A New Transportation Problem on a Graph with
Sending and Bringing-Back Operations

S5 eng

HhRE

~EH: 2021-04-05

*F—7—NK (Ja):

F—7— K (En):

YRR

X—=ILT7 KL AR:

FiT/:
https://doi.org/10.24517/00061599

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/

A New Transportation Problem on a Graph
with Sending and Bringing-Back Operations

Tetsuo Asano!

Kanazawa University, Kanazawa, and
Japan Advanced Institute of Science and Technology, Nomi, Japan

Abstract. This paper considers a transportation problem which is dif-
ferent from the conventional model. Suppose we are given many stor-
ages (nodes) to store multiple kinds of commodities together with roads
(edges) interconnecting them, which are specified as a weighted graph.
Some storages have surplus and others have shortages. Problem is to de-
termine whether there are transportations to eliminate all of shortages.
For transportation we can use a vehicle with the loading capacity at
each node. Each vehicle visits one of its neighbors with some commodi-
ties which are unloaded at the neighbor. Then, we load some other com-
modities there, and then bring them back to the original node. How to
design such send-and-bring-back transportations to eliminate all short-
ages is the problem. When we define a single round of transportations to
be a set of those transportations at all nodes, whether there is a single
round of valid transportations that eliminate all of shortages is our con-
cern. After proving NP-completeness of the problem we present a linear
time algorithm for a special case where an input graph is a forest.

Keywords: Forest - linear program - multi-commodity transportation problem
- NP-completeness - sending and bringing-back.

1 Introduction

In this paper we consider a new type of a transportation problem which is
different from the conventional ones but based on a very natural model. A typical
transportation problem in operations research is to find the minimum cost of
transporting a single commodity from m sources to n destinations along edges in
a given network. This type of problems can be solved using linear programming.
Many variations have been considered [2].

The transportation problem to be considered in this paper is defined very
naturally. We are given a weighted graph G = (V, E,w), where V is a set of
places (nodes) to store many different commodities and F is a set of roads (edges)
interconnecting nodes. At each node we can store multiple kinds of commodities.
Some storages have surplus and others have shortages. Formally, we specify
quantities of commodities associated with a node u by (wy (u), w2 (u), ..., wy(w)),
where wyg(u) represents a quantity of the k-th commodity. If wg(u) > 0 then

2 T. Asano

wi(u) units of the k-th commodity are stored at node u. On the other hand,
wi(u) < 0 means that |wg (u)| units of the k-th commodity are needed at w.

A vehicle is available at each node for transportation. A transportation be-
tween two adjacent nodes u and v using a vehicle at u is done as follows. We load
some amounts of commodities at node u, which are specified by (s1(u), s2(u), - . .,
sn(u)). After visiting a target node v and unloading them at node v, we load
commodities at v, which are specified by (by (u), b2(u), ..., bs(u)), and bring them
back to the node wu. All of vehicles start their nodes simultaneously. The first
round of transportations finishes when the transportations are completed at all
nodes.

One of our goals is to find a single round of transportations that eliminate all
shortages. Of course, it is not realistic to transport a negative quantity of com-
modity and also to load more than there exists at a node. We also assume that
each vehicle has some loading capacity, C. All the vehicles leave their nodes at
the same time. Each transportation must be independent of their order. In other
words, transportations between adjacent nodes are not synchronous and quanti-
ties of commodities are determined before the start time of all transportations.
Without such constraint, it would be possible to send commodities no matter
how far away it is (by sending some load from node u; to us and then we send
the load from wus to ug and so on). This assumption is referred to as the order
independence assumption, which is a rigid principle in this paper. When we
consider a single round of transportations, a transportation from non-negative to
non-negative weight or from non-positive to non-positive weight is not effective
and thus excluded.

The problem of measuring the Earth Mover’s distance is related to this prob-
lem, which is a problem of finding the most economic way of transporting soil
placed in many different places to holes to fill in. Earth movers are used for
transporting the soil. It is possible to use whatever number of earth movers.
Problem is to minimize the total cost of transportations. This problem looks
hard, but a polynomial-time algorithm using network flow algorithm is known.
It is similar to the problem in this paper, but it is different in the following
senses: (1) we transport not only one kind of commodity but many kinds, (2)
in our case transportations are restricted only between adjacent nodes, (3) we
can send commodities from a node u to its adjacent node v and also bring com-
modities at v back to u, and (4) we discard transportation distances and weight
of commodities to carry. Refer to the paper [4] for more detail about the earth
mover’s distance.

