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ESTIMATES FOR SINGULAR INTEGRALS ALONG SURFACES
OF REVOLUTION

SHUICHI SATO

ABSTRACT. We prove certain L estimates (1 < p < oo) for nonisotropic sin-
gular integrals along surfaces of revolution. The singular integrals are defined
by rough kernels. As an application we obtain LP boundedness of the singular
integrals under a sharp size condition on their kernels. We also prove a certain
estimate for a trigonometric integral, which is useful in studying nonisotropic
singular integrals.

1. INTRODUCTION

Let P be an n x n real matrix whose eigenvalues have positive real parts. Let

v = trace P. Define a dilation group {4;};>0 on R® by 4; = t¥ = exp((logt)P).
We assume n > 2. There is a non-negative function r on R™ associated with
{A:¢}+>0. The function r is continuous on R™ and infinitely differentiable in R™\ {0};
furthermore it satisfies

(1) r(Aiz) =tr(x) for all t > 0 and z € R™;

(2) r(z+y) < C(r(xz) +r(y)) for some C > 0;

B)if T ={z € R :r(z) = 1}, then ¥ = {# € R" : (B6,0) = 1} for a positive

symmetric matrix B, where (-, -) denotes the inner product in R™.

Also, we have dz = t"~! do dt, that is,

Rnf(:v) d:vz/o /Ef(Ate)tV— do(8) dt

for appropriate functions f, where do is a C° measure on . See [2, 13, 17] for
more details.

Let Q be locally integrable in R™ \ {0} and homogeneous of degree 0 with respect
to the dilation group {A;}, that is, Q(A:z) = Q(z) for £ # 0. We assume that

/ Q(8) do(8) = 0.
>

For s > 1, let A denote the collection of measurable functions h on Ry = {t € R:
t > 0} satisfying

9i+1 1/s
Il = sup ( / |h(t>|5dt/t> <o,
JEL 27
where Z denotes the set of integers. We define [|h[|a, as usual (|[h][a,, = [|hllz~®y))-
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Let I' : [0,00) — R™ be a continuous mapping satisfying I'(0) = 0. We define a
singular integral operator along the surface (y, ['(r(y))) by

(1.1) Tf(x,z) = p.v. - flx—y,z2=T(r(y)K(y)dy
= lim fl—y,z=T(r(y)K(y) dy,
20 Jr(y)>e

where K (y) = h(r(y))Q(y" )r(y) ™", y' = A,(y)-1y and h € A;. We assume that the
principal value integral in (1.1) exists for every (z, z) € R*xR™ and f € §(R" xR™)
(the Schwartz class).

We denote by Llog L(X) the Zygmund class of all those functions © on ¥ which
satisfy

/EIQ(H)Ilog@ +19(8)]) do(h) < .

Also, we consider the L1(X) spaces and write [|Qfl, = (/5 [2(8) da(ﬁ))l/q for
Qe L1(Y) (]| is defined as usual).

Let
R

Mrg(z) = sup R~ oz —T@)ldr.

We assume that the maximal operator Mr is bounded on LP(R™) for all p > 1. See
[15, 17] for examples of such functions T'.
In this note we prove the following.

Theorem 1. Let T be as in (1.1). Suppose that Q € LI(X) for some q € (1,2] and
h € Ag for some s > 1. Then, we have

T fllpe@nsmy < Cplg — 1) IQUGAN A F 1 2o @nsm)
if [1/p —1/2] < min(1/s',1/2), where 1/s' + 1/s = 1 and the constant C) is
independent of q and €.

A

Theorem 2. Suppose Q € Llog L(X) and h € A, for some s > 1. Then, T is
bounded on LP(R™*™) if |1/p —1/2| < min(1/s',1/2).

Theorem 2 follows from Theorem 1 by an extrapolation method. When r(z) = ||
(the Euclid norm), m = 1 and T is a C?, convex, increasing function, Theorem 2
was proved in A. Al-Salman and Y. Pan [1] (see [1, Theorem 4.1] and also [10] for
a related result). In [1], it is noted that the estimates as ¢ — 1 of Theorem 1 (in
their setting) can be used through extrapolation to prove the L? boundedness of
[1, Theorem 4.1], although such estimates are yet to be proved. In this note, we
are able to prove Theorem 1 and apply it to prove Theorem 2.

