete set of representatives of G/G_i . Put $\alpha_i = s([G/G_i])$. L_S^G is a free \mathbf{Z} -module on a basis $\{\alpha_i e_i : 1 \leq i \leq s\}$. Put $\eta = (\alpha_1 e_1, \dots, \alpha_s e_s) \in L_S^G$. V_S^G contains a one-dimensional subspace generated by η . Since $L_S \cap V_{\eta} = \mathbf{Z}\eta$, there is an injective $\mathbf{Z}[G]$ -homomorphism $L_S/\mathbf{Z}\eta \to \mathbf{Z}[G]$ -homomorphism $L_S/\mathbf{Z}\eta \to \mathbf{Z}[G]$ -homomorphism $L_S/\mathbf{Z}\eta \to \mathbf{Z}[G]$ -homomorphism $L_S/\mathbf{Z}[G]$ -homomorphism L_S/\mathbf{Z}

 V_S/V_η . Moreover, V_η has an orthogonal homomorphism defined to be complement $V_{S,1}$ in V_S :

$$V_{S,1} = \{ u \in V_S : \langle \eta, u \rangle = 0 \}$$

with respect to (11). We observe

$$\langle \sum_{i=1}^s \sum_{\sigma_i \in [G/G_i]} a_{\sigma_i} \sigma_i e_i, \eta \rangle = \sum_{i=1}^s \sum_{\sigma_i \in [G/G_i]} a_{\sigma_i}.$$

Thus, if we define $|u| = \langle u, \eta \rangle$, we see $u \in V_{S,1}$ is equivalent to |u| = 0. We consider $V_{S,1}$ as a symmetric space by restricting the **R**-form on V_S . Since this symmetric form is G-invariant, we have $V_{S,1}^* = V_{S,1}$ as R[G]-modules with respect to the symmetric form. Let $h_{S,1}$ be the composite map of the canonical map $V_S/V_{\eta} \rightarrow V_{S,1}$ induced from the projection onto $V_{S,1}$ and the homomorphism of $L_S/\mathbf{Z}\eta$ into V_S/V_{η} . Put $L_{S,1} = L_S/\mathbf{Z}\eta$. The pair $(L_{S,1}, h_{S,1})$ is a non-degenerate symmetric Z[G]-module.

We apply the generalized Dirichlet-Herbrand theorem on S-units, c.f. [4, Theorem I.3.7]. There is a Q[G]-isomorphism

(12)
$$E_S \otimes \mathbf{Q} \to L_{S,1} \otimes \mathbf{Q}.$$

Thus, $E_S \otimes \mathbf{R} \cong V_{S,1}$. Since E_S is mapped into $E_S \otimes \mathbf{R}$ by $x \rightarrow x \otimes 1$, there is a Z[G]-homomorphism h of E_S into $V_{S,1}$. This makes E_S a non-degenerate symmetric $\boldsymbol{Z}[G]$ -module.

 E_S is provided with another nondegenerate symmetric Z[G]-module struc-Let $l : E_S \rightarrow V_S$ be a $\mathbf{Z}[G]$ -

$$l(u) = \left(\sum_{\sigma \in G} \log ||\sigma^{-1}u||_{w_i} \sigma e_i\right)_{1 \leq i \leq s}.$$

We see

$$| l(u) | = \log \left(\prod_{i=1}^{s} \prod_{\sigma_i \in [G/G_i]} ||\sigma_i^{-1}u||_{w_i}^{|G_i|} \right).$$

The product formula of the multiplicative valuations normalized to the algebraic number field K asserts this value is equal to 0. Hence, l takes values in $V_{S,1}$. Since Scontains every archimedian place, Ker l =Thus, $\mathbf{Z}[G]$ -module (E_S, l) is a non-degenerate symmetric. We compute $\langle l(u), l(v) \rangle$ and obtain

(13)
$$\langle l(u), l(v) \rangle = \sum_{i=1}^{s} \sum_{\sigma_i \in [G/G_i]} \log ||\sigma_i^{-1}u||_{w_i} \log ||\sigma_i^{-1}v||_{w_i}|_{G_i}|.$$

