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Abstract

The radiative neutrino mass model with an inert doublet scalar has been considered as

a promising candidate which can explain neutrino masses, dark matter abundance and

baryon number asymmetry if dark matter is identified with the lightest neutral component

of the inert doublet. We reexamine these properties by imposing all the data of the

neutrino oscillation, which are recently suggested by the reactor experiments. We find that

the sufficient baryon number asymmetry seems not to be easily generated in a consistent

way with all the data of the neutrino masses and mixing as long as the right-handed

neutrinos are kept in TeV regions. Two possible modifications of the model are examined.
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1 Introduction

The standard model (SM) is now considered to be extended on the basis of several evi-

dences clarified by recent experiments and observations, that is, the neutrino masses and

mixing [1], the existence of dark matter (DM) [2] and also the baryon number asymmetry

in the Universe [3]. Although there are a lot of models which are proposed to explain

these independently, it is not so easy to construct a model which can explain all of them

simultaneously without causing any other phenomenological problems. If we can find such

a model, it would give us crucial hints for the new physics beyond the SM. The study

along this line might play a crucial role for the search of physics beyond the SM prior to

the study based on purely theoretical motivation such as the gauge hierarchy problem.

The radiative neutrino mass model with an inert doublet [4] could be such a promising

candidate. It is a very simple extension of the SM by an inert doublet scalar and three

right-handed neutrinos only. An imposed Z2 symmetry controls the scalar potential and

forbids the tree-level neutrino masses since its odd parity is assigned to these new fields

and the even parity is assigned to the SM fields. It also guarantees the stability of

the lightest field with its odd parity. Thus, the lightest neutral component of the inert

doublet scalar [5, 6, 7, 8, 9] or the lightest right-handed neutrino [10, 11] could play a

role of DM. This feature opens a possibility for the model such that it can explain all the

above-mentioned three problems on the basis of closely related physics, simultaneously.

However, the model could explain only two of the three problems if the right-handed

neutrino is identified with DM [12]. In this case the model is required to be extended in

some way for the explanation of all three issues [13]. On the other hand, it is noticeable

that the above-mentioned three problems are suggested to be consistently explained by

the new fields with TeV-scale masses as long as the lightest neutral component of the

inert doublet scalar is identified with DM [6]. This latter case seems very interesting and

worthy for further quantitative study since the signature of the model could be seen in

various ongoing or future experiments.

In this paper we reexamine this radiative neutrino mass model by fixing the parameters

relevant to the neutrino masses and mixing on the basis of neutrino oscillation data

including the recent results for θ13 given by T2K, Double Chooz, RENO and Daya Bay [14].

We proceed this study by imposing the conditions required by the DM relic abundance

and its direct detection. Based on these results, we analyze what amount of the baryon
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number asymmetry can be generated via thermal leptogenesis. We show that the sufficient

baryon number asymmetry seems difficult to be generated consistently for the parameters

that are favored by the presently known phenomenological requirements.

The remaining parts of paper are organized as follows. In section 2, we briefly review

the scalar sector of the model and then discuss the constraints brought about by the DM

relic abundance and the DM direct detection. Next, we fix the parameters relevant to the

neutrino mass matrix to realize the neutrino oscillation data, which are also closely related

to leptogenesis. In section 3, we apply them to the study of leptogenesis and estimate

the baryon number asymmetry via the out-of-thermal-equilibrium decay of the lightest

right-handed neutrino by solving the Boltzmann equations numerically. Conditions to

generate the suitable baryon number asymmetry are discussed. Summary of the paper is

given in section 4.

2 DM abundance and neutrino masses

2.1 The model and nature of its scalar sector

We consider the radiative neutrino mass model with an inert doublet scalar [4]. The model

is a very simple extension of the standard model (SM) with three right-handed neutrinos

Ni, and a scalar doublet η which is called the inert doublet and assumed to have no

vacuum expectation value. Although both Ni and η are supposed to have odd parity

of an assumed Z2 symmetry, all SM contents are assigned by its even parity. Invariant

Yukawa couplings and scalar potential related to these new fields are summarized as

− LY = hijN̄iη
†ℓj + h∗

ij ℓ̄iηNj +
Mi

2

(

N̄iN
c
i + N̄ c

i Ni

)

,

V = λ1(φ
†φ)2 + λ2(η

†η)2 + λ3(φ
†φ)(η†η) + λ4(η

†φ)(φ†η)

+
[λ5

2
(φ†η)2 + h.c.