If T =0 (T is identically 0), then T essentially reduces to the lower dimensional
singular integral

(1.2) Sf(x) = p-v. A flz —y)K(y) dy.
For this singular integral we have the following.
Theorem 3. Let ) € LX) and h € A; for some q,s € (1,2]. Then we have

1S fllLr@n) < Cplg = 1) (s = 1)7H[Ql[IA]
for all p € (1,00), where the constant C), is independent of q,s,$) and h.
P

A fllze@n
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For a > 0, let
9it1
La(h) = Sup/_ |1 (r)| (log(2 + |A(r)]))" dr/r.
JEL J29
We define a class L, to be the space of all those measurable functions h on R}
which satisfy L,(h) < oo.
By Theorem 3 and an extrapolation we have the following.

Theorem 4. Suppose Q € LlogL(X) and h € L, for some a > 2. Then S is
bounded on LP(R™) for all p € (1,00).

It is noted in [5] that S is bounded on L? , 1 < p < oo, if Q € L7 for some ¢ > 1
and h € Ay (see [5, Corollary 4.5]). Theorem 4 improves that result. See [13, 16]
for nonisotropic singular integrals S with ~ = 1 and also [3, 7, 9, 12] for related
results.

In Section 2, we prove Theorems 1 and 3. The proofs are based on the method
of [5]. Asin [14], a key idea of the proof of Theorem 1 is to use a Littlewood—Paley
decomposition depending on ¢ for which Q € L. Theorem 3 is proved in a similar
fashion. Applying an extrapolation argument, we can prove Theorems 2 and 4 from
Theorems 1 and 3, respectively. We give a proof of Theorem 4 in Section 3. In
Section 4, we prove an estimate for a trigonometric integral, a corollary of which is
used in proving Theorems 1 and 3.

Throughout this note, the letter C' will be used to denote non-negative constants
which may be different in different occurrences.

2. PrROOFS OF THEOREMS 1 AND 3

Let A* denote the adjoint of a matrix A. Then A} = exp((logt)P*). We write
Ay = B;. We can define a non-negative function s from {B;} exactly in the same
way as we define r from {4;}.

There are positive constants ¢y, ¢2, c3, ¢4, a1, a2, 31 and B2 such that

alz|* <r(z) < colz|*® ifr(z) > 1,
cslz|? < r(x) < eqlz)® if 0 < r(z) < 1.
Also, we have
dil€]™ < s(§) < dof§|™ if s(§) > 1,
dslé” < s(&) < daé™ if0<s(6) <1

for some positive numbers di , dz, d3,dy, a1, az, by and by (see [17]). These estimates
are useful in the following.

We consider the singular integral operator T' defined in (1.1). Let E; = {z €
R" : 37 < r(x) < B9}, where B > 2 and j € Z. We define a sequence of Borel
measures {o;} on R” x R™ by

6i(6m) = /E e=2mi(w6) =2 (T ()1 [ (3 dly,

where 6; denotes the Fourier transform of o; defined by
6(E,m) = / e=2ml(EEM) dor (7, 2).

Then Tf(z) = > ok * f().
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Let puy = |ok|, where |o| denotes the total variation of o. Let Q € LY, h € Aq,
q,s € (1,2]. We prove the following estimates (2.1)—(2.5):

(2.1) llow|l < C(log )| l|R]|a, < C(log B)2lI7] A,
where [|og|| = |og |(R*T™);
(2.2) |65.(&m)| < ClIQ IR, (B s(€)) ",
where d = by /ay;
(2.3) 16(&:m)| < Clog B)||Qy|1hl|a, (8*s(€) /@)
for some ¢y > 0;
(2.4) |k (£:m)] < C(log B)|QUlyl1hl|a, (8% s()) 0/,
where € is as in (2.3);
(2.5) |k (€,m) = ik (0,m)] < ClIQlgl|Bla, (B4 4s(£)1/ ",
where d is as in (2.2).