This shows $\langle l(u), l(v) \rangle$ coincides with the form $\rho_S(u,v)$ defined in [5, (8.1)]. We restate here the following formula obtained in [5, Theorem 2.7]:

THEOREM 2 (Kani). Let w be the function on Γ defined to be $w(H) = |E_{S,tor}^H|$. Then, we have

$$\delta(h_S)^2 = \frac{\delta(\mathbf{Z})\delta(w)}{\delta(E_S, l)\delta(L_S)}.$$

Remark 2. If H is cyclic, we have $\delta(\mathbf{Z}[G]e_H) = 1$ by [5, Example 2.13. a)]. Therefore, $\delta(\mathbf{Z}[G]e_i) = 1$ if v_i is archimedian. We see $\delta(L_S) = \delta(L_{S_0})$.

REMARK 3. We define a function n_G on Γ to be $n_G(H) = |G:H|$. We have

$$\delta(\boldsymbol{Z}) = \prod_{H \in \Gamma} |H|^{-n_H} = \delta(n_G),$$

c.f. [5, (2.7)].

REMARK 4. Let w_2 be the 2-part of w. We have $\delta(w) = \delta(w_2)$ from [1, §2.5].

4. Brauer's class number relations. $V_{S,1}^* = V_{S,1}$ contains a $\mathbf{Z}[G]$ -lattice isomorphic to $L_{S,1} = L_S/\mathbf{Z}\eta$. The inverse image M' by $h: E_S \to V_{S,1}^*$ of the lattice is a submodule containing $E_{S,tor}$. Since Ker $h = E_{S,tor}, M'^{|E_{S,tor}|}$ is torsion free and is isomorphic to $L_{S,1}$. Hence, E_S contains a $\mathbf{Z}[G]$ -submodule isomorphic to $L_{S,1}$. Let M_S be an arbitrary such $\mathbf{Z}[G]$ -submodule. By restricting the two symmetric $\mathbf{Z}[G]$ -module structures of E_S, M_S is also provided with two structures. We denote them by (M_S, h) and (M_S, l) , respectively. We shall prove the following class number relation holds:

THEOREM 3. We define a function i_{E_S,M_S} on Γ to be $i_{E_S,M_S}(H) = [E_S^H:M_S^H]$. Then, we have

$$\delta(h_S) = \frac{\delta(i_{E_S,M_S})\delta(n_G)}{\delta(L_{S_0})}.$$

This theorem is a generalization to S-class numbers of Brauer's class number relation proved in [9, Theorem 4.1]. The key of the proof is the following lemma:

LEMMA 4.
$$\delta(M_S, h) = \delta(M_S, l)$$
.

Proof. Let ι (resp. ι_{\pm}) be identity map (resp. identity maps) on $V_{S,1}^*$ (resp. V_{\pm}^*). Since the adjoint map j^* in (9) is an isomorphism, $j^* \otimes \iota$ is an isomorphism of $V_+^* \otimes_{\mathbf{R}} V_{S,1}^*$ onto $V_-^* \otimes_{\mathbf{R}} V_{S,1}^*$. Denote by $(j^* \otimes \iota)(G)$ restriction of $(j^* \otimes \iota)$ on the G-invariant submodules. Let α be an automorphism on $V_{S,1}^*$ which is induced from an isomorphism $l \circ h^{-1} : h(M_S) \to l(M_S)$ of sublattices. We abbreviate $\iota_{\pm} \otimes \alpha$ to α_{\pm} in short and denote by $\alpha_{\pm}(G)$ restriction onto $(V_{\pm}^* \otimes_{\mathbf{R}} V_{S,1}^*)^G$. We have

$$\alpha_{+}(G) = (j^* \otimes \iota)(G)^{-1} \circ \alpha_{-}(G) \circ (j^* \otimes \iota)(G).$$