Our first question is, given a weighted graph G = (V, E,w), whether there
is a single round of transportations that eliminate all of shortages. Our second
question is to find the minimum number of rounds that eliminate all of shortages.
The second question looks much harder than the first one. In this paper we first
consider the problem in one dimension and show that the first problem can be
solved in linear time. The problem in two dimensions is much harder. After
proving NP-completeness of the first problem above we present a linear-time
algorithm for a special case where an input graph is a forest.

New Transportation Problem on Graphs 3

2 Problem Definition

Consider a weighted graph G = (V, E,w), where V is a set of places (nodes) to
store commodities and E a set of roads (edges) interconnecting those nodes. At
each node we store different kinds of commodities. Some nodes have surplus and
others have shortages. Formally, We specify quantities of commodities associated
with a node u by (w1 (u),w2(u), ..., wn(u)), where wy(u) represents a quantity
of the k-th commodity. If wi(u) > 0 then wg (u) units of commodity are stored
at node u. On the other hand, wy(u) < 0 means that |wy,(u)| units of the k-th
commodity are needed at u. A vehicle for transportation is available at each
node.

We specify a transportation using a vehicle at node u by a tuple (u, 7(u), (s1(u),
sa(w), ..., sn(u)), (b1 (u), ba(u),...,bn(uw))), where 7(u) is a target node and the
amounts of commodities to be sent from u to 7(u) and those brought back from
7(u) to u are specified by (s1(u), s2(u),...,sn(u)) and (by(u), ba(u), ...,bn(u)),
respectively. Since each vehicle has the loading capacity C', the sum of load must
always be within C', that is, for each transportation we must have E?:l si(u) <C
and P bi(u) < C.

All of vehicles leave their nodes at the same time. Due to the order indepen-
dence assumption, when we send some commodities from u to 7(u), the amounts
of commodities sent from u must be within (max(0,w; (u)), max(0, ws(u)), ...,
max(0, wy(u))) and also those of commodities brought back from 7(u) must be
within (max(0, wy (7(u))), max(0, wa(7(u))), ..., max(0, w(7(u)))).

More formally, for each node v we must have

k() + s 17 (v)=u Pk (v) < max(0,wi(u)) for each k =1,2,...,h, and

max(Y iy sk (1), Ypy br(u) < C.

wheat rice
wheat 1100] 1900 [wheat -500 | 290 ['wheat 1000
rice 200 rice 300 rice -200
bean -100 Ibean bean 1200 Whleat bean 500
node u 400 node v 400 node w

Fig. 1. An example of send-and-bring-back transportations. We send 100 units of wheat
at node u, visit v, and bring-back 400 units of bean on the way back from v.

Figure 1 shows an example of transportations. Figure 2 gives another exam-
ple. In the example, the transportation from node b to node a is characterized
by T, = (b, a, (0, 30), (60,0)) which means we send 0 units of the first commodity
and 30 units of the second commodity from the current node b to node a, and
then bring-back 60 units of the first one and 0 units of the second one from a to
b. Using these transportations we can eliminate all of shortages as shown in (b)
in the figure.

Under the definitions above, we consider the following two problems.

4

0,0 0,30

[050 o 00 }—1{10

o

40,0 0,0

(b)

Fig. 2. Transportations necessary to eliminate all the shortages. (a) a single round of
transportations (dotted lines are unused edges), and (b) the result after the transporta-
tions.

Problem 1T Given a weighted graph, determine whether there is a single
round of transportations that eliminate all of shortages. Also, output
such a set of transportations if any.

Problem 2: Given a weighted graph, find a single round of feasible
transportations that minimize the largest shortage. Also, output such a
set of transportations.

