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SOME WEIGHTED ESTIMATES FOR LITTLEWOOD-PALEY
FUNCTIONS AND RADIAL MULTIPLIERS

SHUICHI SATO

ABSTRACT. We prove some weighted estimates for certain Littlewood-Paley
operators on the weighted Hardy spaces H% (0 < p < 1) and on the weighted
LP spaces. We also prove some weighted estimates for the Bochner-Riesz
operators and the spherical means.

1. INTRODUCTION

Let n > 2 and p(z) € C*(R™ \ {0}) be positive and homogeneous of degree 1.
We assume Vp # 0 and the hypersurface

E={zeR":p(z)=1}

has non-vannishing Gaussian curvature. We define

0o ) 1/2
os(@) = ([ 5@ - skl F) ()
where
Sh@ = [ (1= R2peP)] Fee de (1.2)

is the Bochner-Riesz means of order § on R with respect to p. By Sogge [18] we
are motivated to consider S (f) with p(€) in place of the Euclidean norm |£|. We
also define

o 2 1/2
wh@ = ([ s oe] F) (19
with
@ = [ ne©/R) (L= R2002)] FOeTta, @y

where n € C*°(R) is such that n(t) = 11if |¢| > 1/4 and n(¢) =0 if |¢| < 1/8.

Put §(p) = n|l/p — 1/2| + 1/2. We first study the behavior of 75, d > d(p),
0 > 4(1), on the weighted Hardy space HE (R"), 0 < p < 1. Under these conditions
of 6 we can write 75(f) = gy (f), where gy (f) is the Littlewood-Paley function

defined by
1/2

s = ([l s@r )

here o, (z) = t~™(t '), and ¢ satisfies |¢(z)| < e(1 + |z]) ™€ with e = n(1/p —
1)+6 —4(p) >0 and [,,(x)dr =0. So 75 is bounded on the weighted Lebesgue
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spaces L7 for all r € (1,00) and all w € A, (see Sato [16] and Ding-Fan-Pan [7]),
where we denote by A, the weight class of Muckenhoupt.

Remark 1. We consider 5’}2 to eliminate the singularity of p(£) at the origin. If
p(€) = [€], this is not needed. For example, we can treat 75 and o5 in the same way
in proving the estimates like those of Theorem 1 when p(&) = |¢].

Now we recall the definition of the weighted Hardy spase H?. We begin by
defining the weight classes. Let B(zg,s) be a closed ball of R™ with center zo and
radius s > 0. Let w(z) be a positive measurable function on R™. Then we say
weB, (l<p<oo)if

[ M a0) @) (@) o < Cp (B, ).

where M is the Hardy-Littlewood maximal operator, w(E) = [, w(z) dx and Cp
is a constant independent of zy and s; and we say w € By if

iug Aw ({a: e R": M(XB(zo,s))(ﬂf) > )\}) < Oy ww(B(zo, s)),
>

where C ,, is independent of zo and s. Note that M (xp(a,,s))(z) = s"(s + |2 —
xo|)~™. It is easy to see that B, C By, for 1 <r < pand A, C B, for 1 < p < 0.
Also for any 1 < p < oo there exists w € B, which does not belong to A, (see [10]
and [23]). We observe that if w € B, and ¢ > 1, then

w (B(zo,ts)) < Ct"Pw (B(zo, 5)) -

Put B = Up>1B,. Choose ¢ € 8(R") (the Schwartz space) which satisfies
Jonp(x)de =1. Let 0 < p < 1, w € B and let f be a tempered distribution. We
say that f € HE (R™) if

1/p
1fllp = ( [ suplons f) wie) da:) < oo,
R~ t>0

It is convenient to consider a dense subspace of HP. Let f € 8§(R™); we say
f € 8o(R™) if its Fourier transform f is compactly supported and vanishes in a
neighborhood of the origin. It is known that if 0 < p < 1 and w € B, the space
Sp is dense in HE (see [24]).

