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Abstract

Two of the most important and pressing questions in cosmology and particle physics are: (1) what is the nature of cold dark matter? and (2) will
near-future experiments on neutrinoless double beta decay be able to ascertain that the neutrino is a Majorana particle, i.e. its own antiparticle?
We show that these two seemingly unrelated issues are intimately connected if neutrinos acquire mass only because of their interactions with dark
matter.
© 2006 Elsevier B.V. All rights reserved.

The existence of cold dark matter in the Universe is now well accepted [1]. From the viewpoint of particle physics, it should con-
sist of a weakly interacting yet-to-be-discovered neutral stable fermion or boson. A prime candidate is the lightest supersymmetric
particle (LSP) in the minimal supersymmetric standard model (MSSM). More generally, we need only an exactly conserved Z2
symmetry [2,3] and some new particles which are odd under it, keeping all known particles even. In the MSSM, this Z2 symmetry
is called R parity, and the new particles are the squarks, sleptons, gauginos, and higgsinos.

Consider now the interactions of the neutrino with particles in this new class. To realize the well-known dimension-five operator
for Majorana neutrino mass [4],

(1)Leff = fαβ

Λ

(
ναφ0 − lαφ+)(

νβφ0 − lβφ+) + h.c.,

where (να, lα) and Φ = (φ+, φ0) are the usual lepton and Higgs doublets of the standard model (SM), it is clear that the new
particles must form a loop with four external legs given by νανβφ0φ0. There are generically three such one-loop diagrams [5]. In
the MSSM, this does not happen because this operator also requires lepton number to change by two units. However, if a neutral
singlet superfield N is added, then Fig. 1 is generated as a radiative contribution to the neutrino mass.

We note that the particles in the loop all have odd R parity. Of course, in the context of supersymmetry, this also implies that
ν couples to N directly through φ0

u, so that a Dirac mass already appears, and together with the heavy Majorana mass of N , the
famous seesaw mechanism [6] allows ν to obtain a tree-level Majorana mass. That is why Fig. 1 is always negligible in the MSSM
with the addition of N . However, in a more general framework, the new particles in the loop may be the only source of neutrino
mass [7,8], and in that case there will be interesting phenomenological implications on lepton flavor transitions and neutrinoless
double beta decay, as shown below.

Basically, the argument goes as follows. In order for the new particles in the loop to be identified as cold dark matter with the
correct value of their relic density in the Universe at present, their interactions with neutrinos and charged leptons must not be too
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Fig. 1. One-loop radiative neutrino mass in supersymmetry. Fig. 2. One-loop radiative neutrino mass in the model of Ref. [8].

weak. On the other hand, they are also responsible for the masses of neutrinos and their observed mixing in neutrino oscillations.
This implies necessarily flavor changing transitions such as μ → eγ . In order to suppress the latter, the parameter space of neutrino
masses is limited, thereby enforcing a lower bound on neutrinoless double beta decay.

Of the three generic one-loop diagrams giving rise to a radiative neutrino mass, the simplest in terms of new particle content is
given in Ref. [8]. The standard model is extended by adding three neutral singlet fermions Ni and a second scalar doublet (η+, η0),
which are odd under an exactly conserved Z2 symmetry, keeping all SM particles even. In that case, the analog of Fig. 1 is Fig. 2,
as depicted below.

We note again that the particles in the loop are all odd, and that lepton number changes by two units as in Fig. 1. The Z2 invariant
Higgs potential is given by

(2)V = m2
1Φ

†Φ + m2
2η

†η + 1

2
λ1

(
Φ†Φ

)2 + 1

2
λ2

(
η†η

)2 + λ3
(
Φ†Φ

)(
η†η

) + λ4
(
Φ†η

)(
η†Φ

) + 1

2
λ5

[(
Φ†η

)2 + h.c.
]
,

with 〈φ0〉 = v and 〈η0〉 = 0. Let us choose the bases where Ni and lα , lcα are diagonal, and consider the interactions of (να, lα) with
Ni and (η+, η0), i.e.