First we see that

ght1

(2.6) llowllr = /ﬁk |h(r)[ 12|11 dr/r < C(log B)[|Q]1 IRl A, -

From this, (2.1) follows. Next, we show (2.2). Take v € Z so that 2V < 3 < 2v*+L,
Note that

6u(6m) = / ¢ 2D () (o278 1) (p()) e Yr(z) 7 d.
Bk <r(x)<prtt

Thus
@7 |l <C (2l | Bow ll(B4r () r(a) 7 de
1<r(z)<p
v ' 2]'+1
<Oy Boellil’™ [ e arsr
=0 z

< CBY Bar |12l a, -
Combining (2.6) and (2.7), we have
(2.8) 64(6,m)| < ClIQANIblLa, min (log 8, 8/ | Beé])
If s(Bgr€) < 1, then |Bgeé| < C(BFs(€))Y/*1. Therefore,
min (log B, 8"/ | Byué]) < C(8Hs5(¢)) /™.

Using this in (2.8), we have (2.2). We can prove (2.5) in the same way.
Next we prove (2.3). We use a method similar to that of [5, p. 551]. Define

(€) = /E Q)"0 do ().

We need the following estimates.
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Lemma 1. Let L be the degree of the minimal polynomial of P. Then, if 0 < €y <
ay ' min(1/2,q'/L), we have

g1

[ 1B drir < Clog B s@) 10

where C' is independent of € LY, q € (1,2] and S.

In proving Lemma 1 we use the following estimate, which follows from the corol-
lary to Theorem 5 in Section 4 via an integration by parts argument.

Lemma 2. Let L be as in Lemma 1. Then, for n,{ € R* \ {0} we have

2

[ e B0 dei] < ¢ 0.
1

for some positive constant C independent of n and (.

Proof of Lemma 1. Choose v € Z such that 2V < 8 < 2*!. Then, we have
e+l Broitl

7(B, Zdr/r - 7(B, 2 dr/r
[, ol /%/ﬁ (B, dr/

k9j

_ i://mg </12 exp (—2mi(Byrin€,6 — ) dr/r) Q0)Q(w) do (6) do(w).

By Lemma 2 we have

2
/ exp (—27I'Z-<Bﬁk2jrf,0 — w)) dr/r
1

< C|(Bgras&, PO —w))|

where 0 < € < 1/L. Using Hélder’s inequality, if 0 < e < min(1/(2¢’),1/L), we see
that

//Z . [(Bgras&, P(6 — w))| “|Q(0)Qw)| do(8) do(w)

/ 1/4'
<(ff, i Boameo—al o) Il < Ol
X

where the last inequality follows from (3) of Section 1 (see [5, p. 553]). Therefore
(2.9)

Bk+1 v

. (B[ dr/r < ClIQUF D |Bgrai€l™ (0 < e <min(1/(2¢'),1/L)).
=0

If s(Bgr€) > 1, |Baryil] > C(B*275(¢))1/*2 (0 < j < v). Thus we see that

174

(210) Z |Bﬁk2]'£|_6 < ZC(ﬂijS(g))—f/az < C(logﬂ)(ﬂks(g))—e/az’
j=0 J

0

where C is independent of g. By (2.9) and (2.10) we have the estimate of Lemma
1 when s(Bgr€&) > 1. If s(Bg§) < 1, the estimate of Lemma 1 follows from the
inequality |7(&)] < ||€]]1. This completes the proof of Lemma 1.
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Now, by Holder’s inequality we have
ght1

e 2™ b(p)7(BE) dr /1

l/s ﬁk+1 l/s’
|h<r>|5dr/r> ( [, wser dr/r)

’ ’ ’BkJrl
ngs 2)/s (/
/gk

where we have used the estimate |7(£)| < ||Q|]1 to get the last inequality. By (2.11)
and Lemma 1 we have (2.3). The estimate (2.4) can be proved similarly.

Let Bys = (1 — f70/(¢'s)) =1 where > 2, 6 € (0,1) and ¢ is as in (2.3) and
(2.4). To prove Theorems 1 and 3, we use the following:

1) InEnl =/,

ght1

(]

< C(log )'/* |||

A

1/s
I7(B,€)|* dr/r) :

Proposition 1. Suppose that Q@ € L7, q € (1,2] and h € A;, s € (1,2]. Let
1/p—1/2| < (1—-6)/(s'(1+0)). Then, we have

1751, < Cllog B) IAlla, Il Bas By £ 1,
where C is a constant independent of 0, h, q, s and 3.

Proposition 2. Suppose that ' = 0. Let Q € LY, h € Ag, q,s € (1,2]. Then, for
peE(1+6,(1+6)/6) we have

IT £l < Clog B)||QlqlIhlla, By P21 £,
where C' is a constant independent of 0, h, q, s and (.