2.1 Formal definitions and basic properties

An input instance to our problem is given by a graph G = (V, E, w) in which each
node u has h weights wy (u), wa (u), ..., ws(u). A transportation using a vehicle at
node u is specified by a tuple (u, 7(u), (s1(u), s2(u), ..., sp(w)), (b (u),ba(u),...,
bn(u))) which means that we load s;(u) units of the i-th commodity at node u
for each i € [1,h] to send them to the target node 7(u), unload them at 7(u),
and load b;(u) units of commodity at 7(u) for each i € [1, h] to bring them back
to u. A single round of transportations is given by a set of transportations at all
nodes.

Definition: (Basic Property) A single round of transportations for a graph
G= (V;an) given by T = {(U,T(U), (sl(u); 32(u)7) Sh(u))> (bl(u); b2(u)) R
br(u)))|u € V} is feasible if

(0) si(u) > 0 and b;(u) > 0 for each u € V and i € [1, h],

(1) the node 7(u) is adjacent to node u,

(2) max(Z?:1 Si(U),E?zl bi(u)) < C for each u € V, where C is the loading
capacity,

(3) there is at least one i € [1,h] such that w;(u) - w;(7(u)) <
(4) for each u € V, if w;(u) > 0 and w;(7(u)) < 0 then s;(u)
for each i € [1,h],

(5) for each u € V, if w;(u) < 0 and w;(7(u)) > 0 then s;(u) = 0 and b;(u) >0
for each i € [1, k], and

(6) for each u € V' such that wi(u) > 0, si(u) + 3,54 7 (v)= bi(v) < wilu) for
each i € [1, h)].

0,
>0 and b;(u) =0

New Transportation Problem on Graphs 5

The condition (1) above states that a target node must be selected among
those adjacent to node u. The condition (2) states that the sum of load sent from
u to 7(u) and the sum of load brought back from 7(u) to u must be bounded
by the loading capacity. Whenever we transport some units of commodity, we
must leave a node having surplus commodity and visit another node of shortage,
which is stated in (3). The conditions (4) and (5) state that either s;(u) or b;(u)
must be 0 for each i € [1,h]. The last condition states that the sum of load of
the i—th commodity carried out of a node u cannot exceed the original amount
w;(u) of the commodity at w.

Lemma 1. A feasible single round of transportations T = {(u, 7(u), (s1(u), s2(u),
ooy sp(u)), (by (), ba(w), ..., ba(u)))|u € V'} eliminate all of shortages if w;(u) +
bi(u) + 3 s b7 (v)=u Si(v) > 0 for each i € [1,h] and uw € V' such that w;(u) < 0.

Given a single round of transportations 7 = {(u,7(u), (s1(u), s2(u), ...,
sp(w)), (by(u), ba(w),...,bp(w)))|u € V} for a graph G = (V, E,w), we can define
a directed graph G¢ = (V, E?,w) where E? contains a directed edge (u,7(u))
for each u € V.

Lemma 2. A single round of transportations T for a weighted graph G =
(V,E,w) is feasible only if the corresponding graph G? has no two cycles
(including oppositely directed edges between two nodes, called double edges) are
contained in one connected component in its underlying undirected graph.

3 One-dimensional Transportation Problem

3.1 One-commodity problem without capacity constraint

Generally each node stores many different kinds of commodities. First of all,
consider only one kind of commodity in each node. Also we assume that a graph
is a path, i.e., a linearly ordered array. Suppose n nodes on the horizontal line
are numbered like 1,2, ..., n from left to right. As input, we assume the quantity
of the commodity at node 7 is given as w(i), where w(i) < 0 means a shortage.

Consider a simple case where no loading capacity is assumed. Suppose we
are given a sequence (w(1),w(2),...,w(n)) of quantities of commodity. There
are four cases to consider on the first two nodes. If w(1) > 0 and w(2) > 0
then we just discard node 1 since any transportation from node 1 to 2 has no
effect. If w(1) > 0 and w(2) < 0 then we send w(1) units of commodity using
the vehicle at node 1 to reduce the shortage at node 2. If w(1) + w(2) > 0 then
we have to reduce the amount of transportation to prevent the resulting surplus
from sending to the right. If w(1) < 0 and w(2) > 0 then we use the vehicle at
node 1 to bring back min(|w(1)|, w(2)) units of commodity from node 2 to 1. If
it results in non-negative quantity at node 1, then we proceed to the next step.
Otherwise, the sequence is not feasible, i.e., there is no transportation schedule
to eliminate the shortage at node 1. If w(1) < 0 and w(2) < 0 then there is
no way to eliminate the shortage at node 1, and hence we just report that the
sequence is not feasible and stop.