(3)LN = hαi

(
ναη0 − lαη+)

Ni + h.c.

Since 〈η0〉 = 0 is required to preserve the exact Z2 symmetry, there are no Dirac masses linking να with Ni . In other words, even
though Ni have heavy Majorana masses, the canonical seesaw mechanism is not operative. Further, the lightest among the new
particles will be stable and becomes an excellent candidate for the cold dark matter of the Universe. We see thus that neutrinos
acquire mass here only because of their interactions with dark matter.

We note that Fig. 2 depends on the existence of the λ5 coupling of Eq. (2). If it were zero, we could assign the exactly conserved
additive lepton number −1 to (η+, η0) and 0 to Ni , in which case the neutrinos would stay massless. This means that it is natural
for λ5 to be very small, which we will assume from here on. Without loss of generality, λ5 may also be chosen to be real. We now
define η0 = (ηR + iηI )/

√
2 and obtain m2

R − m2
I = 2λ5v

2, where mR (mI ) is the mass of ηR (ηI ). Using m2
0 = (m2

R + m2
I )/2, the

radiative neutrino mass matrix is then given by [8]

(4)(Mν)αβ =
∑

i

hαihβiI (M2
i /m2

0)

Mi

,

where

(5)I (x) = λ5v
2

8π2

(
x

1 − x

)[
1 + x lnx

1 − x

]
.

Assuming that atmospheric neutrino mixing is maximal, the neutrino mixing matrix U which diagonalizes Mν can be written
as U = ÛP , where Û is approximately given by

(6)Û �
⎛
⎝ c12 s12 s13e

−iδ

−s12/
√

2 + c12s13e
iδ/

√
2 c12/

√
2 + s12s13e

iδ/
√

2 −1/
√

2

−s12/
√

2 − c12s13e
iδ/

√
2 c12/

√
2 − s12s13e

iδ/
√

2 1/
√

2

⎞
⎠ ,

(7)P =
(

eiα1/2 0 0
0 eiα2/2 0
0 0 1

)
,

and c12 = cos θ12, s12 = sin θ12, s13 = sin θ13, with tan2 θ12 � 0.45, and s13 � 0.2.
We now assume the lightest N to be dark matter. Call it Nk . We need to calculate its relic density as a function of its interaction

strengths hαk , its mass Mk , and the masses of η±, ηR , and ηI , which we take for simplicity to be all given by m0, with m0 > Mk .
Our goal is to obtain the observed dark-matter relic density of Ωdh2 � 0.12 [9,10].
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Fig. 3. Mk versus m0/yk for yk = 0.3,0.5,0.7,1.0 (left to right) for Ωdh2 = 0.12, where yk is defined in Eq. (9).

The thermally averaged cross section for the annihilation of two Nk’s into two leptons is computed by expanding the correspond-
ing relativistic cross section σ in powers of their relative velocity and keeping only the first two terms. Using the result of Ref. [11],
and recognizing that lepton masses are very small, we have

(8)〈σv〉 = a + bkv
2 + · · · , a = 0, bk = y4

k r2
k (1 − 2rk + 2r2

k )

24πM2
k

,

where

(9)rk = M2
k

/(
m2

0 + M2
k

)
, y4

k =
∑
αβ

∣∣hαkh
∗
βk

∣∣2
.

Following Ref. [12], the relic density of Nk is then given by Ωdh2 = Y∞s0Mkh
2/ρc, where Y∞ is the asymptotic value of the

ratio nNk
/s, with Y−1∞ = 0.264g

1/2∗ MPlMk(3bk/x
2
f ), s0 = 2970/cm3 is the entropy density at present, ρc = 3H 2/8πG = 1.05 ×

10−5h2 GeV/cm3 is the critical density, h is the dimensionless Hubble parameter, MPl = 1.22 × 1019 GeV is the Planck energy,
and g∗ is the number of effectively massless degrees of freedom at the freeze-out temperature. Further, xf is the ratio Mk/T at the
freeze-out temperature and is given by

(10)xf = ln
0.0764MPl(6bk/xf )c(2 + c)Mk

(g∗xf )1/2
.