]

+m2
φφ

†φ+m2
ηη

†η, (1)

where ℓi is a left-handed lepton doublet and φ is an ordinary Higgs doublet. All the

quartic coupling constants λi are assumed to be real, for simplicity. We also assume that

neutrino Yukawa couplings hij are written by using the basis under which both matrices

for Yukawa couplings of charged leptons and for masses of the right-handed neutrinos

are real and diagonal. These neutrino Yukawa couplings are constrained by the neutrino

oscillation data and also the lepton flavor-violating processes such as µ → eγ.
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In the following study, we assume the mass spectrum of the right-handed neutrinos to

satisfy

M1 < M2 < M3, (2)

and also the flavor structure of the neutrino Yukawa couplings to be

hei = 0, hµi = hi, hτi = q1hi,

hej = hj , hµj = q2hj . hτj = −q3hj , (3)

where q1,2,3 are real constants. This assumption for the neutrino Yukawa couplings could

reduce free parameters of the model substantially. Moreover, it can cause the favorable

lepton flavor mixing as found later. We note that there remains a freedom, that is, which

type structure represented by the suffix i and j in eq. (3) should be assigned to each

right-handed neutrino. In the following part, we adopt two typical cases for it as follows,

(i) i = 1, 2, j = 3; (ii) i = 1, 3, j = 2. (4)

Now, we briefly review the scalar sector of the model [5, 6]. If we take unitary gauge

and put φT = (0, 〈φ〉 + h√
2
) and ηT = (η+, 1√

2
(ηR + iηI)) where 〈φ〉 ≡ −m2

φ

2λ1
, the scalar

potential V in eq. (1) can be written as

V =
1

2
m2

hh
2 +

1

2
M2

ηR
η2R +

1

2
M2

ηI
η2I +M2

ηcη
+η− +

√

2λ1〈φ〉h3

+
1

4

[

√

λ1h
2 −

√

λ2(η
+η− + η2R + η2I )

]2

+
1

4
h2
[

(2λ3 + 2
√

λ1λ2)η
+η− + (2λ+ + 2

√

λ1λ2)η
2
R + (2λ− + 2

√

λ1λ2)η
2
I

]

, (5)

where we use the definition λ± = λ3 + λ4 ± λ5 and

m2
h = 4λ2

1〈φ〉2, M2
ηc = m2

η + λ3〈φ〉2, M2
ηR

= m2
η + λ+〈φ〉2, M2

ηI
= m2

η + λ−〈φ〉2. (6)

The expression of V in eq. (5) shows that the assumed vacuum is stable for

λ1, λ2 > 0, λ3, λ+, λ− > −
√

λ1λ2. (7)

We also require these quartic couplings to satisfy |λi| < 4π so that the perturbativity of

the model is guaranteed.

Since the new doublet scalar η is assumed to have no vacuum expectation value, the

Z2 symmetry is kept as the unbroken symmetry of the model. Thus, the lightest field
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with the odd parity of this Z2 is stable and then its thermal relic behaves as DM in the

Universe. If it is identified with ηR here, the following condition should be satisfied

λ4 + λ5 < 0, λ5 < 0; MηR < M1, (8)

These are easily found from eq. (6). The value of λ1 might be estimated by using mh ≃
125 GeV, which is suggested through the recent LHC experiments. If we apply it to the

tree-level formula in eq. (6), we have λ1 ∼ 0.1. Using this value of λ1 and the conditions

given in eqs. (7) and (8), we can roughly estimate the allowed range of λ3,4 as

λ3 > −1, 0 > λ4 > −4π, (9)

for the sufficiently small values of |λ5|. The lower bound of λ4 is settled by the requirement

for the perturbativity of the model.

The mass difference among the components of η is estimated as

MηI −MηR

MηR

≃ |λ5|〈φ〉2
M2

ηR

≡ δ

MηR

,
Mηc −MηR

MηR

≃ |λ4 + λ5|〈φ〉2
2M2

ηR

, (10)

which could be a good approximation for the large value of mη such as O(1) TeV.3 These

formulas show that coannihilation among the components of η could play an important

role in the estimation of the relic abundance of ηR [6].

2.2 Inert doublet dark matter

In several articles [5], the DM abundance is found to be well explained if the lightest

neutral component of η is identified with DM. In the high-mass η case, in particular, it is

suggested that the relic abundance could be a suitable value if one of the quartic couplings

|λi| in eq. (1) has magnitude of O(1) [6].