6 T. Asano

Lemma 3. For any instance of a one-dimensional one-commodity transporta-
tion problem without constraint on loading capacity we can decide in linear time
whether there is a single round of transportations that eliminate all of shortages.

3.2 One-commodity transportation problem with loading capacity

Next consider some loading capacity C on the total weight to carry by a vehicle.
Input is specified by a sequence (w(1),w(2),...,w(n)) of n values representing
the quantities of commodities. If it contains 0 somewhere, say w(i) = 0, then
to decide the feasibility we can separate the sequence into two subsequences

(1,...,i—1)and (i +1,...,n) since there is no effective transportation from/to
the node i of weight 0. If two consecutive values w(i) and w(i + 1) are of the
same sign, then we can separate the sequence into (1,...,7) and (i + 1,...,n)

since effective transportation occurs only between two nodes of different signs.

We assume that a sequence starts from a non-negative weight and ends also
at a non-negative weight. If not, we add weight 0 at head and/or tail. We also
assume that no two consecutive weights have the same sign.

Starting from the initial subsequence (w(1),w(2),w(3)), we find optimal so-
lutions that can send the largest amount to the right in two settings. If it is not
feasible then there is no feasible solution to the whole sequence. One solution is
a feasible solution without constraint and the other with constraint in its last
part. Recall that any solution can be represented by a graph on nodes {1,2,3}
with directed edges. We are interested in whether the last part, more exactly,
the connected component of the last node 3 in this case in the underlying undi-
rected graph contains double edges. If the last part contains double edges, then
this causes some constraint to solutions of further right.

It is easy to compute the best solutions with/without using double edges
in the last part. Let them be w,(3) and w.(3), where "u” and ”c¢” represent
”unconstrained” and ”constrained”, respectively. We extend the subsequence by
two nodes. Suppose we have computed w, (k) and w.(k). To compute the best
solution w, (k + 2) there are two ways. One is to use w, (k) and to specify edges
among k,k+ 1, and k+ 2 so that double edges are not included there. The other
is to use w, (k) and to specify edges within [k, k + 2] so that double edges are
not included there and also a cut is included between k& and k + 1 or between
k+ 1 and k + 2. The better value among them gives the value of w,(k + 2).

Compute of w.(k+2) is symmetric. We compute one solution by using w,, (k)
and including double edges somewhere among k, k+1, and k+2. We compute the
other one by using w.(k) and including double edges somewhere among k, k + 1,
and k + 2. The better value among them gives the value of w.(k + 2).

Finally, if none of w,(k + 2) and w.(k + 2) is defined then we have a conclu-
sion that there is no feasible solution. Otherwise, we obtain an optimal feasible
solution by taking better one among w,(n) and w.(n).

A formal description of the algorithm is as follows.

New Transportation Problem on Graphs 7

Algorithm for determining the feasibility of a given sequence.
instance: (w(1),w(2),...,w(n)).
If the first and/or last elements are negative we insert 0 as the first and/or
last elements, respectively.
output: True, if there is a single round of transportations to eliminate all of
shortages, and False otherwise.
algorithm:
// Idea is to keep two solutions for each subsequence (1,2,...,k), one
without constraint and the other with constraint in its last part.
For the subsequence (1,2, 3) compute the best solutions, w,(3) in one case
of no constraint and w.(3) in the other case of constraint, in their last part.
for k = 3 to n step 2 do{
if wy, (k) is defined then{
Wy (k + 2) = extend(w, (k), unconstrained).
Wye(k + 2) = extend(w, (k), constrained).
} else if w.(k) is defined then{
weu(k + 2) = extend(w.(k), unconstrained).
wee(k 4+ 2) = extend(w,.(k), constrained).
}
Choose the better one among wy,(k + 2) and wey, (k + 2) as wy(k + 2).
Choose the better one among wy.(k + 2) and wee(k + 2) as w.(k + 2).
}
if at least one of w,(n) and w.(n) is defined and non-negative
then return True. else return False.
function extend(w(k), cons){
if cons = unconstrained then{
extend the solution w(k) by two nodes so that the extended solution is
not constrained in its last part.
if it is possible then return the extended solution.
else return False.
} else { // cons = constrained
extend the solution w(k) by two nodes so that the extended solution is
constrained in its last part.
if it is possible then return the extended solution.
else return False.