A

To prove Propositions 1 and 2, we need the following:
Proposition 3. Let p*(f)(x) = supy, |ux * f(z)]. Let @ € LY, q € (1,2].
(1) If h € A, for p > 1+ 6 we have

(Pl < Cog ALl a B Lfllp,

where C is a constant independent of Q, h, q and (.
(2) Suppose that T' = 0. Let h € Ag, s € (1,2]. Then, we have

1 (F)llp < Cllog B)IQNPlla, BILP I F |l
for p > 1+ 0, where C is independent of 2, q, h, s and (.
Proof. Since the estimate || (f) |l < C(1og 8)[121[1hll | flloo follows from (2.1),

by interpolation, to prove (1) and (2) of Proposition 3 we may assume p € (1+86, 2].
First, we give a proof of part (1). Define measures v on R* x R™ by

ﬁk(fﬂ?) = ﬂk(fan) - \i!k(gvn)a

where U (€,1) = ¢r(€)/ir (0,n) with @y (z) = B p(Ag-rz),p € C5°. We assume
that ¢ is supported in {r(z) < 1},$(0) =1 and ¢ > 0. Then by (2.1), (2.4) and
(2.5), for ¢, s € (1,2], we have

966, m)] < C(1og )]y 1hlla, min (1, (85 s(€)/"1, (8*s(€)) /@)
We may assume that ¢y is small enough so that €p/4 < 1/b;. Then, we see that

(2.12) |2(&,m)] < CAmin (1,(8*"5(6))", (8*s(£)) ) ,
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where 4 = (log A)l|l,|[Alla.. and a = &0/ (2q).
Let

(o)

1/2
9(f)(@,2) = ( S *f(:r,z)|2> .

k=—oc0
Then p*(f) < g(f) + ¥*(|f]), where ¥*(f) = sup;, [|¥s|  f|. Let
Mg(z) = supt™ / ()| dy
>0 (e—y)<t

be the Hardy-Littlewood maximal function on R™ with respect to the function r.
By the L? boundedness of Mr and M, it is easy to see that ||¥*(f)||l, < CA||fll»
for p > 1. Thus to prove Proposition 3 (1) it suffices to show

(2.13) lg(f)lly < CAB*?|fll, (p € (1+6,2]),

where A is as above and B = Bg. By a well-known property of Rademacher’s
functions, (2.13) follows from

(2.14) TN, < CAB*™||f|l, (p€ (1+6,2]),

where Uc(f)(z,2) =Y vy * f(x, 2) with € = {ex}, e = 1 or —1 (the inequality is
uniform in €).
We define two sequences {r,,}5° and {pm,}$° by p1 = 2 and

1 1 1 1 0+1—0 R -1
= — = = or m .
T'm 2 2pm, Pm+1 2 T'm N

Then, we have

1 1 1-46
= -+ — form > 1.
perl 2 2pm

Thus 1/pm = (1 —n™)/(1 +0), where n = (1 —60)/2, so {pm} is decreasing and
converges to 1 + 6.
For 7 > 1 we prove

(2.15) 10N, < CABYP|f,, -

To prove (2.15) we use the Littlewood-Paley theory. Let {1}, be a sequence of
non-negative functions in C*°((0, 00)) such that

Supp(/(/}k) - [6ik71)ﬁik+l]> Zﬂ%(t)z = ]-7
ke

(d/dt) (D) < e/t (G =1,2,...),
where ¢; is independent of 3 > 2. Define S}, by

(Sk(f)) " (&.m) = vu(s(8) F (&, m).

We write Uc(f) = 372 U;(f), where U;(f) = 3202 erSjtr (Vi * Sjvr(f))-
Then by Plancherel’s theorem and (2.12) we have

210 ks ff et
A2 2(J5|-1- d) 2
< CA% min (1,5” 2// sty €I dEdn

< CAmin (1, 5201102) | £2
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where D(k) = {€ € R* : B¢ 1 < 5(¢) < B FF1}. By (2.16) we have

@17) U, < ZHU ||2<cZAmm( B WI==D) | ),

< CAML =B If Il

If we denote by A(m) the estimate of (2.15) for j = m, this proves A(1).
Now, we assume A(m) and derive A(m + 1) from A(m). Note that

vi(f) < pt(1FD) + 27D < g(1FD() +25(| ),

where v*(f)(z) = supy, |[vx| * f()]. Since [lg(f)llp,, < CABP=|f|,, by A(m),
we have

1 (llp,, < CAB*P|| £y,

Also, ||vk|| < CA by (2.1). Thus, by the proof of Lemma for Theorem B in [5, p.
544], we have the vector valued inequality:

(Z vk *gk|2)1/2

< C(AB%7e supl )/

(Z ngIQ)

By (2.18) and the Littlewood—Paley inequality, we have

1/2
(2.19) WU (DI, < C (Zwk*sﬁk )

Tm

(2.18) ‘

(Z |9 )

Tm Tm

< CAB'/Pm

< CAB" ™| flls..