The ηR relic abundance is known to be estimated as [15]

ΩηRh
2 ≃ 1.07× 109GeV−1

J(xF )g
1/2
∗ mpl

, (11)

where the freeze-out temperature TF (≡ MηR/xF ) and J(xF ) are defined as

xF = ln
0.038mplgeffMηR〈σeffv〉

(g∗xF )1/2
, J(xF ) =

∫ ∞

xF

〈σeffv〉
x2

dx. (12)

3Such a large value of mη is favored from the analysis of the T parameter for the precise measurements

in the electroweak interaction [5, 6]. In that case, the model has no constraint from it.
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The effective annihilation cross section 〈σeffv〉 and the effective degrees of freedom geff are

expressed by using the thermally averaged (co)annihilation cross section 〈σijv〉 and the

ηi equilibrium number density neq
i =

(

Mηi
T

2π

)3/2

e−Mηi
/T as4

〈σeffv〉 =
1

g2eff

4
∑

i,j=1

〈σijv〉
neq
i

neq
1

neq
j

neq
1

, geff =

4
∑

i=1

neq
i

neq
1

. (13)

The thermally averaged (co)annihilation cross section may be expanded by the ther-

mally averaged relative velocity 〈v2〉 of the annihilating fields as 〈σijv〉 = aij + bij〈v2〉.
Since 〈v2〉 ≪ 1 is satisfied for cold DM candidates and then aij gives the dominant role for

determining the relic abundance of ηR, we take account of it only neglecting the bij con-

tribution in this analysis. In the present model, the corresponding cross section is caused

by the weak gauge interactions and also the quartic couplings λi. It is approximately

calculated as [6]

aeff =
(1 + 2c4w)g

4

128πc4wM
2
η1

(N11 +N22 + 2N34)

+
s2wg

4

32πc2wM
2
η1

(N13 +N14 +N23 +N24)

+
1

64πM2
η1

[

(λ2
+ + λ2

− + 2λ2
3)(N11 +N22) + (λ+ − λ−)

2(N33 +N44 +N12)

+
{

(λ+ − λ3)
2 + (λ− − λ3)

2
}

(N13 +N14 +N23 +N24)

+
{

(λ+ + λ−)
2 + 4λ2

3

}

N34

]

, (14)

where Nij is defined as

Nij ≡
1

g2eff

neq
i

neq
1

neq
j

neq
1

=
1

g2eff

(

MηiMηj

M2
η1

)3/2

exp

[

−Mηi +Mηj − 2Mη1

T

]

. (15)

Using these formulas, we examine the condition on the relevant parameters of the model

to realize the relic abundance ΩηRh
2 = 0.11 which is required from the WMAP data [2].

In Fig. 1, we plot ΩηRh
2 as a function of λ4 for λ5 = −10−5 and some typical values of

λ3. We should note that the allowed region of λ4 is restricted by eq. (9). This figure

shows that the required value for ΩηRh
2 could be obtained for a wide range value of mη if

|λ3+λ4| has a value of O(1). Since we consider the high-mass region such asmη ≫ 〈φ〉, the
coannihilation among the components of η could be effective to reduce the relic abundance

of ηR.

4We may use the notation such as (η1, η2, η3, η4) = (ηR, ηI , η
+, η−) for convenience in the following

discussion.
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Fig. 1 ΩηR
h2 as a function of λ4 for the negative value of λ3 such as −1, − 0.5, − 0.1 in the left panel

and for the positive value of λ3 such as 1, 0.5, 0.1 in the right panel. The value of mη is fixed to 1000

and 1500 GeV in both cases.

The above analysis shows that the DM relic abundance gives only a weak condition

on some of the quartic couplings but no conditions on the neutrino Yukawa couplings.

This is completely different from the case in which the lightest Ni is identified with DM

[10, 11, 12]. On the other hand, the direct search of DM could give a severe constraint

on the value of λ5, which plays a crucial role in this radiative neutrino mass generation.

Elastic scatterings between ηR and nucleus could be mediated by the Higgs exchange at

tree level and also by the gauge boson exchange at one-loop level. However, their effects

are much smaller than the present upper bounds of the sensitivity for the direct detection.

Thus, we can neglect their effects in this discussion. On the other hand, inelastic scattering

of ηR with nucleus mediated by the Z0 exchange could bring about an important effect to

the direct search experiments [8, 9], since the masses of ηR and ηI are almost degenerate

for small values of |λ5| as found from eq. (10).

If we note that the interaction of ηR relevant to this process is given by

L = gηR∂µηIZ
µ − gηI∂µηRZ

µ, (16)

it is found that the inelastic nucleus-DM scattering can occur for the DM with velocity

larger than a minimum value given by [16]

vmin =
1√

2mNER

(

mNER

µN

+ δ

)

, (17)

where δ is the mass difference between ηR and ηI defined in eq.(10). ER is the nucleus

recoil energy, and mN and µN are the mass of the target nucleus and the reduced mass
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of the nucleus-DM system. Thus, the mass difference δ is constrained by the fact that

no DM signal is found in the direct DM search yet [17, 18].5 This condition might be

estimated as δ >
∼150 keV [9]. Since δ is related to λ5 through eq.(10) , this constrains the

allowed value of |λ5| such as6

|λ5| ≃
Mη1δ

〈φ〉2
>
∼ 5.0× 10−6

(

Mη1

1 TeV

)(

δ

150 keV

)

. (18)

We take account of this constraint in the following analysis of the neutrino masses and

the baryon number asymmetry.