Also let LP:>°(R™) denotes the weighted weak LP space of all those measurable
functions f which satisfy

sup Nw ({z € R" : |f(z)] > A}) = [|fllz~ < oo
A>0

Then we prove the following:

Theorem 1. Let 75 be as in (1.3).
(1) Let 0 < p < 1. Suppose w € By and w € As,. Then

175 (Dllzg= < Cowllfllmz, — f € 8o(R").

(2) Let 0 < p < 1 and 6 > §(p). Suppose w € Biin-1p5-5(p) and w € Aw.
Then

I7s(Plley, < Coswllflla, — f € 8o(R™).
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When p(§) = |€], these results also hold for o4 in place of 75, as we mentioned in
Remark 1. We note that when p(§) = |¢] and w(z) = 1, Theorem 1 (with o5 in place
of 75) is due to Kaneko-Sunouchi [12]. By part (1) the Littlewood-Paley operator
Ts(p), initially defined on 8p, has a unique sublinear extension which is bounded
from HE to LE:*°; and by part (2) 75 extends likewise to a bounded operator from
H? to L. As for arecent article dealing with the boundedness on the Hardy spaces
for the Littlewood-Paley functions, see also Ding-Lu-Xue [8], where they study the
Marcinkiewicz integrals.

—

Remark 2. For a bounded function m define a multiplier operator T, by (T, f)(§) =
m(p(€))f(€) and a maximal function T* f(z) = sup;so | Tt f(x)|, where 1/}7(5) =
m(tp(€))f(€). Then by the methods of Carbery [3] (see also [5]) and essentially
by Theorem 1 we can prove some estimates for T3, and T, on HP under certain,
suitable conditions on m.

We also prove the following weighted L? estimates for o5 defined in (1.1).

Theorem 2. If 6 > 1/2 and 0 < a < 1, then

[ Jos@Plel o < Coo [ 5@ el da.

In Carbery-Rubio de Francia-Vega [6] this is proved for the case p(§) = |€] (see
also Rubio de Francia [14] for another proof). We prove Theorem 2 for the general
p(€) by applying the method of Rubio de Francia [14]. Let S% be as in (1.2) and
define

S2(f)(x) = sup |Sp(f)(2)] - (1.5)

R>0
Then Theorem 2 implies, as in the case p(€) = |£], the following (see [6], [14]):

Corollary 1. Let 0 < A< (n—1)/2. If =2A — 1 < a < 2n)\/(n — 1), then

2 «@ «@
[ 1820@)[ el de < € [ 1f@Pal” o
Rn Rn
As in [6], by Corollary 1 we see that limg_,oo Sp(f)(z) = f(z) a.e. for all A > 0
and f € LP(R") provided 2 < p < 2n/(n—1—2)) (for the case p < 2 see Tao [25]).
We can also consider the spherical means with respect to p. For # > 0 let

M@ =t [ A-r P e ndy (e, (o)
ply)<t

where c5 = I'(8 + n/2)/(x*/?*T(3)). In Section 4 we shall prove some weighted

estimates for a modified version of M/ (f).

We assume p(z) = |z| in (1.6) for the rest of this section. By taking the Fourier
transform, we can embed these operators in an analytic family of operators in 3 in
such a way that

M) = [ fa=tm)doty)
where do denotes the Lebesgue surface measure on the unit sphere S"~1. We also

define MY (f)(z) = SUpP,~¢ ‘Mtﬁ(f)(a:)‘ The operator M} was studied in Stein [19]

(see also Stein-Wainger [21] and Kaneko-Sunouchi [12]).
Now we see some applications of Theorems 1 and 2 to the spherical means.
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Remark 3. Define, when 8+ n/2 -1 > 0,

9 1/2
tdt)

=2 5| ([ @ - 20 (e ?)/

If6=pB+n/2—1>0, then o5(f) and va(f) (f € 8) are pointwise equivalent; that
is, there are two positive constants A and B such that

o5(f)(x) < Avs(f)(z) < Bos(f)(x) . (L.7)

This was proved by [12]. By (1.7) we immediately get the vz(f) analogue of The-
orem 1 (see the remark below Theorem 1).