Thus, $\det \alpha_{+}(G) = \det \alpha_{-}(G)$. Concerning two symmetric $\mathbf{Z}[G]$ -module structures $(h_{\pm} \otimes h)^{G}$ and $(h_{\pm} \otimes l)^{G}$ on $(M_{\pm} \otimes M_{S})^{G}$, we have the following commutative diagram:

$$\begin{array}{ccc} (M_{\pm} \otimes M_S)^G & \xrightarrow[(h_{\pm} \otimes h)^G]{} & (V_{\pm}^* \otimes V_{S,1}^*)^G \\ & \downarrow_{id} & & \downarrow_{\alpha_{\pm}(G)} \\ (M_{\pm} \otimes M_S)^G & \xrightarrow[(h_{\pm} \otimes l)^G]{} & (V_{\pm}^* \otimes V_{S,1}^*)^G. \end{array}$$

Thus, a relation between the Gram matrices

$$\operatorname{disc}((M_{\pm} \otimes M_S, h_{\pm} \otimes l)^G) = (\operatorname{det} \alpha_{\pm}(G))^2 \operatorname{disc}((M_{\pm} \otimes M_S, h_{\pm} \otimes h)^G).$$

is obtained. Hence, it follows $\delta(M_S, h) = \delta(M_S, l)$ from (10).

Proof of Theorem 3. The quotient module E_S/M_S is of finite order. It is a trivial non-degenerate symmetric $\mathbf{Z}[G]$ -module $(E_S/M_S,*)$. Thus, we have an exact se-

quence in the category of symmetric $\boldsymbol{Z}[G]$ -modules:

(14)
$$1 \to (M_S, h) \to (E_S, h)$$

 $\to (E_S/M_S, *) \to 1.$

For each $H \in \Gamma$, the following sequence is exact:

$$1 \to \mathbf{Z}[G]e_H \otimes M_S \to \mathbf{Z}[G]e_H \otimes E_S$$

$$\to \mathbf{Z}[G]e_H \otimes E_S/M_S \to 1.$$

We have a cohomology long exact sequence

$$1 \to (\boldsymbol{Z}[G]e_H \otimes M_S)^G \to (\boldsymbol{Z}[G]e_H \otimes E_S)^G \to (\boldsymbol{Z}[G]e_H \otimes E_S/M_S)^G \xrightarrow{\delta_H} H^1(G, \boldsymbol{Z}[G]e_H \otimes M_S)$$

from this sequence. We can apply "exact sequence formula", c.f. [5, Theorem 6.21]. We have

(15)
$$\delta(E_S, h)\delta(E_{S,tor}) = \delta(M_S, h)\delta(E_S/M_S)^2\psi^2,$$

where

$$\psi = \prod_{H \in \Gamma} \left| \operatorname{Im} \, \delta_H \right|^{n_H}.$$

We notice that the first three terms in a cohomology long exact sequence

$$1 o M_S^H o E_S^H o (E_S/M_S)^H$$

$$\xrightarrow{f_H} H^1(H,M_S)$$

are equal to those in the above cohomology exact sequence by virtue of Lemma 1. Hence, $|\operatorname{Im} \delta_H| = |\operatorname{Im} f_H|$ and

$$\frac{|\operatorname{Im} \delta_H|}{|(E_S/M_S)^H|} = \frac{|\operatorname{Im} f_H|}{|(E_S/M_S)^H|}.$$

Therefore, we obtain

(16)
$$\frac{1}{[E_S^H:M_S^H]} = \frac{|\text{Im } \delta_H|}{|(E_S/M_S)^H|}.$$

and an auxiliary formula

(17)
$$\delta(E_S/M_S)\psi = \delta(i_{E_S,M_S})^{-1}$$

Moreover, since $L_S/\mathbb{Z}\eta\cong M_S$, we also have

(18)
$$\delta(L_S) = \delta(n_G)\delta(M_S, h)$$

from "exact sequence formula". Combining (15), (17) and (18), we have

$$\frac{\delta(E_S, h)}{\delta(w)} = \frac{\delta(L_S)}{\delta(n_G)\delta(i_{E_S, M_S})^2}$$

because of $\delta(E_{S,tor}) = \delta(w)^{-1}$. Moreover, in account of Lemma 4, we can substitute $\delta(E_S, h)$ for $\delta(E_S, l)$ in the formula of Theorem 2. In consequence, we have a formula

$$\delta(h_S)^2 = \frac{\delta(n_G)^2 \delta(i_{E_S,M_S})^2}{\delta(L_S)^2}.$$

This proves the theorem.