Here we note that the bounds for the Littlewood-Paley inequality are independent
of 8 > 2. Interpolating between (2.16) and (2.19), we have

U (F)lppss < CABU=O/Prmin (1,6*9“”“*1*6‘)) 1 f1pss-
Thus
NU(Pllpmin < Z U (F)llpmys < CABE=O /P (1 — g0y =2 f1]

< CABQ/”’"+1 1 f1lpm 1

which proves A(m + 1). By induction, this completes the proof of (2.15).

Now we prove (2.14). Let p € (14 6,2] and let {p,, }$° be as in (2.15). Then we
have pyy1 < p < py for some N. By interpolation between the estimates in (2.15)
for j = N and j = N + 1 we have (2.14). This completes the proof of Proposition
3 (1).

Part (2) of Proposition 3 can be proved in the same way. We take A =
(log B) a=¢€y/(q's") in (2.12). Then, since

(Nl < Clog QU [Rl|a I fll,  forp>1

if ' = 0, the proof of part (1) can be used to get (2.13) with A = (log )
as above and B = By, and the conclusion of part (2) follows from (2.13). O
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Proof of Proposition 1. To prove Proposition 1 we may assume 1 < s < 2. Asin
[1], here we apply an idea in the proof of [6, Theorem 7.5]. We consider measures
71, defined by

Te(&m) = / e 2w L) =2 T W | (r (y)) P |0y r(y) ™7 dy.
E
Then, the Schwarz inequality implies
(2.20) |ow * fI* < C(log B)|Ih]
Define measures \j by

A (€,m) :/ e 2wl 2wy r(y) 7 dy.
Ey

= ||h||2A:s, if u=s/(2—s) by Holder’s

Qll17i * |-

s
A

Since |h[>™* € A, /(25 and [||h[>~|
inequality we have

|7+ 1 < Clog B)Y“ |RIA*NIQUL ™ O * | 1)

Therefore, if 1 +6 < r/u’ = 2r(s — 1)/s, by applying (1) of Proposition 3 to {Ax}
we see that

(2.21) I ()l < Clog AR NN, B 1 £l

where 7*(f) = supy |7 * f|. Thus, if [1/v—1/2| = 1/(2r) < 1/(s'(1 + 0)), using
(2.20), (2.21) and arguing as in the proof of Lemma for Theorem B in [5, p. 544],

we see that
/ /
(Stowra)”| < ctossn (S o)

We decompose T'f = Y2 Vif, where V;f = 327 Sjyr (o * Sjyi(f))-

As/(2-5)

Qll, By

q2

(2.22) ‘ A,

v

Jj=—00
Then, using (2.22) and the Littlewood—Paley theory, we see that
1/r
(2.23) Vi £l < Cog B)lI-fla, 1201, Byd 11 £1lu,

where |1/v —1/2| = 1/(2r) < 1/(s'(1 4+ 6)). On the other hand, by (2.1)-(2.3) we
have

|64(¢,m)| < C(log B) ||y [IAl|a, min (1, (B*Fs(€))", (8°s(6)7") ,
where k = €9/(q's’), and hence, similarly to the proof of (2.16), we can show that
229) (Vi ll2 < Cllog B)|bla. 9], min (1,8-H=1=0%) | 7.

If 1/p—1/2| < (1 —0)/(s'(1 +0)), then we can find numbers v and r such that
[1/v—1/2|=1/(2r) <1/(s'(1+80)) and 1/p =0/2+ (1 —0)/v. Thus, interpolating
between (2.23) and (2.24), we have

1V fllp < C(log B)lIhla. 1001, BYy ™" min (1, 3-0WI=1=0%) | .