Using g
1/2∗ = 10 and c = 1/2 as in Ref. [12], we obtain

(11)

[
Mk

GeV

]
= 5.86 × 10−8x

−1/2
f exf

[
Ωdh2

0.12

]
,

(12)

[
bk

(GeV)−2

]
= 2.44 × 10−11x2

f

[
0.12

Ωdh2

]
,

where bk and yk are given in Eqs. (8) and (9). Since bk/y
4
k is a function of Mk and m0, Eqs. (11) and (12) allow us to calculate Mk

and m0 in units of GeV for a given set of y2
k , xf and Ωdh2.

In Fig. 3, we plot Mk versus m0/yk for yk = 0.3,0.5,0.7,1.0. As we can see from the figure, the dark matter constraint requires
that Mk increases as m0 increases and for each value of m0, it may be as large as m0. We also see that m0/yk cannot exceed
350 GeV or so in the perturbative regime yk � 1. This is a very strong constraint, because m0/yk sets the scale also for lepton flavor
transitions such as μ → eγ and the experimental upper bound of its branching fraction cannot be satisfied, unless some cancellation
mechanism is at work.

The branching fraction of μ → eγ is given in this model by [13]

(13)B(μ → eγ ) = 3α

64π(G m2)2
C4 �

(
30 GeV

m /C

)4

,

F 0 0



J. Kubo et al. / Physics Letters B 642 (2006) 18–23 21
where

(14)C2 =
∣∣∣∣∑

i

hμih
∗
eiF2

(
M2

i /m2
0

)∣∣∣∣,
and

(15)F2(x) = 1 − 6x + 3x2 + 2x3 − 6x2 lnx

6(1 − x)4
.

Since Mk < m0 should be satisfied for Nk dark matter, the function F2(xk) can vary only between 1/12(xk = 1) and 1/6(xk = 0).
To suppress the branching fraction B(μ → eγ ) which is inversely proportional to the fourth power of m0, we need a large
value of m0. On the other hand, the observed dark matter relic density Ωdh2 � 0.12 requires m0 to be below 350 GeV for
yk = (

∑
αβ |hαkh

∗
βk|2)1/4 � 1. This means that if |∑i hμih

∗
ei | appearing in Eq. (14) is also of order 1, then B(μ → eγ ) � 5×10−7,

which is several orders of magnitude above the experimental upper bound of 1.2 × 10−11.
To satisfy the μ → eγ constraint, we consider the possibility that M1,2,3 are nearly degenerate. In that limit,

(16)(Mν)αβ = I (M2/m2
0)

M

∑
i

hαihβi = Û∗
(

m1e
−iα1 0 0
0 m2e

−iα2 0
0 0 m3

)
Û†,

where Û is given by Eq. (6). A simple solution is then

(17)hαi =
[

Mmi

I (M2/m2
0)

]1/2

e−iαi/2Û∗
αi with α3 = 0.

Then we obtain

(18)C2 = F2(M
2/m2

0)M

I (M2/m2
0)

∣∣∣∣∑
i

ÛμiÛ
∗
eimi

∣∣∣∣ = F2(M
2/m2

0)M

I (M2/m2
0)

∣∣∣∣ s12c12√
2

(m2 − m1) + s13e
−iδ

√
2

(
c2

12m1 + s2
12m2 − m3

)∣∣∣∣.
Thus the suppression of C2 is possible because m2 −m1 is related to �m2

sol and c2
12m1 + s2

12m2 −m3 is related to �m2
atm in neutrino

oscillations [13,14].
Let us assume δ = 0 and consider the normal ordering of neutrino masses, i.e. m3 is the largest mass. We then set h3 =

