A small-space algorithm for removing small
connected components from a binary image

S5 eng

HhRE

~EH: 2021-07-16

*F—7—NK (Ja):

F—7— K (En):

YRR

X—=ILT7 KL AR:

FiT/:
https://doi.org/10.24517/00063386

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/

TEIVE TIRAINOD. TN, X 0T O, VUL.LAAT D, INULAA AAAAN LUUA

[PAPER

A Small-Space Algorithm for Removing Small Connected

Componentsfrom a Binary Image

SUMMARY Given a binary image .# and a threshold t, the size-
thresholded binary image .# (t) defined by .# andt is the binary image af-
ter removing all connected components consisting of at most t pixles. This
paper presents space-efficient algorithms for computing a size-thresholded
binary image for a binary image of n pixels, assuming that the image is
stored in a read-only array with random-access. With regard to the problem,
there are two cases depending on how large the thresholdt is, namely, Rel-
atively largethreshold wheret = Q(\/n), and Relatively small threshold
wheret = O(/). Inthis paper, a new algorithmic framework for the prob-
lem is presented. From an algorithmic point of view, the problem can be
solved in O(n) time and O(n) work space. We propose new algorithms for
both the above cases which compute the size-threshold binary image for
any binary image of n pixels in O(nlogn) time using only O(/n) work
space.

key words: algorithm, binary image, connected component, image pro-
cessing, small work space.

1. Introduction

Demand for embedded software is growing toward intelli-
gent hardware such as scanners, digital cameras etc. One of
the most important aspects and also differences between or-
dinary software in computers and embedded software comes
from constraints on the size of local memory. For exam-
ple, to design an intelligent scanner a number of algorithms
should be embedded in the scanner. In most of those cases,
the size of pictures is increasing while the amount of work
space available for such software is severely limited. In the
sense algorithms which require a restricted amount of work
space and run reasonably fast are desired.

In this paper we propose space efficient algorithms for
removing small connected components from a binary im-
age. Removal of small irrelevant components, considered
to be noise, improves the binary image. This find applica-
tions in Mathematical Morphology and stroke-like pattern
noise. The tasks considered have straightforward solutions
[3]-[12] if sufficient memory (size proportional to the size
of the image) is available. Solving the same tasks with re-
stricted memory, without severely compromising the run-
ning time, is more of a challenge.

An interesting application of our algorithms is the fol-
lowing. Suppose we are given a color image 4. Given a
colorrange, say [r1, ro] for red, [g1, gz] for green, and [by, by]

Manuscript received September 20, 2012.
Manuscript revised January 1, 1.
Final manuscript received January 1, 1.
School of Information Science, JAIST, Japan
T Department of Mathematics and Computing, Indian Institute
of Technology (l1T) at Guwahati, India
DOI: 10.1587/transinf.E0.D.1

Tetsuo ASANOT, and Revant KUMAR'T,

for blue, we can easily compute a binary image by deter-
mining pixel value to be 1 if and only if its color value is in
the specified color range. Then, we can compute connected
components in the binary image. Usually meaningful infor-
mation is associated with large connected components since
small components are considered as noises. For example,
we can measure how clear the boundaries are by following
boundaries of connected components while computing color
differences between inside and outside. If we do not worry
about work space, we first compute the binary image using
one array and then implement connected components label-
ing using another array. Then, it is easy to measure compo-
nent sizes. Everything is done in linear time. But what hap-
pens if we do not have enough work space? Our algorithms
use only O(y/n) work space to compute the measures. Thus,
this is a new approach to image analysis/evaluation.