Therefore

(2.25) ITfll < Z Vi £l < C(log B[R]

A

A

1-60)/r
Qll,BS " Byl £l

A

This completes the proof of Proposition 1, since (1 —6)/r = |1/p — 1/p'|.

Proof of Proposition 2. The L? estimates follow from Proposition 1, so on
account of duality and interpolation we may assume that 1+6 < p < 4/(3—6). For
po € (1+6,4/(3—0)] we can find r € (14 6,2] such that 1/py = 1/24 (1 —8)/(2r).
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If ' = 0, by (2) of Proposition 3 and (2.1), arguing as in (2.18), we have (2.22)
with Bga replaced by Bys for the number v satisfying 1/v—1/2 = 1/(2r) (note that
1/po = 60/2+ (1 — 0)/v). Thus, arguing as in the proof of Proposition 1, we have
(2.25) with p = py and By, in place of By>. This completes the proof of Proposition
2.

Now we can give proofs of Theorems 1 and 3. To prove Theorem 1, we may
assume that 1 < s < 2. Let 8 = 2¢ in Proposition 1. Then, since 6 is an arbitrary
number in (0, 1), we have Theorem 1 for s € (1,2].

Next, take 8 = 275" in Proposition 2. Then, we have

ITfllp < Cla = 1)~ (s = D72l I F 1l

for p € (1,00), since (1+6,(1+6)/8) = (1,00) as # — 0. From this the result for
S in Theorem 3 follows if we take functions of the form f(z,z) = k(z)g(2).

A,

3. EXTRAPOLATION

We can prove Theorems 2 and 4 by an extrapolation method similar to the one
used in [14]. We give a proof of Theorem 4 for the sake of completeness (Theorem
2 can be proved in the same way). We fix p € (1,00) and f with ||f]|, < 1. Let S
be as in (1.2). We also write Sf = Spo(f). Put U(h,Q) = ||Sh.o(f)|lp- Then we
see that

U(h, + Q2) <U(h, ) + U(h,Q2),
U(hi + ha, Q) < U(h1,Q) + Ulhs, Q),
for appropriate functions €2, h, Q,s, h; and hs. Set
By ={reR, : |h()] <2},
E,={reR, 277 <|n(r)] < 2™} for m > 2.
Then h =3Y,°_, hxg,.. Put ey, = o(Fy,) for m > 1, where
Fn={ex: 2™ < |Q0)] < 2™} for m > 2,
Fr={0eX:|Q0) <2}

Let Q= Qxp,, —0(2)~" [ Qdo. ThenQ =37 Q,,. Note that [, O, do = 0.
Applying Theorem 3, we see that

(3.2) U (hxp,.,925) < Cla=1)"" (s = 1) lhxp,|

for all s,q € (1,2].
Now we follow the extrapolation argument of A. Zygmund [18, Chap. XII, pp.
119-120]. For k € Z, put

E(k,m) = {r € (2¥,2"1: 2™~ < |n(r)| < 2™}  for m > 2,
E(k,1) = {r € (2*,2"1:0 < |h(r)| < 2}

(3.1)

A1l

Then
/ | (r)| D e < Cm’“/ |h(r)| (log(2 + |h(r)])" dr/r
E(k,m) E(k,m)
< Cm™*Lg(h),
and hence

(3-3) 1hXB larss,.. < Cm—em/(MFD L (pym/(m+1)
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for m > 1. Also we have
(3.4) 11114175 < CQjej:/(Hl)-
From (3.1)7(3.4) we see that

Z ZU hXEmy < C Z Z]m||hXEm||Al+1/m||Q ||1+1/]

m>1j>1 m>1j>1
< C(14 Lo( Z Zml am/(m+1)]21 i/ (i+1)
m>1j>1
Cr 1 + L Z ml am/(m+1) 2]2]6.]/(]+1)
J
m>1 i>1

When a > 2, it is easy to see that 3. o, m!=em/(m+1) < o0 Also, we have

Zijej:/(j+1): Z + Z

7j>1 e; <377 e; >3-
< Zijg*f/(]#l) + Zijejgj/(jJrl)
Jj>1 Jj>1

<0+ c/ 12(8) | log(2 + 122(8)]) do (6).
b
Collecting the results, we conclude the proof of Theorem 4.