2.3 Neutrino masses and mixing

Neutrino masses are generated through one-loop diagrams with the contribution of new

Z2 odd fields. They can be expressed as [4, 10]

Mν
ij =

3
∑

k=1

hikhjk

[

λ5〈φ〉2
8π2Mk

M2
k

M2
η −M2

k

(

1 +
M2

k

M2
η −M2

k

ln
M2

k

M2
η

)]

≡
3
∑

k=1

hikhjkΛk, (19)

where M2
η = m2

η+(λ3+λ4)〈φ〉2. Since we consider the high-mass region such asmη ≫ 〈φ〉,
the mass difference among ηi caused by nonzero λ4 is negligible in the neutrino mass

analysis. Thus, we treat their masses as Mη. Both neutrino masses and mixing are

determined by the couplings λ5 and hik, the right-handed neutrino masses Mi’s and the

inert doublet mass Mη. Here we note that the neutrino Yukawa couplings could take

rather large values even for the light right-handed neutrinos with masses of O(1) TeV as

long as |λ5| takes a small value in the range given by eq. (18). This freedom is crucial

when we consider leptogenesis in this model as seen in the next section.

Now we have a lot of information on the feature of lepton flavor mixing on the basis

of the neutrino oscillation data including the recent results for θ13 [19]. We can use it

to restrict the neutrino Yukawa couplings. The flavor structure of the neutrino Yukawa

5The DAMA data have been suggested to be explained by the DM inelastic scattering [8, 9]. However,

we do not consider it here.
6We should note that the bound of δ largely depends on the DM velocity in the neighborhood of the

Earth. If we take δ >
∼
1 MeV, this inelastic scattering effect can be completely neglected even for the

maximally estimated DM velocity. In that case, the lower bound of |λ5| becomes one order of magnitude

larger.
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couplings assumed in eq. (3) makes the neutrino mass matrix take a simple form such as

Mν =









0 0 0

0 1 q1

0 q1 q21









(h2
1Λ1 + h2

iΛi) +









1 q2 −q3

q2 q22 −q2q3

−q3 −q2q3 q23









h2
jΛj , (20)

where i, j should be understood to stand for (i) i = 2, j = 3 and (ii) i = 3, j = 2 following

eq. (4). If we put q1,2,3 = 1 in both cases, the PMNS mixing matrix is easily found to

have a tribimaximal form

UPMNS =









2√
6

1√
3

0

−1√
6

1√
3

1√
2

1√
6

−1√
3

1√
2

















1 0 0

0 eiα1 0

0 0 eiα2









, (21)

where Majorana phases α1,2 are determined by the phases hi and λ5. If we put ϕi = arg(hi)

and ϕλ5
= arg(λ5), they are expressed as

α1 = ϕ3+
ϕλ5

2
, α2 =

1

2
tan−1

( |h1|2Λ1 sin(2ϕ1 + ϕλ5
) + |h2|2Λ2 sin(2ϕ2 + ϕλ5

)

|h1|2Λ1 cos(2ϕ1 + ϕλ5
) + |h2|2Λ2 cos(2ϕ2 + ϕλ5

)

)

. (22)

In this case, one of mass eigenvalues is zero. Thus, if |h1| is assumed to take a sufficiently

small value compared with others, we find that the mass eigenvalues should satisfy

|hi|2Λi ≃
√

∆m2
atm

2
, |hj|2Λj ≃

√

∆m2
sol

3
, (23)

where ∆m2
atm and ∆m2

sol stand for the squared mass differences required by the neutrino

oscillation analysis for both atmospheric and solar neutrinos [1, 19].7

Using the formulas (21) and (23), we can examine whether parameters obtained in

the previous part could be consistent with the neutrino oscillation data. This gives a

useful starting point for the analysis. However, if we take account of the fact that θ13 is

found to have a nonzero value now, we cannot use them in the analysis directly. Here, we

numerically diagonalize the mass matrix (20) and impose both the neutrino oscillation

data and the constraint on |λ5| given in eq. (18) to restrict the neutrino Yukawa couplings.