Remark 4. Let 8 > 3/2 —n/2 and 0 < a < 1. By Theorem 2 for p(¢) = [¢] (a
result of Carbery-Rubio de Francia-Vega [6]) and (1.7) we have

[ D@ el dr < Co [ 1f(a)Plal " e

R™

vs(f)(a) = ( | |5 M)

Remark 5. We write

2@ = s [ 1oty

Note that M(f)(z) = eM?(f)(z). Let n > 2,n/(n—1) < p. Then Duoandikoetxea-
Vega [9] proved that the inequality

/ () @) ] de < C / @) Pla] de (18)
R~ Rn

holds for n — p(n — 1) < a < n — 1 (this was partly proved in Rubio de Francia
[13]) and does not hold for & > n — 1. Stein [19] proved (1.8) when n > 3, a = 0;
the result for a = 0 and n = 2 is due to Bourgain [1] (see also [18]). By Remark
4 and a well-known argument (see [19] and also [21]) we can give another proof of
the inequality (1.8) whenn >3,0<a<n—1andn/(n—1) <p.

In the following sections we shall give the proofs of the theorems and the corollary
stated above.

2. PROOF OF THEOREM 1

To show Theorem 1 we prove a more general result. For a locally integrable
function f, a non-negative integer m and o > 0, we define

flme = sup inf s_g_n/ f(y) — Qy)| dy,
4 2€R™,5€(0,1] Q€Pm B(z7s)| (y) — Q)]

where P,, denotes the collection of polynomials of degree less than or equal to m.
We also write |f|m.o = |f :m, 0]

Let & > n and let ¢ be a measurable function on R™ satisfying the following
properties:

()] < O+ [z])~7, (2.1)

Y(z) de = 0; (2.2)
.
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furthermore, 1 can be written as
V() =Y 27" n(x), (2.3)
k=0

where {9 }r>0 is a sequence of integrable functions satisfying the following:

supp(in) € {277 < Ja <22} (k > 1), supp(no) C {l=| <1}, (2.4)

sup|n; : [ —n],0 —n+ k| < oo for some k > 0,
j21

[no : [ —nl],8 —n| < co. (2.6)

Here [a] denotes the greatest integer less than or equal to a. Then we shall prove
the following;:
Proposition 1. Let gy be the Littlewood-Paley operator with 1 satisfying (2.1) to
(2.6).

(1) Let 0 < p < 1. Suppose 8 =n/p, w € By and w € As. Then

gy (Dl < Cpuwllfllaz, — f € So(R?).
(2) Let 0 < p < 1. Suppose 8 > n/p, w € Byy/p, and w € A,. Then

9o (Dllre, < Cpowlfllmz, € So(R™).

To prove Proposition 1 we use the following result:

Proposition 2. Let ¥ € L'(R") satisfy [, ¥(x)dz =0 and let § > n. Suppose
that
1/2

2
o d
|t ([ e -rold) S| scll @
0 FPE€Pr-n \Jijy<1 r
for |z| > 2. Then we have the following:
(1) Let 0 < p < 1. Suppose § = n/p and w € By. If the operator gy is bounded
on LP° for some py € (p,0), then
g (Plle= < Cpullfllaz,  f € 8o(R").
(2) Let0 <p< 1. Supposet >n/p andw € Bpy,n. If the operator gy is bounded
on LF° for some py € (p,0), then

lgw(Nllee, < Coowllfllmz, — f € So(R™).

We use the atomic decomposition to prove Proposition 2. Let N be a non-
negative integer and w be a locally integrable positive function on R®. Then a
measurable function a on R™ is called a (p, N,w) atom (0 < p < 1) if for some
and s we have

supp(a) C B(xo, ), (2.8)
lallee < w(B(zo,5))""/?; (2.9)

and
/ a(z)z®dz =0 for all |a|] < N, (2.10)

where a = (ay,...,q,) is a multi-index and z® = 27" ...28", |a| = a1 + -+ + .
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Lemma 1. Let ¥ € L'(R") satisfy [, ¥(x)dz =0 and (2.7).