2. Basic Algorithm for Connected Components L abel-
ing

The problem known as the connected components labeling
is to assign integer labels to all white pixels in a given binary
image so that two white pixels have the same label if and
only if they belong to the same connected component. The
first author presented a small-space algorithm for connected
components labeling for a binary image of n pixels which
runs in O(nlogn) time and O(v/n) work space [1]. The al-
gorithm examines pixels in raster order (see Figure 1(a)). To
simplify the algorithm we implicitly assume that a given im-
age is surrounded by black pixels as shown in Figure 1(b).
Since pixels are linearly ordered, if the current pixel is p,
then the previous pixel is p— 1 (implicitly assuming that we
scan pixels except those on the left boundary at the 0-th col-
umn). When we encounter a boundary edge, we traverse
the boundary in two opposite directions while maintaining
two edges, forward edge e; and backward edge &, (see Fig-
ure 1(c)). If we maintain correct labels in two rows, we can
obtain correct labels when boundaries go below the current
rows. An idea for acceleration is a bidirectional search. In
the algorithm, NextEdge(e) and PrevEdge(e) are important
functions to compute the next and previous, respectively,
of an edge e on a boundary. Boundaries may be different
depending on which connectivity, i.e., 4-connectivity or 8-
connectivity, is used. However, in any case both functions
can be computed in constant time. Refer to the literature [1]
for the detail.

Copyright (© 200x The Institute of Electronics, Information and Communication Engineers

TV TIRAINOD. TN, X 0T O, VUL.LAATD D, INULAA AAANN CUUA

2
yh
h—1
olofoJoJoJoJoJoJo]o
10 10
10 10
10 10
10 10
10| Binary Image |9]
10 10
10 10
S > 10 10
- 0] 0]
= Ece— R o
0 w-1 = (0]oJofofoJofofo]o]o

@ (b)

=

|
—_
S

Blp—1]| Blp]

to

(©
Fig.1 Preliminary definitions: (a) raster order among all pixels, (b) sur-
rounding black pixels, and (c) forward and backward edges on the boundary
starting from the edge between two pixels pand p— 1.

Theorem 2.1: [1] Given a binary image of n pixels in a
read-only array, its connected components labeling can be
computed and those labels can be reported in raster order in
O(nlogn) time using only O(\/n) work space.

The algorithm is given below as Algorithm 1.

An easy extension of the algorithm is to report sizes of
all connected components (just output them without storing
them). To extend the above algorithm so that it can count the
size (number of pixels) of connected components, we use an
array for a compressed list of labels. As is stated above, we
maintain two rows of the labeling matrix, one for the previ-
ous row and the other for the current row. Suppose we have
computed labels in the current row. Then, we first convert
the content of the row into the compressed list, which is a
sorted list of labels together with their frequencies (number
of occurrences). Let . be the compressed list of the current
row (say, the it row) Let .%_; be the compressed list of the
previous row. Now, we compare the two lists. Then, there
are three cases:

Continuing label: A label k is called continuing if it ap-
pears both in % and % _1. In this case the label in the
previous row keeps the size of the component before
the current row and the label in the current row keeps
that in the current row. Thus, we just add them and
replace the label information in 4.

New label: A label k is called new if it is not in .%;_1 but
in.%g.

Algorithm 1: Compute the connected components
labeling.

Input: A binary image BJ[i],i = 0,...,wh—1, linearly ordered in
raster order.
Output: The labeling matrix of the input binary image in raster

order.
Array: lab[2][0..w — 1]. // label arrays for two
rows
L=0; // the number of labels used so far

Initialize the array lab[2][0..w—1],a=0,b=1
fori=1toh-1do

// the labels in the previous row are
computed in lab[b][.]

for j=1tow—1do // pixel in the raster

order

p=ixwW+j; // pixel at (i,j).

switch the value of B[p — 1]B[p] do
case’00’ // empty pixel p
| lab[a][p] = 0; break;
case’1l’ // next pixel of the run
| lab[a][p] = lab[a][p — 1]; break;
case’01’ // boundary pixel p

ef = e, = the left edge of the pixel p;
// two pointers in two
directions
d=0.; // search direction: 0
for forward
repeat // traverse the boundary
in two directions
if d =0 then e = NextEdge(es)else
e, = PrevEdge(ep) d=1-d.
until ef = e, or ef or ey isadjacent toa
pixel with a positive label kintherow i or
i—1;
if ef = eythen // new component
|_ L=L+1,k=L; // new label
lab[a][p] = k; break;

otherwise
| lab[a][p] = O; break;

// case '10',

Oatput the array lab[a][0..w — 1].
| Exchange the rolesof aandb (a=1—-ab=1-h).