See Figure 3 as an example. In this example, we have only the unconstrained
solution w,(3). Extending it by two nodes, we have only constrained solution
we(5). Using it, we have constrained and unconstrained solutions, w,(7) and
we(7). Finally, we have only constrained solution w.(9).

Lemma 4. For any instance of a transportation problem with finite loading ca-
pacity C' we can decide in linear time whether there is a single round of trans-
portations that eliminate all of shortages.

8 T. Asano

80 }—j 420}—%3 90—

80 }—»2{ 7120}—:{% 90 }—j 440@5 200}+—

80 }—»2{ 420}—»3{ 90 }—:{l 440@5 200] 7 770}——7{ 00—

80 }—»2{ 420}—»3{ 90 }—:{l 440@5 200%—({5 40}«—7{ 100}—

80 }—j 420}—%3 90 }—j 440@5 200] T 40}—%7 100}—»8{ 450&1) 130]

1
|
1
|
1
|
1
|
1
|

(¢)

Fig. 3. A behavior of the algorithm. (a) only w, (3) exists, (b) only w.(5) exists, (c) un-
constrained solution w, (7), (d) constrained solution w.(7), (e) only constrained solution
we(9) exists, which is a solution.

3.3 Optimization problem

Now, consider the optimization problem to find the minimum shortage we can
achieve for a given instance of one-commodity transportation problem. We do not
know whether there is a polynomial-time algorithm, but we can design a pseudo-
polynomial-time algorithm as follows. Given an instance of one-commodity trans-
portation problem, let —M be the largest shortage. Let 0 < ¢t < M be arbitrary
number between 0 and M. If we add t to every shortage at each node, we have
a modified problem P(t). More exactly, for each negative weight w(u) < 0 we
set w(u) = min(0,w(u) + t) so that no new positive weight is generated. We can
decide the feasibility of the problem P(#) in linear time. If it is feasible then the
minimum shortage is at most ¢. Otherwise, we can conclude that it is beyond
t. Using the observation we can find the minimum shortage at any precision by
using binary search. The number of iterations is O(log M).

Lemma 5. Given a one-dimensional instance of a one-commodity transporta-
tion problem, we can determine the minimum shortage in linear time at any
precision.

3.4 Multi-commodity transportation problem

In a multi-commodity transportation problem each node v is characterized by an
h-tuple of values (w1 (i), w2 (i), .., wn(%)). If no constraint on loading capacity is
assumed, we can implement a transportation for each commodity independently.
Therefore, we could apply the algorithm for one-commodity problems to solve a
multi-commodity problem.

With constraint on loading capacity, however, we have a trouble. Recall that
the algorithm for one-commodity case is based on the fact that a solution for
the whole array contains at most two different solutions for the first three nodes.
We have found two solutions, one unconstrained and the other constrained. But
this is not true anymore for multi-commodity case. For we can design a simple
example consisting of four nodes such that any feasible solution for the first three
nodes fails to be feasible due to the fourth node.

New Transportation Problem on Graphs 9

4 Two-dimensional transportation problem

4.1 NP-completeness

In this subsection we prove NP-completeness of the problem of deciding whether
an instance of a general two-dimensional transportation problem is feasible or
not, that is, whether there is a single round of transportations that eliminate all
of shortages in the instance.

Lemma 6. The problem of deciding whether, given a weighted graph, there is
a single round of transportations with loading capacity C that eliminate all of
shortages using sending and bringing-back operations is NP-complete.

Proof Our proof is based on a reduction from integer partition problem, one
of NP-complete problems [1].

Suppose the set {a1,as,...,as,},a; > 0,4 =1,...,2n is an instance of inte-
ger partition, where Z?;Ll a; = 2A. Then, let U be a collection {uy,us, ..., uan,
U2n g1, Uant2} With w(u;) = A+ a;i =1,...,2n and w(uznyr) = w(upiz) =

2n2A, and let V be the pair {v1,vs} with w(vi) = w(v2) = —(2n% + n + 1)A.
Consider a bipartite graph G = (U, V, E) where E consists of all edges between
U and V. Assume that the loading capacity C is nA.