(1) Let 0 < p < 1. Suppose § = n/p and w € By. If the operator gy is bounded
on L0 for some py € (p,0), then for a (p,[n/p — n],w) atom a we have

w({z € R" : gu(a)(z) > A}) < CA7P,

where C is independent of a and \.
(2) Let0 <p< 1. Supposet >n/p andw € Bpg,n. If the operator gy is bounded
on LP° for some py € (p,00), then for a (p,[0 — n],w) atom a we have

llgw (a)llzz, < C,
where C' is independent of a.
This follows from the following result:

Lemma 2. Let ¥ € L'(R™) satisfy [5n ¥(2x)de =0 and (2.7). Let a be a (p, [ —
n],w) atom supported in B(xzo,s) with (2.9). Then we have

gu(a)(@) < C (|B(xo, 5)|/w(B(z0, )" s/ (s + |z — wo]) ™"
for x with |x — xy| > 2s.

Proof. We first give a proof for the case w(z) = 1. By (2.7)—(2.10) with N = [# —n]
we have, if |z — xo| > 2s,

gw(a)(m)zz/
0
:/ inf
o P€Pp_n
2
< a2 /Oo wl ([ ) - Pwldr) T
= S 0o PE€Pp_n B(o,s) '

2 [T " “lr—s7lpy — — 2@
=l [, e (/y<1|<rs> W(rs(s™a— 57w~ y) P<y>|dy> "

PE:P[Q_nl

2

| awrme - )dy

2
dr

/ ay) (P (r(z — y)) — P(y)) dy
B(wzo,s)

< Ollalf%(s™Ha = ol)
< CS_Qn/p+20|l' _ £L’[)|_20 < Os2(0—n/p)(s + |£L’ _ 1‘0|)_20.
Next, let a be a (p,[# — n],w) atom supported in B(zg,s) with (2.9). Then
applying the above estimate to
1
(w(B(x0,9))/|B(x0,9))"" a,
we get the conclusion. |

Now we give the proof of Lemma 1. We first prove part (1). Let a be a (p, [n/p—
n],w) atom supported in B(zo, s) with (2.9). Then

w({z € B : gy (a)(x) > \}) < w({z € Blao,25) : gw(a)(x) > A}
+w ({z € R* \ B(zo,2s) : gg(a)(z) > A})
=TI+1I, say.
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Since gg is bounded on LP?, by Chebyshev’s inequality and Holder’s inequality we
have

T<A® / 9w (a) (5)Pw(z) da
B(xo,2s)
p/pPo
< X Pw (B(ao, 26)) /P ( [ @@ dm)
P/Po (2-11)
< CXPw (B(mo, 25)) P P)/Po ( / |a(z)[Pow(z) da:)
< CA"Pw (B(l‘o, 23))(1)0*1))/1)0 w (B(:L’g, 25))*1+P/P0
= CO\7P,

where to get the last inequality we have used the doubling condition.
Next, by Lemma 2 we see that

115w ({r € B CBo, ) /u(Blan, )" (5 + e = al) "7 > 3})
=w ({z e R : Cs"(s + |z — z0]) " > w(B(zo,5))A\"})
=1III, say.
Since w € By, recalling that s"(s + | — 2o]) ™™ & M (XB(z0,s)) (T), We have
ITT <w ({z € R : M(XB(2o,5)) (@) > w(B(xo,5))A"}) < CAP.

Combining the estimates for I and II, we conclude the proof of part (1).
Next we turn to the proof of part (2). Let a be a (p, [# — n], w) atom supported
in B(zo, s) with (2.9). Then by Lemma 2 we have

gu(a)(@) < Cw(B(xo,5)) /"M (XB(ay,9) (@) for |z — wo| > 2s.

Since w € Byg/rn, we find

/ gv (Cl) (Z’)p’u)(il'f) dx S C’U)(B(l'o, 5))71 / M(XB(IO,S))(x)pG/nw(x) dx
R™\B(z0,2s) R™
<C.