MAAIMAINDY dlIU INUIVIZATIL. A QIVIALLTOFAULLE ALOUURTTTTIVE FUNR REIVIVVIING OIVIALL LUININL U LU LUIVIFUINLIN T O FIRUIVE A DHINAIRVT TIVIO L

Dead label: A label k is called dead if it is in .%j_1 but
not in .%;. This means the component of the label k fin-
ishes at the previous row and does not extend to the row
above it. In this case the component dies. Whenever
we find such a dying label or component, we report its
label together with its component size.

Example
Suppose the row i and row i — 1 are labeled as follows:

000333005507770000333333000000000
003330055500006660033330022220000

In this example, the labels 3 and 5 are continuing and
the label 7 is new. The labels 6 and 2 are dead since they do
not appear in the second row.

Compressed list at row i:
(3(9), 5(2), 7(3))

Compressed list at row i-1:
(2(39), 3(126), 5(31), 6(3))

In this example we suppose that we already know that the
component of the label 2 has already 39 pixels before the
current row. Since the label 2 is dead, we report ”"Connected
component of label 2 which has 39 pixels.” For the contin-
uing labels we add the two counts. For example the label 3
has appeared 126 times before the current row and 9 times at
the current row, and thus the total count will be 135. Thus,
the compressed list for the current row should be modified
as follows.

Compressed list at row i:
(3(135), 5(33), 7(3))

Compressed list at row i-1:
(2(39), 3(126), 5(31), 6(3))

All these operations are done in O(y/nlogn) time.
Work space we need is bounded by O(/n) since each row
can contain at most /n/2 different labels (and thus as many
connected components).

Theorem 2.2: Given a binary image of n pixels in a read-
only array, we can report sizes of all connected components
(without storing them) in O(nlogn) time and O(+/n) work
space.

A connected component is characterized by a unique
external boundary and possibly more than one internal
boundary for a hole. Every boundary consists of edges be-
tween adjacent pixels. Then, each boundary has a unique
edge that is the leftmost one among those lowest vertical
edges on the boundary. Such an edge is called a canonical
edge of the boundary. Especially, the canonical edge of the
external boundary of a connected component C is called the
canonical edge of C. The canonical edge plays an important
role in our algorithms.

Corollary 2.3: Given a binary image of n pixels in a read-
only array, we can report canonical edges and smallest
bounding rectangles of all connected components (without
storing them) in O(nlogn) time and O(+/n) work space.

Proof To report canonical edges of connected components
we just keep canonical edges whenever we find new con-
nected components. To report smallest bounding rectangles
we should maintain the smallest and largest coordinates of
component pixels. d

3. Binary Imagewith Small Components Removed

Let .# be a binary image of n pixels and t be a positive inte-
ger. Then, .#(t) is the binary image obtained by removing
all small connected components from .#. More formally, a
pixel pin .7 (t) is white if and only if it is white in .# and it
belongs to a connected component of size >t in .#. The bi-
nary image .# (t) is called a size-thresholded binary image
of 7.

See Figure 2. Eight connected components are in-
cluded in the input binary image shown in (). The image
in (b) shows the size-thresholded image after removing con-
nected components of sizes at most 12.

(@) (b)
Fig.2 Removing small connected components. (a) An input binary im-
age, and (b) the binary image after removing all connected components of
sizes < 12.

Problem: Given a binary image .# of n pixels in a read-
only array and a threshold t, output its size-thresholded bi-
nary image .# (t) in raster order.

There are two cases depending on how large the thresh-
oldt is.

Case 1. Relatively largethreshold: t = Q(/n)

In the case the number of connected components of
size >t must be bounded by O(\/n) since the total num-
ber of pixels is n. Thus, the following algorithm is possible:

Algorithm 0:

(1) Apply the algorithm for connected components label-
ing using O(v/n) space. In the algorithm we maintain
a set of labels of those connected components of sizes
>t in a simple linear array D of size O(+/n). More
exactly, we also maintain the sizes of connected com-
ponents. Whenever a component dies (that is, it does
not extend to the row examined), we check its size and
if it is greater than t then we insert the label into D. Af-
ter completing the connected components labeling, we
sort those labels in the array.