We shall give two applications of Theorem 3.

LEMMA 5. $\delta(h_S)$ is a unit in the ring \mathbf{Z}_p of p-adic integers for every prime number p not dividing |G|.

Proof. Let p be a prime not dividing |G|. We see $\delta(n_G) \in \mathbb{Z}_p^{\times}$. By the formula of $\delta(\mathbb{Z}[G/H])$ in [5, Example 2.1, b)], we have $\delta(\mathbb{Z}[G]e_i) \in \mathbb{Z}_p^{\times}$ for $i = 1, \dots, s$. Let f_0 be a function on Γ defined by $f_0(H) =$

 $|(E_S/M_S)^H|$. Since $p \nmid |H^1(H,M_S)|$, we have from (16) that $\delta(i_{E_S,M_S})$ is a p-adic integer if and only if $\delta(f_0)$ is also. Let Y be the p-primary submodule of E_S/M_S . Let p^m be the exponent of Y. Put $Y_n = Y^{p^n}$ for $n = 0, \dots, m$. Y_{n-1}/Y_n is an $\mathbf{F}_p[G]$ module. Let χ_n be the character of G afforded with an $\mathbf{F}_p[G]$ -module Y_{n-1}/Y_n . Let $\zeta^{(1)}, \dots, \zeta^{(r)}$ be a basic set of irreducible Q_n -characters of G, where Q_n denotes the field of p-adic numbers. Since $p \nmid |G|$, an \mathbf{F}_{n} -irreducible character is obtained from each $\zeta^{(i)}$ by reduction with respect to mod p. Denote by $\bar{\zeta}^{(i)}$ the \boldsymbol{F}_{p} -irreducible character. χ_n is a linear combination of $\bar{\zeta}^{(i)}$'s with non-negative integral coefficients:

$$\chi_n = \sum_{i=1}^r c_i \bar{\zeta}^{(i)}.$$

The dimension of $(Y_{n-1}/Y_n)^H$ over \mathbf{F}_p is given by the value of

$$\sum_{i=1}^r c_i \langle \zeta^{(i)}, \psi_H \rangle_G \dim_{\mathbf{F}_p} U_i,$$

where U_i are simple $\mathbf{F}_p[G]$ -modules affording the characters $\zeta^{(i)}$'s. We see

$$\sum_{H \in \Gamma} n_H \dim_{\mathbf{F}_p} (Y_{n-1}/Y_n)^H = 0$$

from (1). Thus, if we define a function f_n on Γ by $f_n(H) = |(Y_{n-1}/Y_n)^H|$, we have $\delta(f_n) = 1$. Since $f_0(H) = \prod_{n=1}^m f_n(H)$, we see $p \nmid \delta(i_{E_S,M_S})$.

COROLLARY 6. Let $h_S^{(p)}(H)$ be the highest power of $h_S(H)$ with respect to a prime p. If $p \nmid |G|$, we have $\delta(h_S^{(p)}) = 1$.

We assume K is a CM-field and k is a totally real subfield. The Galois group G contains the complex conjugation map τ . By Lemma 8 in the next section, the character relation (1) holds if and only if

$$\sum_{H \in \Gamma} n_H \tilde{e}_H = 0$$

holds. Denote by H^+ a subgroup generated by H and τ . Put $e^+ = \frac{1}{2}(1+\tau)$. Since

$$e_{H^+} = e_H e^+,$$

we have $\sum_{H\in\Gamma} n_H \tilde{e}_{H^+} = 0$ from the above idempotent relation. Thus, by Lemma 8, a character relation $0 = \sum_{H\in\Gamma} n_H \psi_{H^+}$ is yielded. Hence,

(19)
$$0 = \sum_{H \in \Gamma} n_H (\psi_H - \psi_{H^+}).$$

Let Γ_1 be a subset of Γ consisting of H such that $H \neq H^+$. We define functions f^{\pm} from an arbitrary function f on Γ to be

$$f^{-}(H) = \frac{f(H)}{f(H^{+})}$$
 and $f^{+}(H) = f(H^{+})$.