Combining this with the estimate appearing in (2.11), we get the conclusion.
To prove Proposition 2 (1) we need the following result (see [20]):

Lemma 3. Let 0 < p < 1. Suppose {fi} is a sequence of measurable functions on
R™ such that

sup NPw ({z : |fe(x)] > A}) <1 for all k,
A>0

and suppose {c} is a sequence of complex numbers satisfying > |cx|P < 1. Then
we have

2—p
sup APw ({:UE]R” : crfr(x >)\}) < —.
sup > lerfu(@)| T

Now we can prove Proposition 2. We note that f € 8¢(R™) can be decomposed as
f =32 Arax by (p, [0 — n],w)-atoms (w € Bpy/n), where we have - A} < O||f|[5»,
S Arar = f ae. and > Aglag] < Cf*, with f* denoting the grand maximal
function (see [24]). Using this decomposition, we first prove part (1). Since f* is
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bounded, by the dominated convergence theorem we have U, * f =3 Ay U, xay, a.e.
and so gw(f) <> |Ak|gw(ar). Thus by Lemma 1 (1) and Lemma 3 we see that

sup M ({z € B” : gu(f)(@) > A}) < CY N <ClIfIlb.
This completes the proof of Proposition 2 (1). Part (2) can be proved in the same
way by using Lemma 1 (2).
Now we turn to the proof of Proposition 1. First we see that if 1) satisfies the
conditions (2.1)—(2.6), then 1 satisfies the condition (2.7) of Proposition 2. Let
|z| > 2. Then by (2.1) we have

[ (/ otrle —y>>|dy> Lo [ rraeray L
L lyl<1 T 1 r (219

< C|$|_29/ 7“2n_29 ﬁ < C|CE|_20.
1 r
Let r < 1. Suppose 2™|z|! < r < 2™ Fz|~! for m < m, := [(log2) ! log|z|].
If ly| <1, then r|z|/2 < r|z —y| < 3r|z|/2. Therefore, if m > 5, by (2.3) and (2.4)

we have
m—+5

Y@ —y)= Y 27%m(r(z—y).

k=m-—3
This expression of 1 and (2.5) imply that there exists a polynomial P = P, , €
Prg—_y) such that

/ |r*y(r(z —y)) — P(y)|dy < Critfiog—ml < C|m|7“*92m“. (2.13)
ly|<1

If m <4, then
8

V(e —y)) =Y 2 M n(r(z — y)).

k=0
Therefore, by (2.5) and (2.6) there exists a polynomial P = P, . € Pjg_,) such that

/ |r*y(r(z —y)) — P(y)|dy < cr? < C|m|702m9. (2.14)
ly|<1
By (2.13) and (2.14) we have

o . ? dr
/0 Pelﬂgl[f-nl </y<1 lrlz =) = PO dy) B

2m+1 ||~ 1

i n T s
: Z /2"‘|w|—1 Pelﬂggf,n] (/y<1 |r 1/1(1“(1‘ _y)) —P(y)|dy> 7 ( )

m<mg
S Z C|.’I}|_2922m0 + Z C|x|—2(n+9)22mn S C|.’I}|_29.
m<4 5<m<mg,

Now the condition (2.7) of Proposition 2 follows from (2.12) and (2.15).

Also by [16] we see that the conditions (2.1) and (2.2) imply the L -boundedness
of gy for all p € (1,00) and all w € A,. So Proposition 1 follows from Proposition
2.
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Now we give the proof of Theorem 1. Let

K@) = [ nlo(€) (1= p(e)] = e
Then
|D*K°~!(2)| < Cu(l + |z]) =0 (n=1)/2 (2.16)

for all a, where D* = (9/0x1)*" ...(0/0x,)*" (see [18]). Therefore, by [15] we
see that K °~! satisfies the conditions (2.1)(2.6) for ¢ with # = 6 + (n — 1)/2 and
0<k<[0—(n+1)/2]+1—-6+(n+1)/2in (2.5). Thus Theorem 1 follows from
Proposition 1.

3. PrRoOFs oF THEOREM 2 AND COROLLARY 1

The following result can be used to prove Theorem 2.