(2) Implement the connected components labeling algo-
rithm again. At each white pixel in raster order, how-
ever, we compute its label and see whether it is in-
cluded in the array D. We output 1 if its label is in
D and 0 otherwise.

Lemma3.1: Algorithm 0 above computes a size-thresholded
binary image for any binary image of n pixels and a thresh-
oldt = Q(+/n) in O(nlogn) time using O(y/n) work space.

Proof In the algorithm we only watch a set of connected
components intersecting the current row. Since there are
only O(y/n) columns, the number of such components is
bounded by O(/n). We also maintain a set of labels with
their associated sizes. We may have O(n) different labels,
but we just maintain large components of size t = Q(\/n).
Thus, the work space we need is O(/). O

Case 2. Relatively small threshold: t = O(\/n)

We modify the algorithm for connected components la-
beling. In the algorithm we scan pixels in raster order, row
by row, from left to right. We maintain pixel labels in two
rows. Let lab[a][x] be a label of a pixel at the xth column in
the current row, and lab[b][x] be a label in the previous row.
In addition to the label information, we also maintain output
values. Let val[a][[x] and val[b][X] be output binary values
at those pixels. Suppose we are now looking at a pixel p
at the xth column in the current row. We first determine
whether the vertical edge es immediately to the left of pis
canonical edge of an external boundary. The first condition
we check is whether the pixel just below p is black. If the
pixel is white, then the boundary must extend further below
and thus es is not a canonical edge. The second condition
is that we find no vertical edge e preceding es in the raster
order when we traverse the boundary. The edge e precedes
€s in the raster order when elies in the previous row (or even
lower row) or lies in the current row but to the left of es. The
total time we need for the second condition is bounded by
O(nlogn) if we use bidirectional search.

When we find an external canonical edge es just left to
a pixel p, we create a new label L and put the label at the po-
sition. What about an output there? We have to know how
large the connected component starting at the pixel p. For
the purpose we use a traditional folklore algorithm known
as a wave propagation method. We start from a set Swhich
consists of the pixel p. Then, we expand the set S by in-
corporating any white pixel adjacent to those white pixels
already incorporated into the set S One of disadvantages
of the method is its space complexity. Of course, we need
a data structure storing all pixels in one connected compo-
nent, which may contain O(n) pixels. Fortunately, we can
stop the expansion as soon as the t 4+ 1 pixels are put into
the set since it means that the component is large. If we im-
plement the wave propagation method using a binary search
tree, then the wave propagation is done in O(tlogt) time
using O(t) = O(y/n) space. Moreover, no pixel belongs
to more than one connected component. This implies that
sets of pixels stored during the wave propagation step are

TV TIRAINOD. TN, X 0T O, VUL.LAATD D, INULAA AAANN CUUA

disjoint. Therefore, the total time we need for the step is
bounded by O(nlogt) = O(nlogn).

On the other hand, when the edge es to the left of the
current pixel is not an external canonical edge, we must have
found a vertical edge e preceding es in the raster order if we
follow the boundary from es. Due to our assumption we can
assume that the labels have been correctly computed. Thus,
if we find such a vertical edge e on the same boundary in the
previous row or in the same row but to the left of e, we get
a correct label by looking at a label of the pixel associated
with e and also its corresponding output value. If the out-
put value is 1, it means that the corresponding component
is large enough, and thus we can output 1. Otherwise, the
component of the label is small, and we need to output 0.
In this way we can correctly compute the label and output
value at the current pixel.

Function WavePropagation (p,t)
Input: A binary image of n pixels, a starting white
pixel p, and a threshold t.
Output: 1 if the component containing p has more
than t pixels, and 0 otherwise.
Array: Q[1..t+1] an array and a binary search tree
T of sizet+1.

begin
Q={p}. // a queue (a simple
array)
T={p}. // a binary search tree

with pixel numbers as keys.
c=1 // a counter
while Q isnot empty and ¢ <t do

Pop a pixel g out of Q.

for each p inthe neighborhood of g do

if pg T then
Insert pinto T and Q, and
\; increment c.

if c >t then return 1 elsereturn 0.
end

Theorem 3.2: The algorithm 2 computes a size-thresholded
binary image for an arbitrary binary image of n pixels and
any positive threshold t in O(nlogn) time using O(\/n)
work space.