(
∑

α |hα3|2)1/2 = 1 which is equivalent to having Mm3/I (M2/m2
0) = 1. Hence

(19)C2 �
(

0.067

m3

)∣∣c12(s12 − s13c12)(m2 − m1) − s13(m3 − m2)
∣∣ < 4.6 × 10−4,

where F2 = 0.0948 (corresponding to m0 = 345 GeV and M = 290 GeV). Using �m2
21 = �m2

sol = 7.9 × 10−5 eV2 and �m2
32 =

�m2
atm = 2.3 × 10−3 eV2, we plot C2 versus m1 in Fig. 4 for s13 = 0.1,0.05,0.01. The horizontal line is the experimental bound

C2 = 4.6 × 10−4 corresponding to B(μ → eγ ) = 1.2 × 10−11. We find that for s13 � 0.26, this constraint cannot be satisfied. For
s13 less than its experimental bound of 0.2, there is a lower bound on m1 according to the approximate empirical formula

(20)

[
m1

eV

]
� 0.02 + 1.4|s13 − 0.02| − 2.9|s13 − 0.02|2,

except for a tiny region near m1 = 0 and s13 = 0.09, and a small region near m1 = 0.01 eV and s13 = 0.04. In Fig. 4, we can see that
the plot for s13 = 0.1 is getting close to the first region from its dip at m1 = 0, and that the plot for s13 = 0.05 has a small allowed
range near m1 = 0.01 eV.

In the case of inverted ordering, i.e. m2 is the largest mass, we are already guaranteed that m1,2 >

√
�m2

32 � 0.048 eV. For

completeness, we set h2 = 1 and plot C2 versus m3 in Fig. 5 for s13 = 0.2,−0.05,0.0. Here, for s13 � 0.24 and s13 � −0.27, the
experimental constraint cannot be satisfied. In other words, the constraint on θ13 from μ → eγ coincides roughly also with that
from neutrino oscillations.

For the simple solution of Eq. (16), as we can see from Figs. 4 and 5, all the neutrino masses may be assumed to be degenerate
to satisfy the μ → eγ constraint; hence the effective mass 〈mee〉 in neutrinoless double beta decay is approximately given by

(21)〈mee〉 � m1
∣∣0.572 + 0.428 cos(α1 − α2)

∣∣1/2
.

We also allow the heavy Ni masses M1,2,3 to be slightly different, so that our approximation that only one of them is the candidate
for dark matter remains valid. Note that �M/M only needs to be of order 10−3 for Eq. (18) to be valid. In analogy to μ → eγ ,
there are also dark-matter contributions to τ → μγ , τ → eγ , and the anomalous magnetic moment of the muon. However, they are
at least one or more orders of magnitude below the present experimental bounds.



22 J. Kubo et al. / Physics Letters B 642 (2006) 18–23
Fig. 4. C2 versus m1 in the case of normal ordering for s13 = 0.1 (solid),0.05 (dash),0.01 (dot–dash), where C2 = 4.6 × 10−4 (horizontal line) corresponds to the
experimental upper bound B(μ → eγ ) = 1.2 × 10−11.

Fig. 5. C2 versus m3 in the case of inverted ordering for s13 = 0.2 (solid),−0.05 (dash),0.0 (dot–dash).

In conclusion, we have shown how cold dark matter and neutrinoless double beta decay may be connected if neutrinos acquire
mass only because of their interactions with dark matter. We repeat the basic argument presented earlier. The existence of dark
matter requires a class of new particles which are odd with respect to an exactly conserved Z2 symmetry. Their interactions with
neutrinos and charged leptons must not be too weak to be identified as cold dark matter with the correct value of their relic density
in the Universe at present. On the other hand, they are also responsible for the masses of neutrinos and their observed mixing
in neutrino oscillations. This implies necessarily flavor changing transitions such as μ → eγ . In order to suppress the latter, the
parameter space of neutrino masses is limited, thereby enforcing a lower bound on neutrinoless double beta decay. For N as dark
matter, this is typically of order 0.05 eV, even though much lower values are still allowed from accidental cancellations. More
importantly, this connection between cold dark matter and neutrinoless double beta decay can be tested in the near future at the
Large Hadron Collider and complemented by a host of experiments on neutrino oscillations and neutrinoless double beta decay
already under way and being planned.
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