Then, the functional δ' defined from (19) satisfies $\delta'(f^+) = 1$, $\delta'(f) = \delta'(f^-)$ and

$$\delta(f^-) = \delta'(f) = \prod_{H \in \Gamma_1} f^-(H)^{n_H}.$$

Suppose S is the set of all the archimedian places. We put $E_S^+ = E_S^{<\tau>}$. Since $E_S^{2w(1)} \subset E_S^+$, we can choose M_S from a subgroup of E_S^+ . We observe an index relation

$$i_{E_S,M_S}(H) = [E_S^H:\mu_K^H E_S^{+H}][\mu_K^H E_S^{+H}:M_S]$$

holds, where μ_K is the subgroup of E_S consisting of every root of unity. Let Q be a function on Γ whose value is equal to the unit index of K^H if $\tau \notin H$ and which takes 1 when $H = H^+$. We have

$$i_{E_S,M_S}(H) = \frac{Q(H)w(H)i_{E_S,M_S}(H^+)}{2}.$$

Therefore, we obtain

COROLLARY 7. Let K be a CM-field which is a Galois extension on a totally real subfield k. If S is the set of all the archimedian places, then we have

$$\delta(h_S^-) = \delta(Q^-)\delta(w^-)\delta(n_G^-)$$

with respect to the character relation (1).

REMARK 5. Each of $\delta(Q^-)$, $\delta(w^-)$ and $\delta(n_G^-)$ takes a value of an integral power of 2.

5. Character relations. The induced character ψ_H is defined to be

$$\psi_H(\sigma) = \frac{1}{|H|} \sum_{g \in G} \dot{1}_H(g^{-1}\sigma g)$$

where 1_H is a function on G taking value 1 for every element of H and taking 0 for elements in $G\backslash H$, c.f. [2, (10.3)]. Let χ be a linear combination of ψ_H with integral coefficients n_H . We have

$$\sum_{\sigma \in G} \chi(\sigma) \sigma^{-1} = \sum_{\sigma} \left(\sum_{H \in \Gamma} n_H \psi_H(\sigma) \right) \sigma^{-1}$$

$$= \sum_{H} \frac{n_H}{|H|} \sum_{\sigma} \sum_{g \in G} \dot{1}_H(g^{-1} \sigma g) \sigma^{-1}$$

$$= \sum_{H} \frac{n_H}{|H|} \sum_{g} \sum_{\sigma \in gHg^{-1}} \sigma^{-1}$$

$$= \sum_{H} n_H \sum_{g} g e_H g^{-1}$$

Put $\tilde{e}_H = \frac{1}{|H|} \sum_{g \in G} e_{gHg^{-1}}$. We have

$$\sum_{\sigma \in G} \chi(\sigma) \sigma^{-1} = \sum_{H \in \Gamma} n_H \tilde{e}_H.$$

Let $\{\zeta^{(1)}, \dots, \zeta^{(r)}\}$ be the basic set of irreducible C-characters of G. Put $z = \sum_{H \in \Gamma} n_H \tilde{e}_H$. We have

$$\langle \chi, \zeta^{(i)} \rangle_G = \frac{1}{|G|} \sum_{\sigma \in G} \chi(\sigma) \zeta^{(i)}(\sigma^{-1})$$
$$= \frac{1}{|G|} \zeta^{(i)} (\sum_{\sigma} \chi(\sigma) \sigma^{-1})$$
$$= \frac{1}{|G|} \zeta^{(i)}(z).$$

By [2, Proposition 9.23], we have every class function on C[G] takes value 0 at z if $\langle \chi, \zeta^{(i)} \rangle_G = 0$ for $i = 1, \dots, r$. Furthermore, this condition implies z = 0, because z is an element of the center of C[G]. Conversely, if z = 0, we also have $\chi = 0$. Thus, we have

LEMMA 8. The character relation (1) holds if and only if $\sum_{H \in \Gamma} n_H \tilde{e}_H = 0$.