Proposition 3. Let 0 < < 1 and suppose that ms(r) = X[1-5,11(7) or ms(r) is a
continuously differentiable function supported in the interval [1—9,1] and satisfying
|(d/dr)ms||r1(m) < 1. Define

—

(U2 £)(€) = F(©)ms (t(€))-
Then for 0 < o < 1 we have

°° dt
[ [ wts@f e S e < s [ 1@l ds,

where C,, is independent of 6.

This was proved in Carbery-Rubio de Francia-Vega [6] and Rubio de Francia [14]
when p(§) = |¢]. To prove the general case we use the method of [14], which is based
on an application of Hirschman’s method in [11] and the weighted estimates for the
one dimensional square functions. To apply that method to our case we only need
to observe that A(z) = (||z||/p(z))z is bi-Lipschitz, with ||z|| = max(|z1], ..., |zal),
that is

Alz —y| < |A(z) — A(y)| < Blz —y|

for some constants A, B > 0; but this is an easy consequence of the fact that p(x)
is positive, homogeneous of degree one and C* in R \ {0}.
Now we prove Theorem 2. We decompose

(oo}

P& (1= p(&")5 " = 3277 mi(p(9),
k=0
where my(t) € C°(R), supp(my) C [1 — 2% 1] and |(d/dr)my(r)| < C2*, for
k> 1. Put ¢ (z) = F~ (mi(p(€)))(z) and gi(f) = gy, (f), where F~! denotes the
inverse Fourier transform. We can take mq(t) so that go is bounded on L2, for any
w € As. Now by Proposition 3 for k£ > 1 we have

gk (Hll2(lel-=) < C272| fllL2(e)-=)y  for 0 <a < 1.
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Thus if 6 > 1/2 we have

los(Fllz2qe-=) < D 27 V¥ g (H)llp2(je)-o)

k=0

<> 02 IR £l o
k=0

< Csllfllp2(af=)-

This completes the proof.

To apply the result to the maximal operator S° defined in (1.5) we use the
following, which can be proved as in the case p(§) = |¢| (see Stein-Weiss [22, Chap.
VII)).

Lemma 4. Let S% be as in (1.2). If 3> 0 and § > —1, then we have

SEN6@) = T i |, - EP sk @

for a suitable function f.

Here we give the proof of Corollary 1. OUsing Lemma 4 and Theorem 2 and
arguing as in the proof of [22, Lemma 5.10] we have

12 (AllLzel) < CxnallfllLz(fe)e) (3.1)
for all A > 0 and —1 < a < 0. It is known that if A > (n — 1)/2, then
1S2(F)lz2(z17) < Casllflln2(e)o) (3.2)

for —n < B < n. We extend the estimates (3.1) and (3.2) to complex A and
interpolating between them, we get the conclusion.

Remark 6. Let

5@ = ([ [sh0)@) - s (7))
0 R

where
5 A

@ = [ (=R ()] Feem e
Then we can prove the weighted estimates of Theorem 2 for Hy in place of o5 by

the same argument as in the case of o5. This result also can be used to prove the
estimate (3.1) (see [2, 3, 4]).

4. FURTHER RESULTS

For a locally integrable function f, a non-negative integer m and o > 0, we
define
o= s ot 5 [ 170 QW ay
B(z,s

z€R™,s>0 QeEPm
Let ¢ € L'(R™) and 6 > 0. We say ¢ € F(m,0,0) if ¢ can be written as in (2.3)
with {n:.}r>0 satisfying (2.4) and the condition supy s ||}, , < co. This function
class was introduced by Sato [15] to make a unified approach to the studies of
maximal Bochner-Riesz means and maximal spherical means in certain problems.
By the methods in the proof of Theorem 1 we can prove the following:
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Proposition 4. Let § > n and L € F([@ — n],0 — n,8). Define T*(f)(z) =
sup; s [Le * f(2)].
(1) Let 0 < p < 1. Suppose 8 = n/p and w € By. Then