By fixing q1 to typical values, in Fig. 2, we plot contours in the (q2, q3) plane which

correspond to 2σ bounds of the neutrino oscillation parameters given in [20]. This figure

shows the mass matrix (20) can explain all the neutrino oscillation data consistently at

7We confine our study to the normal hierarchy here.
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Fig. 2 Regions in the (q2, q3) plane allowed by the neutrino oscillation data for q1 = 0.85 (left panel)

and q1 = 1 (right panel), which are contained in the circle drawn by the dotted line. Relevant parameters

are fixed to the ones shown in Table 1. Each contour in both panels represents 2σ boundary values

of neutrino oscillation parameters ∆m2
32 (thick red solid and dashed lines), |∆m2

12| (thin red solid and

dashed lines), sin2 2θ23 (greed solid and dashed lines), sin2 2θ12 (blue solid and dashed lines) which are

given in Ref.[20]. The 90% CL value of sin2 2θ13 given in Ref.[14] is also plotted as a reference (black

solid and dashed lines).

the regions in the (q2, q3) plane, which are the region including (−0.27, 2.4) in the left

panel (q1 = 0.85) and the region including (0.05, 2.1) in the right panel (q1 = 1). These

regions in two panels are obtained for each set of parameters listed in Table 1. We also

give the predicted values for sin2 2θ13 in each case of the same Table. These examples

show that neutrino Yukawa couplings of O(10−3) can explain the neutrino oscillation data

for |λ5| = O(10−5) and the right-handed neutrinos with the mass of O(1) TeV.

Lepton flavor-violating processes such as µ → eγ are also induced through one-loop

diagrams which have η and Ni in the internal lines [10]. Their present experimental

bounds could impose severe constraints on the model depending on the values of neutrino

Yukawa couplings hi. However, since the small |hi| of O(10−3) can realize the appropriate

values for neutrino masses even for the TeV-scale values of Mi and Mη as discussed above,

the new contributions to the lepton flavor-violating processes are sufficiently suppressed

such as Br(µ → eγ) = O(10−18) and Br(τ → µγ) = O(10−14). These values show that

the lepton flavor-violating processes bring about no substantial constraints on the model.
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q1 Mη M1 M2 M3 103|h2| 103|h3| sin2 2θ13 max|ε2,3| YB

(ia) 0.85 1 2 6 10 3.41 1.50 0.085 1.1 · 10−7 2.7 · 10−12

(ib) 0.85 1 2 20 200 4.62 4.16 0.085 6.1 · 10−8 1.6 · 10−12

(ic) 1 1 2 6 10 3.41 1.50 0.053 9.8 · 10−8 2.8 · 10−12

(iia) 0.85 1 2 6 10 1.34 3.81 0.085 1.7 · 10−8 2.7 · 10−13

(iib) 0.85 1 2 20 200 1.82 10.6 0.085 9.5 · 10−9 8.3 · 10−13

Table 1 The predicted value of sin2 2θ13 and YB for the model parameters that can satisfy the neutrino

oscillation data. Cases (i) and (ii) correspond to the ones defined in eq. (4). In all cases, |λ5| and |h1| are

fixed to 10−5 and 3 · 10−8, respectively. The value of sin2 2θ13 is evaluated at (q2, q3) = (−0.27, 2.4) for

q1 = 0.85 and (0.05, 2.1) for q1 = 1, where all other neutrino oscillation data are satisfied. A TeV unit is

used as the mass scale.

We should note that the freedom of λ5 in this mass generation scheme makes it possible.

3 Baryon number asymmetry

3.1 Leptogenesis via the decay of the TeV-scale right-handed

neutrino

We consider the thermal leptogenesis [21] in this model with the mass spectrum given

in eqs. (2) and (8). In this case, the lepton number asymmetry is expected to be gener-

ated through the out-of-thermal-equilibrium decay of the right-handed neutrino N1. The

dominant contribution to the CP asymmetry ε in this decay is brought about by the in-

terference between the tree diagram and the one-loop vertex diagram as usual. However,

we should note that the η mass is not negligible compared with the one of N1 in this

model. Taking account of this feature, ε can be calculated as [22]

ε =
1

16π

[

3
4
+ 1

4

(

1− M2
η

M2
1

)2
]

∑

i=2,3

Im

[

(

∑

k=e,µ,τ hk1h
∗
ki

)2
]

∑

k=e,µ,τ hk1h
∗
k1

G

(

M2
i

M2
1

,
M2

η

M2
1

)

≡ ε2 sin 2(ϕ1 − ϕ2) + ε3 sin 2(ϕ1 − ϕ3), (24)
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where G(x, y) is defined by

G(x, y) =
5

4
F (x, 0) +

1

4
F (x, y) +

1

4
(1− y)2 [F (x, 0) + F (x, y)] , (25)

and F (x, y) is represented as

F (x, y) =
√
x

[

1− y − (1 + x) ln

(

1− y + x

x

)]

. (26)

If we use the flavor structure of neutrino Yukawa couplings (i) and (ii) given in eq. (4),

ε2,3 are expressed for each case as

(i) ε2 = C(1 + q21)|h2|2G
(

M2
2

M2
1

,
M2

η

M2
1

)

, ε3 =
C(q2 − q1q3)

2|h3|2
1 + q21

G

(

M2
3

M2
1

,
M2

η

M2
1

)

,

(ii) ε2 =
C(q2 − q1q3)

2|h2|2
1 + q21

G

(

M2
2

M2
1

,
M2

η

M2
1

)

, ε3 = C(1 + q21)|h3|2G
(

M2
3

M2
1

,
M2

η

M2
1

)

,(27)

where C−1 = 16π

[

3
4
+ 1

4

(

1− M2
η

M2
1

)2
]

.