Consider a single round of transportations on the graph G, expressed as a
graph G®. First observation is that each of v; and v, is incident to exactly one of
U1 and Ug,4 o in G4 If v is incident to none of them, then it is impossible to
eliminate the shortage —(2n?+n+1)A at v; even if we send storages of all other
nodes to vy since w(vy)+ 3", a;i = —(2n2 +n+1)A+2nA +2A4 < 0. So, we can
assume without loss of generality that vy is connected to uz,+1 and vy t0 gy 4o
in G%. Moreover, the connection between them must be bi-directional, that is,
we have to send n2A units of commodity from U241 tO v1 using the vehicle at
uan+1 and also to bring the same amount back to us,41 since otherwise there
is no way to eliminate the large shortage at v1. So, we can assume that we have
bidirectional transportations (double edges in Gd) between wus,4+1 and v; and
also ones between ws, 2 and vy. To have a feasible set of transportations we
have to send commodities from nodes w1, us,...,us, to either vy or vs using
”send” operations using vehicles at those nodes.

Let Uy and U; be the sets of nodes connected to v; and vs, respectively. Sup-
pose Y, cp, w(u) < Y2, cp, w(u). Since the total sum is given by S w(ug) =
20 A+2nA+24 =2(n* +n+ 1A, Yy, w(u) < (n° +n+1)A. To eliminate
the shortage at v; we must have w(v1) + Y ,cp, w(u) = =(n® +n+1)A+ (n* +
n+1)A = 0. This implies that .., w(u) = Y, cp, w(u) = (n® +n+ 1)A.

The above argument implies that if there is a single round of transportations
that eliminate all of shortages then there is an integer partition for the set

{al,ag,...,agn}. O

10 T. Asano

4.2 One-commodity transportation problem on a forest

Consider a special case where we have a single kind of commodity and a graph
G is a (undirected) forest composed of trees. We assume that end nodes of each
edge have weights of different signs since an edge between two nodes of weights
of the same sign has no meaning for transportation as far as we are interested
in a single round of transportations.

Consider a simple case first where there is no constraint on the loading ca-
pacity. We can deal with each tree in a forest independently. Each tree has at
least two leaf nodes (of degree 1). Starting from a leaf node u, we traverse
a tree until we encounter a branching node v of degree > 3. If there is no
such branching node, it is just a path, for which we already had an algorithm in
Section 3.

Such a path from a leaf node u to branching node v is called a leaf path.
If a leaf node is adjacent to a leaf branching node, the leaf node is considered
as a degenerated leaf path. A leaf branching node is a node v of degree > 3
which is incident to at least deg(v) — 1 leaf paths, where deg(v) is the degree of
v. We create a one-dimensional instance by replacing v in P with an imaginary
node v(P) whose weight is 0 if w(ug) > 0 and +oo otherwise. We can solve
the one-dimensional problem using the algorithm in Section 3 which gives us an
optimal value z in linear time. If it is infeasible then we have a conclusion that
we have no feasible solution. Otherwise, we replace the path with a single node
having weight determined by the value of z, that is, x if w(u) > 0 and —z
otherwise.

If we have a leaf branching node whose adjacent set consists of at most one
internal node (of degree > 2) and leaf nodes, then we just combine those leaf
nodes with the branching node into a single node after a maximal transportation
from every such leaf node to the branching node. We repeat the process while
each leaf path is feasible. If a single node of weight > 0 is left, then we have a
feasible realization. Otherwise, the given tree is not feasible.

A formal description of the algorithm is given below.

Algorithm for deciding the feasibility of a weighted forest: simple case
instance: a weighted forest G = (V, E, w).
assumption: there is no constraint on the loading capacity.
output: True if it is feasible, i.e., there is a single round of transportations that
eliminate all of shortages, and False otherwise.
algorithm:
for each tree T of a forest G do{
while(T contains at least two nodes)do{
// Dealing with leaf paths
Find all leaf paths Py, P>, ..., P,.
for each leaf path P; = (u;1, U2, .., Uik ,v;) dof
if w(u; ;) > 0 then{
Replace the last node v; with a new node v,, of weight 0.
Formulate a one-dimensional problem (u; 1, u; 2, .., W k;, Un)

New Transportation Problem on Graphs 11

together with a variable = for the edge (u; k,,vn).
if it is not feasible then return False.
Shorten the path P; to (v,,v;) using the node v,, of weight x
and delete all other nodes in the path.