1T (Pl < Cpwllfllaz, — f € So(R™).
(2) Let 0 <p < 1. Suppose 8§ > n/p and w € Byg/n. Then
IT*(Ollre, < Cpowlfllaz, — f € So(R™).
(3) Let 0 < p < 1. Suppose 8 > n/p, w € Byy/n, and w € A,. Then
1Lt * fllgg, < Cpowllfllam, — f € 8o(RY),
where the constant Cp 9 . is independent of t > 0.
Proof. Since L € F([# — n],6 —n,H), arguing as in [15] we have
T*(a)(z) < C (|B(wo, 5)| /w(B(x0,5))) "/ s~"/") (s + |z — wo|)~*
< Cw(B(x0,5) "M (XpB(ag,) (@),

where a is a (p, [# — n], w) atom supported in B(zg,s) with (2.9). As in the case of
the proof of Proposition 2, this implies parts (1) and (2). Part (3) follows from this
estimate along with the multiplier characterization of the weighted Hardy spaces
(see [24, Chap. VI, Theorem 4]), which requires the condition w € A. This
completes the proof. O

(4.1)

When w € A;, part (1) of Proposition 4 is in [15]. Also, if 0 < p <1, w € 4,
and p(§) = [¢], it is known that S ~L extends to a bounded operator from H?
to LP:> (see [15]). Let 6 = d + (n—1)/2,8 > d(p), 0 < p <1, > 6(1). Then
the estimate (2.16) implies that K°~' € F([# — n],0 — n,0) (see [15]). Thus by
Proposition 4 we have the following:

Corollary 2. Let S2(f)(z) = supgs |SE(f)(2)], where S&(f)(x) is as in (1.4).
(1) Let 0<p <1 and w € By. Then

ISP (Pllpe= < Coullfllig, € So(R™).
(2) Let 0 <p <1, 0>0d(p) and w € Bypp-1p5-5(p))- Then
|34, < Cosullfllmz,  feSo®.

(3) Let 0<p<1,6>0(p), we€ Biyp-1p06-5p)) and w € As. Then

|55, < Crsullflli, £ € S®),

where the constant C) 5, is independent of R > 0.

Part (3) of Corollary 2 extends a result of Sjolin [17] to the weighted Hardy
spaces. When p(¢) = |¢] and w(z) = 1, part (1) (with SS(f) in place of S(f))
is proved in Stein-Taibleson-Weiss [20]. The estimate for S¢ similar to [20, (2.9)]
immediately follows from (2.16), as we can see from the proof of [20, (2.9)]. We
can also have the estimate (4.1) for S3=1in place of T* as an application of that
estimate.
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Ifo<p<1l,we A and p(z) = |z, then it is known that Mf(p)_1/2 is bounded

from HE to LE:>°, where 3(p) = n(1/p— 1) + 3/2 (see [15]). For 8 > 0 let

MP(f)(x) = st / (o)1 — 2pw)?)* f(z — ) dy,

ply)<t

where ¢g is as in (1.6) and 7 is as in (1.4). Then n(p(y))(1 — p(y)2)?f1 € F(0 -

n]

,0 —n,0), where 3 > 1 and § = 8+ n — 1, and hence by Proposition 4 we also

have the following:
Corollary 3. Let MY (f)(x) = SUP;sg |MP(f)(x)] and write B(p) = n(1/p— 1) +
3/2.

(1) Let 0<p <1 and w € By. Then

12D 2 () e < Cowllflla,  f € So(R).

(2) Let 0 <p <1, B> f(p) and w € By ypn-1p3—p(p))- Then

jaz-

< Copulflin,  fESo(RY).

LY,

(3) Let 0<p <1, 8> fB(p), we B1+n—1p(,8—ﬁ(p)) and w € As,. Then

|27, < Comul Tz, f € So(®),

where the constant C), g, is independent of t > 0.
When p(¢) = |¢] and w(z) = 1, part (1) of Corollary 3 with MY (f) in place of

MPZ(f) is proved in Stein-Taibleson-Weiss [20]. The estimate (4.1) for M
place of T* also follows from an application of the argument in [20].
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