The decay of N1 should be out of equilibrium so that the lepton number asymmetry is

generated through it. If we express the Hubble parameter and the decay width of N1 by

H and ΓD
N1

respectively, this condition is given as H > ΓD
N1

at T ∼ M1 where the lepton

number asymmetry is considered to be dominantly generated. Since ΓD
N1

is expressed

as ΓD
N1

= |h1|2
8π

(1 + q1)
2M1

(

1− M2
η

M2
1

)2

, we find that the Yukawa coupling |h1| should be

sufficiently small such as

|h1| < 2× 10−8(1 + q21)
−1/2

(

M1

1 TeV

)1/2

. (28)

We note that this constraint could be weaker since both Mη and the Boltzmann suppres-

sion factor are neglected in this estimation. As found in the numerical calculation, |h1|
can be somewhat larger than this bound.

The generated lepton number asymmetry could be washed out by both the lepton

number violating 2-2 scattering such as ηη → ℓαℓβ and ηℓα → η†ℓ̄β and also the inverse

decay of N1. If the relevant Yukawa couplings are much smaller than O(1), these processes

are expected to decouple before the temperature T of the thermal plasma decreases to T ∼
M1. In order to study this quantitatively, we numerically solve the coupled Boltzmann

equations for the number density of N1 and the lepton number asymmetry which are

expressed by nN1
and nL here, respectively. The Boltzmann equations for these quantities

12



are written as [23]

dYN1

dz
= − z

sH(M1)

(

YN1

Y eq
N1

− 1

)

{

γN1

D +
∑

i=2,3

(

γ
(2)
N1Ni

+ γ
(3)
N1Ni

)

}

,

dYL

dz
=

z

sH(M1)

{

ε

(

YN1

Y eq
N1

− 1

)

γN1

D − 2YL

Y eq
ℓ

(

γ
(2)
N + γ

(13)
N

)

}

, (29)

where z = M1

T
and H(M1) = 1.66g

1/2
∗

M2
1

mpl
. YN1

and YL are defined as YN1
=

nN1

s
and

YL = nL

s
by using the entropy density s. Their equilibrium values are expressed as

Y eq
N1
(z) = 45

2π4g∗
z2K2(z) and Y eq

ℓ = 45
π4g∗

, where g∗ is the number of relativistic degrees of

freedom and K2(z) is the modified Bessel function of the second kind. In these equations

we omit terms whose contributions are considered to be negligible compared with others.

The formulas of the relevant reaction density γ contained in these equations are given in

the Appendix. If we use the relation B = 8
23
(B − L) which is derived with the chemical

equilibrium condition in this model, the baryon number asymmetry YB(=
nB

s
) in the

present Universe is found to be estimated as

YB = − 8

23
YL(zEW) (30)

by using the solution YL(z) of the coupled equations in eq. (29). Here zEW is related to

the sphaleron decoupling temperature TEW as zEW = M1

TEW
.

The solutions of eq. (29) are shown in the upper panels of the left and the middle

columns in Fig. 3 for cases (ia) and (ib) in Table 1. The generated lepton number asym-

metry |YL| is smaller than the value required for the explanation of the baryon number

asymmetry at least by one order of magnitude.8 In case (ia), the CP asymmetry param-

eter |ε| takes rather large value such as 1.1 · 10−7. This suggests that the washout of the

generated lepton number asymmetry is effective. In the figure of the right column we use

the same parameters as the one of case (ia) except for |h1| which is fixed to the larger

value 5 · 10−7. From this figure, we can see the role of this coupling which is discussed

above. Although this change does not affect the values of |h2,3| which explain the neu-

trino oscillation data, we expect that the deviation of the number density of N1 from the

equilibrium value becomes smaller than other cases with the smaller value of |h1|. This

is shown in the figures.

8The parameters used in case (ia) are almost equivalent to the one which is presented as the promising

one for the generation of the sufficient baryon number asymmetry in [6].
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Fig. 3 The upper panels show the evolution of YL, YN1
and ∆N1

≡ |YN1
− Y

eq

N1
|. The lower panels show

the reaction rates γ

H
of the processes that have crucial effects for the leptogenesis in this model. We use

the parameters shown as (ia) and (ib) in Table 1 for the left and middle panels. In the right panel the

same parameters as (ia) are used except for |h1|, which is fixed to |h1| = 5 · 10−7 in this case. The black

dotted line represents the required value for |YL|.

In the lower panel we plot the behavior of the relevant reaction rates for each case.