The algorithm 2 uses two arrays, one for labels and the
other for output values. We can do it using only one of them.
The idea for the improvement is to put the label *0’ for a new
connected component if it is not large enough. We compute
labels for a row and then output binary values. We output 1
at a pixel p in the current row if and only if the label at p is
positive. This simplified algorthm is given as Algorithm 3
below.

4. Conclusionsand Open Problems

This paper extended the previous algorithm [1] for con-
nected components labeling so that it can compute a binary

MAAIMAINDY dlIU INUIVIZATIL. A QIVIALLTOFAULLE ALOUURTTTTIVE FUNR REIVIVVIING OIVIALL LUININL U LU LUIVIFUINLIN T O FIRUIVE A DHINAIRVT TIVIO L

Algorithm 2: Compute the size-thresholded binary

image. Algorithm 3: Compute the size-thresholded binary

image using one local array.

Input: A binary image BJ[i],i = 0,...,wh — 1and a threshold
t > 0 on a component size, wheret = O(/h).

Output: The size-thresholded binary image in which a pixel is

white if and only if it is white in the input image and

belongs to a connected component of size > t.
Array: lab[2][0..w — 1]. // label arrays for two
rows
val[2][0..w—1]. // output arrays for two rows
L=0; // the number of labels used so far
Initialize the array lab[2][.], a=0,b=1
Initialize the array val[2][.] =0,a=0,b=1
fori=1toh-1do

// the labels in the previous row are

computed in lab[b][.]
// the output values in the previous row
are computed in val[b][.]

for j=1tow—1do // pixel in the raster
order
p=ixwW+ij; // pixel at (i,j).
switch the value of B[p — 1]B[p] do
case’00’ // empty pixel p
| lab[a][p] = 0; val[a][p] = O; break;
case’1l’ // next pixel of the run

lab[a][p] = lab[a][p — 1];
val[a][p] = val[a][p — 1]; break;
case’01’ // boundary pixel p
ef = e, = the left edge of the pixel p. ;
// two pointers in two
directions
d=0.; // search direction: 0
for forward
repeat // traverse the boundary
in two directions
if d =0 then e = NextEdge(es)else
e, = PrevEdge(ep) d=1-d.
until ef = e, or ef or ey isadjacent toa
pixel with a positive label k and valuev in
therowi ori—1;
if ef =¢e,then // new component
L=L+1,k=L; // new label
if WavePropagation(p,t) = 1 then

| valla[p] = 1;
else

L val[a[p] =0;
labfa][p] = k;
val[al[p] = v; break;

otherwise // case "10',

labfa][p] = O;
valfal[p] = 0;

Oatput the array val[a][.].
| Exchange the rolesof aandb(a=1-a,b=1-b).

Input: A binary image BJ[i],i = 0,...,wh — 1and a threshold
t > 0 on a component size, wheret = O(/h).
Output: The size-thresholded binary image in which a pixel is
white if and only if it is white in the input image and
belongs to a connected component of size > t.

Array: lab[2][0..w — 1]. // label arrays for two
rows
L=0; // the number of labels used so far

Initialize the array lab[2][.], a=0,b=1
fori=1toh-1do

// the labels in the previous row are
computed in lab[b][.]

for j=1tow—1do // pixel in the raster
order
p=ixw+ij; // pixel at (i,j).
switch the value of B[p — 1]B[p] do
case’00’ // empty pixel p
| lab[a][p] = 0; break;
case’1l’ // next pixel of the run
| lab[a][p] = lab[a][p — 1];break;
case’0l’ // boundary pixel p

ef = e, = the left edge of the pixel p. ;
// two pointers in two
directions
d=0.; // search direction: 0
for forward
repeat // traverse the boundary
in two directions
if d =0 then e; = NextEdge(ey) else
‘ e, = PrevEdge(ep). d=1-d.
until ef = e, or ef or ey isadjacent toa
pixel with a positive label kintherow i or
i—1;
if ef = eythen // new component
if WavePropagation(p,t) = 1 then
L=L+1,k=L; // new
label for a large
component
else
k=0;; // a new component
was found, but it is
small

IaB[a][p] = k; break;
otherwise // case "10',
L labfal[p] =0;

for j=1tow—1do // pixel in the raster
order
| if lab[a][j] > 0 then Output 1 else Output 0.