REMARK 6 (norm relations). Let U(G) be a subset of $\mathbf{Z}^{|\Gamma|}$ consisting of $\alpha = (\alpha_H)$ such that $\alpha_H s_H = 0$. This subset is a submodule and is called the module of norm relations in [7]. Let Δ_H be the subset of Γ consisting of every cyclic subgroup of G. Denote by $\Delta_{H,U}$ for each cyclic subgroup U the subset $\{N \in \Delta_H : N \geq U\}$. In [7, Satz 1], an element γ^H of U(G) was defined by

$$\gamma_U^H = \begin{cases} 0 & \text{if } U \notin \Delta_G \setminus \{H\}, \\ 1 & \text{if } U = H, \\ -\sum_{N \in \Delta_{H,U}} \mu(|N:U|) & \text{if } U \in \Delta_G \setminus \{H\}, \end{cases}$$

and it was proved the set $\{\gamma^H : H \notin \Delta_G\}$ is a **Z**-basis of U(G).

REMARK 7 (the formula of Kani-Rosen). Let R(G) be a Q-linear subspace of $Q^{|\Gamma|}$ consisting of $\beta = (\beta_H)$ such that $\sum_{H \in \Gamma} \beta_H \psi_H = 0$. Let Δ / \sim be the set of conjugacy classes of cyclic subgroups. Then, the dimension of R(G) is given by

$$\dim R(G) = |\Gamma| - |\Delta/ \sim |$$

c.f. [6, the formula (6)].

Hereafter, we restrict our concern onto abelian p-groups for a fixed prime p. Suppose

(20)
$$G \cong \mathbf{Z}/p^{m_1}\mathbf{Z} \times \cdots \times \mathbf{Z}/p^{m_n}\mathbf{Z},$$

for integers $m_1 \geq \cdots \geq m_n \geq 1$. Let \hat{G} be the group of all the characters, that is $\hat{G} = \operatorname{Hom}(G, \mathbb{C}^{\times})$. Denote by H^{\perp} (resp. X^{\perp}) for a subgroup H (resp. X) of G (resp. \hat{G}) the annihilator of H (resp. X). We have $(X^{\perp})^{\perp} = X$ and $H_1^{\perp} \cap H_2^{\perp} = (H_1H_2)^{\perp}$ for subgroups H_1 and H_2 of G. Put $G^* = (\hat{G}^p)^{\perp}$. We denote by H^* the subgroup HG^* for H. Put $Z = \hat{G} \setminus \hat{G}^p$. Let Γ_0 be the subset of Γ consisting of $\operatorname{Ker} \chi$ for every $\chi \in Z$. We have

$$\hat{G} = \bigcup_{H \in \Gamma_0} H^{\perp}, \quad H^{\perp} \cap G^{*\perp} = H^{*\perp}.$$

Thus, if $H = \langle \zeta \rangle^{\perp}$ for $\zeta \in \mathbb{Z}$, we have $H^{*\perp} = \langle \zeta^p \rangle$.

LEMMA 9. If $H_1, H_2 \in \Gamma_0$ are distinct, we have $H_1^{\perp} \cap H_2^{\perp} \leq H_1^{*\perp} \cap H_2^{*\perp}$.

Proof. There are $\zeta_i \in Z$ such that $\langle \zeta_i \rangle = H_i^{\perp}$. If $\zeta_1 \notin \langle \zeta_2 \rangle$, we see $\langle \zeta_1 \rangle \cap \langle \zeta_2 \rangle \leq \langle \zeta_2^p \rangle$. Thus, we have $H_1^{\perp} \cap H_2^{\perp} \leq H_2^{*\perp}$. Similarly, we have $H_1^{\perp} \cap H_2^{\perp} \leq H_1^{*\perp}$.