Remark. For a positive number a and a function h on Ry, let
h) =Y m®2"dy(h)
m>1

where d,,(h) = supycz, 2~ F|E(k,m)| (E(k,m) is as above). We define a class N, to
be the space of all measurable functions h on Ry which satisfy N,(h) < co. Then,
it can be shown that if h € £, for some a > 2, then h € N;. By a method similar
to that used in this section, we can show the LP boundedness of S in Theorem 4
under a less restrictive condition that h € Ny and Q € Llog L (see [14]).

4. AN ESTIMATE FOR A TRIGONOMETRIC INTEGRAL
Let A be an n x n real matrix and
pa(t) = (E—7)™ (E=2)™ o (=)™
be the minimal polynomial of A, where v; # ; if i # j. Let a;(t) = (t — v;)™ for
i=1,2,...,k. Then, we can find polynomials b;(t) (¢ =1,2,...,k) such that
k

r bi(t)
ORPIrIO
For each i, 1 < ¢ < k, let P; be the polynomial defined by
bi(t)
Pi(t) = t).
(1) = oa®)

We consider the n x n matrices P;(A), which are defined as usual (see [8]).
Let

Vi={zeC":(A—yE)™2z=0} (i=1,2,...,k),
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where F denotes the unit matrix. Then, the vector space C* can be decomposed
into a direct sum as

C'=VioVd- &V

Each of the matrices P;(A) is the projection onto V;; indeed, we have the following
(see [8]): Pi(A)z € V; forall ze C", fori=1,2,...,k, and

Pi(A) + Py(A) + -+ + Po(A) = B,
P(A) = P(4), P(A)Pj(4)=0 ifi#j (1<i,j<k).

K3
For z = (z;) and w = (w;) in C", we write (z,w) = Y., zjw;. Let

m;—1

k
(4.1) J(AN Q) =Y [(A=wE)YPi(A)n, A*()|

i=1 j=0
for n,¢ € R™. In this section, we prove the following:

Theorem 5. Let n,¢ € R* \ {0} and 0 < a < b. Suppose that J(A,n,() # 0 and
the numbers a, b are in a fized compact subinterval of (0,00). Then, we have

b
/ exp (i{t41,C)) dt| < CT(A,n, Q)Y

where N = deg o4 = mq + mao + -+ -+ my and the constant C is independent of n,
¢, a andb.

Since Zle P;(A) = E, using the triangle inequality, we see that

k

(0, A"OL < Y (Pi(A)n, A*Q)| < T (A,n,€).

i=1
Therefore, Theorem 5 implies the following;:

Corollary. Letn,(,a,b and N be as in Theorem 5. Then, we have

b
/ exp (i{t49,)) de| < C|(An, )7V

when (An, () # 0.

This is used to prove Lemma 2 in Section 2.
We define the curve X (t) = t47 for a fixed € R* \ {0}. Then, E. M. Stein and
S. Wainger [17] proved the following (see [11, 16] for related results):

Theorem A. Suppose that the curve X does not lie in an affine hyperplane. Then

b
/ exp (i(X (), 0)) dt| < O™,

where C is independent of ( € R™ \ {0}; furthermore, if a and b are in a fized
compact subinterval of (0,00), the constant C is also independent of a and b.
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Now, we see that Theorem 5 implies Theorem A. Since P;(A)z € V; (z € C"),
we have (A —vE)"P;(A) =0ifm>m; (i=1,2,...,k). Therefore
exp((log ) A)P; (4) = exp((log ) E) exp((log £) (A — 7)) P;(4)
m;—1 :
' (logt)? :
=t Z T(A — ')/ZE)]PZ(A)
7=0

Thus, using Zle P;(A) = E, we see that

(12) Zt% b3l LB (4~ | Pi(a).

7j=0

The assumption on X of Theorem A can be rephrased as follows: the function
Y(t) = (t4n, () is not a constant function on (0,00) for every ¢ € R™ \ {0}. If (¢)
is not a constant function, then ¢’ (¢) is not identically 0. Thus, since ¢(d/dt)y(t) =
(t"n, A*C), by (4.2) we have J(A,n,¢) > 0, where J(A4,n,¢) is as in (4.1). Let
Co = minj¢|=; J(A,n,() and note that Cp > 0. Then, from Theorem 5, it follows
that

b
. —1/N |~
/ exp (i{X (1), 0)) dt| < CCy N7V,
This implies Theorem A, since N < n (in fact, it is not difficult to see that N =n
if X satisfies the assumption of Theorem A).
In the following, we give a proof of Theorem 5. Let I = [a, 3] be a compact
interval in R. Consider the differential equation

(4.3) y® +aiy® Y fagy* P o ey =0 onl,

where ay,as,...,a, are complex constants. Let {¢1,p2,...,or} be a basis for the
space S of all solutions of (4.3). Then, we use the following to prove Theorem 5.