Exchange the rolesofaandb(a=1—-ab=1-h).

image after removing small connected components of size
smaller than a predetermined threshold value. The algo-
rithm runs in O(nlogn) time for a binary image of n pixels
using only O(+/n) work space.

A number of open problems are left. One of the most
important ones is to prove a lower bound on the time com-
plexity assuming the work space of O(y/n).

Another open problem is associated with holes. Fig-
ure 3(a) shows the same binary image shown in Figure 2(a).
What happens if we remove all small black connected com-
ponents? The resulting binary image is shown in (b) in the
figure. Then, the upper right white component has more
than 12 pixels since its hole disappeared. An open question
is whether there is an efficient small-space algorithm for re-
porting the binary image after removing small black com-
ponents first and then removing small white components. It
is known [2] that we can remove any small component effi-
ciently using constant extra memory if an input binary image
is given as a usual read/write array. Difficulty comes from
the fact that an input binary image is given on a read-only
array and we are not allowed to store a binary image after
removing small black components.

(® (b)
Fig.3 Removing small black connected components. (a) An input bi-
nary image, and (b) the binary image after removing all black connected
components of sizes < 12.

Acknowledgment

The part of this research was partially supported by the Min-
istry of Education, Science, Sports and Culture, Grant-in-
Aid for Scientific Research on Priority Areas and Scientific
Research (B).

References

[1] T. Asano and S. Bereg, “A New Framework for Connected Compo-
nents Labeling of Binary Images,” to appear in Proc. IWCIA 2012,
Austin, USA.

[2] T. Asano, “Do We Need a Stack to Erase a Component in a Bi-
nary Image?,” Fifth International Conference on FUN WITH AL-
GORITHMS, pp.16-27, 2010.

[3] P. Bhattacharya, “Connected component labeling for binary images
on a reconfigurable mesh architectures,” J. Syst. Arch., 42(4): 309-
313, 1996.

[4] F. Chang, C. J. Chen, and C. J. Lu, “A linear-time component-
labeling algorithm using contour tracing technique,” Comput. Vis.
Image Understand., 93: 206-220, 2004.

(5]

(6]

(71

(8]
(9]
[10]
[11]

[12]

TV TIRAINOD. TN, X 0T O, VUL.LAATD D, INULAA AAANN CUUA

M. B. Dillencourt, H. Samet, and M. Tamminen, “A general ap-
proach to connected-component labeling for arbitrary image repre-
sentations,” J. ACM, 39(2): 253-280, Apr. 1992.

T. Goto, Y. Ohta,M. Yoshida, and Y. Shirai, “High speed algorithm-
for component labeling,” Trans. IEICE, J72-D-I1(2): 247-255, 1989,
(in Japanese).

L. He, Y. Chao, and K. Suzuki, “A Run-Based Two-Scan Label-
ing Algorithm,” IEEE Trans. on Image Processing, 17(5): 749-756,
May 2008

R. Klette and A. Rosenfeld, “Digital Geometry: Geometric Methods
for Digital Picture Analysis,” Elsevier, 2004.

A. Rosenfeld and J. L. Pfalts, “Sequential operations in digital pic-
ture processing,” J. ACM, 13(4): 471-494, Oct. 1966.

A. Rosenfeld, “Connectivity in digital pictures,” J. ACM, 17(1):
146-160, Jan. 1970.

H. Samet, “Connected component labeling using quadtrees,” J.
ACM, 28(3): 487-501, Jul. 1981.

K. Suzuki, l.Horiba, and N. Sugie, “Linear-time connected-
component labeling based on sequential local operations,” Comput.
Vis. Image Understand., 89: 1-23, 2003.