THEOREM 10. We have a character relation

$$\psi_1 - \psi_{G^*} = \sum_{H \in \Gamma_0} (\psi_H - \psi_{H^*}).$$

Proof. By Lemma 9, we have

$$(H_1^{\perp}\backslash H_1^{*\perp})\cap (H_2^{\perp}\backslash H_2^{*\perp})=\emptyset$$

for every pair $(H_1, H_2) \in \Gamma_0 \times \Gamma_0$ such that $H_1 \neq H_2$. Since $H^{*\perp} = G^{*\perp} \cap H^{\perp}$, Z is a disjoint union of $H^{\perp} \backslash H^{*\perp}$:

(21)
$$Z = \hat{G} \backslash G^{*\perp} = \bigcup_{H \in \Gamma_0} H^{\perp} \backslash H^{*\perp}.$$

Every induced character ψ_H is a linear combination of $\zeta \in \hat{G}$ with non-negative integral coefficients m_{ζ} . The value of m_{ζ} is computed by the Frobenius reciprocity law:

$$m_{\zeta} = \langle \psi_H, \zeta \rangle_G = \langle 1_H, \zeta \downarrow_H \rangle_H,$$

where $\zeta \downarrow_H$ denotes restriction onto H. Clearly, $m_{\zeta} = 1$ if $\zeta \in H^{\perp}$, and $m_{\zeta} = 0$ if $\zeta \downarrow_H$ is not trivial. Therefore, $\psi_H = \sum_{\zeta \in H^{\perp}} \zeta$. By (21), we have

$$\begin{split} \psi_1 - \psi_{G^*} &= \sum_{\zeta \in \hat{G}} \zeta - \sum_{\zeta^* \in G^{*\perp}} \zeta^* \\ &= \sum_{H \in \Gamma_0} \left(\sum_{\zeta \in H^\perp} \zeta - \sum_{\zeta^* \in H^{*\perp}} \zeta^* \right) \\ &= \sum_{H \in \Gamma_0} (\psi_H - \psi_{H^*}). \end{split}$$

6. Examples.

EXAMPLE 1. Suppose $n \geq 2$ and $m_1 = \cdots = m_n = m \geq 2$ in (20). We have $G^* = G^{p^{m-1}}$ and $\Gamma_0 = \{H : G/H \cong \mathbf{Z}/p^m \mathbf{Z}\}$. Put $K^* = K^{G^*}$. If $H \in \Gamma_0$ is the kernel of a character χ , we have $H^{*\perp} = \langle \chi^p \rangle$. Thus, we see $H_1^* = H_2^*$ is equivalent to $\langle \chi_1^p \rangle = \langle \chi_2^p \rangle$. If we choose $H \in \Gamma_0$ arbitrarily, the number of subgroups $H' \in \Gamma_0$ such that $H^* = H'^*$ is equal to p^{n-1} . By Theorem 10, we obtain a character relation

$$0 = (\psi_1 - \psi_{G^*}) - \sum_{H \in \Gamma_0} (\psi_H - \psi_{H^*}).$$

Put $\Gamma_0^* = \{H^* : H \in \Gamma_0\}$. Since $\delta(n_G) = p^{n-|\Gamma_0|}$, the corresponding class number relation is

$$\frac{\frac{h_S(K)}{h_S(K^*)}}{\left(\prod\limits_{H^* \in \Gamma_0^*} h_S(K^{H^*})\right)^{p^{n-1}}} \cdot \frac{\delta(i_{E_S,M_S})}{\delta(L_{S_0})}$$

 $n^{n-|\Gamma_0|}$

EXAMPLE 2. Set p=2. Let q be a positive integer such that $8 \mid \phi(q)$. Let m be a square free integer prime to q. Let K_1 be the cyclic extension of degree 8 and of conductor q over \mathbf{Q} . Put $K=K_1(\sqrt{m})$ and $k=\mathbf{Q}$. We see n=2, $m_1=8$ and $m_2=2$. Put $K_3=\mathbf{Q}(\sqrt{m})$. We define $\chi_1\sim\chi_2$ for $\chi_i\in\hat{G}$ to be $\langle\chi_1\rangle=\langle\chi_2\rangle$. Let ρ (resp. χ) be a Dirichlet character corresponding to K_1 (resp. K_3) of order 8 (resp. 2). A set

of complete representatives of Z/\sim is given by

$$\{\rho, \quad \rho\chi, \quad \rho^2\chi, \quad \rho^4\chi, \quad \chi\}.$$

For each character ζ , we associate a subgroup $H = \operatorname{Ker} \zeta$ and a subfield $L = K^H$ as follows.