Proposition 4. Let ¢ be a real valued function such that ¢ € S. Suppose that
¢ =dipr +dos + - + dppr, where dy,ds,...,dy are complex constants, which
are uniquely determined by ©'. Then, we have

6
/ ) gy

where C' is independent of p; also the constant C' is independent of «, 3 if they are
within a fixed finite interval of R.

< C (|| + |da] + -+ |di]) ¥,

To prove Proposition 4 we use the following two lemmas. Both of them are
well-known.

Lemma 3. Let ¢ be a solution of (4.3). Suppose that  is not identically 0. Then,
there exists a positive integer K independent of ¢ such that ¢ has at most K zeros
in I.

Lemma 4 (van der Corput). Let f : [c,d] — R and f € CI([c,d]) for some pos-
itive integer j, where [c,d] is an arbitrary compact interval in R. Suppose that
inf ,epe,q [(d/du)? f(u)] > X > 0. When j =1, we further assume that f' is mono-

tone on [c,d]. Then
d
/ el dqy| < cA 1,
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where C; is a positive constant depending only on j. (See [17, 18]).

We now give a proof of Proposition 4. We consider linear combinations ¢;¢; +
Copa + -+ -+ Crppg, where ¢y, ¢o, ..., € C. We write ¢ = c11 + cap2 + - - - + cp ik
and define

Ni() = ler] + lea] + -+ + [exl,
Na() = min (|o(®)] + 14/ ()] + -+ ¢ @)]) -

Let U = {(c1,¢2,...,c) € C¥ :|er| + |e2| + -+ + |ck| = 1}. We consider a function
F on I x U defined by

F(t,er,ca,..00) = [0+ [0/ O]+ + [0 (@),
Then, the function F' is continuous and positive on I x U (see [4]). Thus, if we put

Co = min F(t,c1,c2,--.,¢k),
(t,c1,02,..05c)EIXU

then we see that Cp > 0 and Na(¢p) > CoNyi(v).
Therefore, if ¢ is as in Proposition 4, we have

(4.4) min (/)] + " (5] + - + |6 (1)]) > CoNi ().
By (4.4), for any t € I, there exists £ € {1,2,...,k} such that
(d/dt)"(H)] = CNi(¢"), C > 0.

Applying Lemma 3 suitably, we can decompose I = UH _ T,,, where H is a positive
integer independent of ¢ and {I,,} is a family of non-overlapping subintervals of I
such that for any interval I,,, there is £,, € {1,2,... k} satisfying |(d/dt)* o(t)| >
|(d/dt) p(t)| on I, for all j € {1,2,...,k}, so |(d/dt)*~o(t)| > CNi(¢') on I,
and such that ¢’ is monotone on each I,,,. Therefore, by Lemma 4 we have

Jéj H
o) gy / i) g

< ONy (@) ~Vk,

Since Ni(¢') = |di| + |d2| + - - - + |di]|, this completes the proof of Proposition 4.
Proof of Theorem 5. By the change of variables ¢ = e® and an integration by
parts argument, we can see that to prove Theorem 5 it suffices to show

B
[ e (itetn,0)) i

for an appropriate constant C' > 0, where [a, (] is an arbitrary compact interval in
R. Let 1 (t) = (e*4n, (). Then, ¢'(t) = (e*4n, A*¢), and hence, by (4.2) we have

k m;—1

V) =D ey, Qe

i=1 j=0

H
<0y min (|1l Ni(p)7")
m=1

(4.5) < CJ(A,n,¢)~YN

where )
cij(m,¢) = ﬁ«A — % E) Pi(A)n, A*C).

It is known that N functions t/e”! (0 < j < m; — 1, 1 < i < k) form a basis
for the space of solutions for the ordinary differential equation of order N with
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characteristic polynomial ¢4 (see [4]). Thus, the estimate (4.5) immediately follows
from Proposition 4, since 5 Z;n:i(;l leij(n, Q)| ~ J(A,n, ().
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