These processes are crucial for the leptogenesis in this model. The figures show that the

lepton number-violating scatterings induced by the s-channel Ni exchange are kept in the

thermal equilibrium until rather late period and the large part of the generated lepton

number asymmetry is washed out. This situation is common for all cases in Table 1.

We give the predicted value of YB for each case in the last column of Table 1. These

examples show that the sufficient amount of baryon number asymmetry seems difficult to

be generated through the thermal leptogenesis in the present neutrino mass generation

scheme at least as long as we impose the full neutrino oscillation data and the DM direct

search constraint.

In order to confirm this statement in case (ia), we plot the generated baryon number

asymmetry YB for various values of |λ5| in Fig. 4. The maximum value of YB is found to

be realized at a certain value of |λ5| and it moves to the smaller |λ5| region for the smaller

M1. This may be explained as follows. At the region with a larger |λ5| value, the neutrino
Yukawa couplings have smaller values to give a smaller value for |ε|. On the other hand,

at the region with a smaller |λ5| value, the neutrino Yukawa couplings have larger values
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Fig. 4 The dependence of the generated baryon number asymmetry YB on |λ5| in case (ia) with the

different value of M1. The value of M1 is fixed to 1.3 TeV, 2 TeV and 3 TeV in each case.

to bring about the large washout. For the M1 = 1.3 TeV case, the requited YB can be

obtained at a rather small value such as |λ5| ≤ 10−6 due to this nature. However, it is

excluded by the direct search experiments as shown in eq. (18).9 Although we do not

search the whole parameter space, we could say that the above-mentioned result does not

change so easily for the values of |λ5| which satisfy the condition (18). This is suggested

by the fact that the value of YB becomes smaller for the larger |λ5| which makes the

neutrino Yukawa couplings smaller under the constraints of the neutrino oscillation data.

Finally, we give some comments on the leptogenesis in the case where the right-handed

neutrinos have large masses comparable to the ones in the ordinary seesaw case.10 In this

case, we find that the DM relic abundance and the neutrino masses and mixing could be

explained consistently by setting |λ5| and the neutrino Yukawa couplings appropriately.

The right-handed neutrino masses could be smaller than the ones in the ordinary tree-

level seesaw case for the same neutrino Yukawa couplings since the neutrino masses are

generated through the one-loop effect. In the ordinary type I seesaw scenario with the

hierarchical right-handed neutrino masses, there is an upper bound for the CP asymmetry

which is known as the Davidson-Ibarra (DI) bound [25] and may be written as |εDI| =
3
8π

M1

√
∆m2

atm

〈φ〉2 . In the present case with the assumed flavour structure, the CP asymmetry

|ε| is related to the DI bound as |ε| = |εDI| π2

3 ln(M2/Mη)

1+q21
|λ5|

(

M2

M1

)2

. This shows that the DI

9It is useful to note that the smaller Mη brings about the smaller value for the lower bound of |λ5|.
However, its effect is only a change of the factor in case of the high-mass η.

10This is considered in [7]. However, the neutrino oscillation data are not imposed in a quantitative

way there.
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bound could be evaded depending on the value of |λ5|. However, this feature does not

mean that the model causes more efficient leptogenesis than the ordinary seesaw model.

Since the smaller |λ5| requires the larger neutrino Yukawa couplings under the constraints

of the neutrino oscillation data, the washout of the lepton number asymmetry is expected

to become large.

We examine this aspect under the assumed lepton flavor structure by imposing all

the neutrino oscillation data quantitatively. We assume the hierarchical right-handed

neutrino mass spectrum and fix the parameters as follows,

|h1| = 10−4, M1 = 10α GeV, M2 = 10α+1 GeV, M3 = 10α+2 GeV, (31)

where |h1| is determined by taking account of the condition (28). We find that the CP

asymmetry |ε| can be written for these parameters as |ε| ≃ |εDI| 2.5·102
(α−2)|λ5| where the DI

bound |εDI| is given as |εDI| ≤ 1.9 · 10−16+α. This relation shows that the CP asymmetry

could escape the DI bound without causing the contradiction with the neutrino oscillation

data if |λ5| and M1 take suitable values. In order to fix the values of neutrino Yukawa

couplings, we impose the neutrino oscillation data in the same way as in the previous

examples with q1 = 0.85, q2 = −0.27, and q3 = 2.4. For such neutrino Yukawa couplings,

we obtain sin2 2θ13 = 0.085 independently on the value of |λ5|. The baryon number

asymmetry YB obtained at z = 20 through the analysis of the Boltzmann equations is

plotted for some typical values of |λ5| and M1 in the left panel of Fig. 5. Since this z

is much smaller than zEW = M1

TEW
, YB(∞) could be much smaller than the plotted value

if the washout effects do not decouple. However, we can confirm that the plotted YB is