}else {// w(uig) <0
Replace the last node v; with a new node v,, of weight oco.
Formulate a one-dimensional problem (u; 1, u; 2, .., W k;, Un)
together with a variable = for the edge (u; k,,vn).
if it is not feasible then return False.
Shorten the path P; to (v,,v;) using the node v, of weight —z
and delete all other nodes in the path.

}

}

// Dealing with leaf branching nodes

Find all leaf branching nodes vy, vs, ..., Un.
for each leaf branching node v; do{
Let v;1,vi2,...,v;n, be all leaf nodes adjacent to v;.

if w(v;) > 0 then {
Replace v; with a new node of weight w(v;) + 3 w(v; ;).
if w(v;) +>°; w(v; ;) <0 then return False.

}else { // w(v;) <0.
Replace v; with a new node of weight w(v;) + 3 ; w(v; ;).

}

Delete all related nodes except for the new node.

}
}
}

return True.

Lemma 7. Assume no constraint on the loading capacity. Given a weighted
forest, it is possible in linear time to determine whether there is a single round
of transportations that eliminate all of shortages.

Next, we consider the constraint on the loading capacity. In the case where
no loading capacity is assumed, when we shorten a leaf path to a single node,
it induces no constraints to the process of the remaining part. However, in this
general case, we have to consider such a constraint. So, we modify the algorithm
for a leaf path. We take a leaf path and shorten it to a single node, which
becomes a child of a leaf branching node v. When we combine the node v with
its children into a single node v', we traverse the tree again from the node v’
until we encounter a branching node, which makes a leaf path again. The leaf
path may have a constraint in its first part if one of its children is produced with
constraint (double edges).

Taking the situations above into account, we consider for a leaf path four
different cases depending on whether it has a constraint in its first part and also

12 T. Asano

in its last part. Formally, for a leaf path P;, we compute four different solutions
W (P), Wue (P;), weu(P;), and we.(P;), where wy.(P;), for example, is the value
of an optimal solution in the case where P; is unconstrained in its first part
but constrained in its last part. It is not so difficult to modify the algorithm
for one-dimensional array so that it can compute the four values. The modified
algorithm also runs in linear time. Although we omit the detail, we have the
following lemma.

Lemma 8. Given a forest weighted arbitrarily, it is possible in linear time to
determine whether there is a single round of transportations that eliminate all
of shortages.

5 Concluding Remarks

We have many open questions. (1) Extension to a multi-commodity problem
is not known even for one-dimensional problems. Is there any polynomial-time
algorithm? (2) We had an efficient algorithm for minimizing the largest shortage
in any precision, which runs in O(nlog M) time where n and M are the size of
the array and the largest shortage, respectively. It is efficient in practice, but it
also depends on log M. Is there any polynomial-time algorithm which does not
depend on M? (3) A more general problem is to determine how many rounds
of transportations are needed to eliminate all of shortages. It is more difficult
since transportation from a node of positive weight to one of positive weight is
effective in two rounds. (4) We assumed that only one vehicle is available, but
what happens if two or more vehicles are available at some busy nodes? (5) If
vehicles at some nodes are not available, how can we compensate them?
Many other open questions exist although we have no space to list them.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP20K11673. The
author would like to thank David Kirkpatrick and Ryuhei Uehara for giving
a version of the NP-completeness proof of the transportation problem in two
dimensions.

References

1. G.E. Andrews and K. Eriksson, " Integer Partitions,” Cambridge University Press,
2004.

2. G.M. Appa, " The Transportation problem and its variants,” Oper. Res. Q. , 24,
pp:79-99, 1973.

3. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, ”Introduction to Algo-
rithms (2nd edition ed.), ” MIT Press and McGraw-Hill, 2001.

4. S. Peleg, M. Werman, and H. Rom, ” A unified approach to the change of resolu-
tion: Space and gray-level”. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 11: pp:739-742, 1989.