We observe $G^* = \langle \rho^2 \rangle^{\perp}$ and

$$H_1^* = H_2^* = G^*, H_3^* = H_5^* = G, H_4^* = \langle \rho^4 \rangle^{\perp}.$$

Write K_4^* for $K^{H_4^*}$. Theorem 10 yields a character relation

(22)
$$0 = \psi_1 - \sum_{i=1}^{5} \psi_{H_i} + \psi_{G^*} + \psi_{H_4^*} + 2\psi_G.$$

Since $\delta(n_G) = 8^{-1}$, the corresponding class number relation is

(23)
$$\frac{h_S(K)h_S(K_4^*)h_S(K^*)}{\prod_{i=1}^5 h_S(K_i)} = \frac{\delta(i_{E_S,M_S})}{8\delta(L_{S_0})}.$$

We compute the norm relation γ^G and obtain

$$0 = s_G - \sum_{i=1}^{5} s_{H_i} + s_{H_{3,2}} + s_{H_{3,4}} + 2s_1,$$

where $H_{3,2}$ and $H_{3,4}$ are terms of the composition series

$$H_3 > H_{3,2} > H_{3,4} > \{1\}.$$

Denote by $K_{3,2}$ and $K_{3,4}$ the fixed field by $H_{3,2}$ and $H_{3,4}$, respectively. Since $\tilde{e}_H = |G|e_H$, the character relation

$$\begin{split} 0 &= \psi_1 - \psi_{H_1} - \psi_{H_2} - 4\psi_{H_3} \\ &- 2\psi_{H_4} - 4\psi_{H_5} + 2\psi_{H_{3,2}} + \psi_{H_{3,4}} + 8\psi_G \end{split}$$

yields from Lemma 8. If we apply Theorem 10 to Galois extension $K_{3,4}/K_4^*$ and $K_{3,2}/\mathbf{Q}$ and lift the obtained character relations onto those of G, we can transform the above relation to (22).

We assume K_1 is real abelian and K_3 is imaginary quadratic and $S_0 = \emptyset$. We see K and K_2 , K_3 , K_4 , K_5 are imaginary abelian field. By Corollary 7, we have

$$\frac{h^-(K)}{\prod_{i=2}^5 h^-(K_i)} = \frac{\delta(Q^-)\delta(w^-)}{8}.$$

References

 R. BRAUER; Beziehungen zwischen Klassenzahlen von Teilkörpern eines galoisschen Körpers. Math. Nachr. 4(1951), 158-174

- [2] C. W. Curtis and I. Reiner; Methods of Representation Theory with Applications to Finite Groups and Orders I. John Willy & Sons, 1981.
- [3] C. W. Curtis and I. Reiner; Methods of Representation Theory with Applications to Finite Groups and Orders II. John Willy & Sons, 1987.
- [4] G. GRAS; Class Field Theory: From Theory to Practice. Springer, 2004.
- [5] E. Kani; Discriminants of hermitian R[G]-modules and Brauer's class number relation. Algebra and number theory (Essen, 1992), 43–135, de Guyter, Berlin, 1994.
- [6] E. KANI and M. ROSEN; Idempotent relations and factors of Jacobians. Math. Ann. 45(1989), 307–327.
- [7] H. P. Rehm; Über die gruppentheoretische Struktur der Relationen zwishen Relativnormabbildungen in endlichen Galoisshen Körpererweiterungen. J. Number Theory 7(1975), 49–70.
- [8] J. TATE; Les Conjecture de Stark sur les Fonctions L d'Artin. Birkhäuser Boston (1984).
- [9] C. Walter; Brauer's class number relation. Acta Arith. 35(1979), 33–40.
- [10] C. WALTER; Kuroda's class number relation. Acta Arith. 35(1979), 41–51.