recognized as YB(∞), at least for |λ5| > |λmax
5 |, where |λmax

5 | gives the maximum value of

YB. In the region of |λ5| < |λmax
5 |, the neutrino Yukawa couplings become large enough to

continue reducing the generated lepton number asymmetry through the lepton number-

violating scatterings which do not decouple at z = 20 completely. Since |h2,3| is required
to be larger for the smaller values of |λ5| from the neutrino oscillation data, the large part

of the generated lepton number asymmetry is considered to be washed out effectively

although a larger |ε| value is expected. The figure shows that the required value of YB

is generated for M1 > 108 GeV, which is somewhat smaller than the one required in the

ordinary seesaw case.11

11The required baryon number asymmetry could be generated even in the case with M1 = O(108) GeV

if special texture for the neutrino mass matrix is assumed even in the ordinary seesaw case [26].
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Fig. 5 The baryon number asymmetry YB in cases of the heavy right-handed neutrinos (the left panel)

and the degenerate right-handed neutrinos (the right panel). In the left panel, a GeV unit is used for the

mass scale. In the right panel, M1 = 2 TeV is assumed.

3.2 Improvement by suppressing the washout

In the previous part we found that it is difficult to generate the sufficient baryon number

asymmetry in consistent with all the neutrino oscillation data and the DM direct search

as long as the mass of the lightest right-handed neutrino is assumed in a TeV range.

This result is considered to be brought about by the large washout effect of the generated

lepton number asymmetry. Here, we consider a possible improvement of this situation

by making the neutrino Yukawa couplings small enough to suppress the washout. In this

improvement, the CP asymmetry |ε| should be kept to a suitable value such as O(10−7)

or more, simultaneously. Resonant leptogenesis can realize it.

As such an example, we suppose that the right-handed neutrino masses M1 and M2

are nearly degenerate in case (ia). M1 is fixed to 2 TeV and M2 is replaced with M2 =

(1 + ∆)M1. In this case, we can make the neutrino Yukawa couplings much smaller

than the ones in case (ia) by assuming a larger value for |λ5|. For instance, if we put

|λ5| = 10−3, all the neutrino oscillation data can be satisfied for |h2| = 3.1 · 10−4 and

|h3| = 1.5 · 10−4. Although the smaller neutrino Yukawa couplings tend to make the

CP asymmetry |ε| smaller, we can enhance |ε| by supposing the degenerate right-handed

neutrino masses. On the other hand, in that case the washout effect could be suppressed

sufficiently. In the usual resonant leptogenesis with the right-handed neutrino masses at

TeV regions [22, 27, 28], the generation of the sufficient lepton number asymmetry requires

rather strict mass degeneracy. We examine whether this situation can be changed in this
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neutrino mass generation scenario.

In the nearly degenerate right-handed neutrino case, the dominant contribution to the

CP asymmetry in the decay of N1 comes from the interference between the tree and the

self-energy diagrams.12 In the present case, the CP asymmetry |ε| can be expressed as

[22, 27, 28]

ε =
∑

i=2,3

Im(h†h)21i
(h†h)11(h†h)ii

(M2
1 −M2

i )M1Γi

(M2
1 −M2

i )
2 +M2

1Γ
2
i

≃ (M2
1 −M2

2 )M1Γ2

(M2
1 −M2

2 )
2 +M2

1Γ
2
2

sin 2(ϕ1 − ϕ2) ≃ − 2∆Γ̃2

4∆2 + Γ̃2
2

sin 2(ϕ1 − ϕ2), (32)

where Γ̃2 =
|h2|2
4π

(1+ q21)
(

1− M2
η

M2
1

)2

. For case (ia) with sin 2(ϕ1−ϕ2) = O(1), |ε| can have

a value of O(1) for ∆ ∼ 5 · 10−7. Thus, we can expect that the mass degeneracy required

to bring about the sufficient baryon number asymmetry could be much milder than the

usually assumed value ∆ <
∼ 10−8 in the TeV-scale resonant leptogenesis [28].

We use the formula for ε given above and estimate YB by solving the Boltzmann

equations in eq. (29) for some typical values of ∆ by varying the value of |λ5|. In the right

panel of Fig. 5, we plot the numerical results of the obtained baryon number asymmetry.

The required baryon number asymmetry is found to be generated for the right-handed

neutrinos with the mass degeneracy ∆ = O(10−4) for each value of |λ5|. This degeneracy
is much milder in comparison with the ordinary resonant leptogenesis at TeV scales. The

result is caused by the nature of the model such that the neutrino Yukawa couplings

can take sufficiently small values to suppress the washout effect keeping the neutrino

masses in the appropriate range for the explanation of the neutrino oscillation data. The

freedom of λ5 makes it possible. The present neutrino mass generation scheme can give

the consistent explanation for the three phenomenological problems in the SM if only

the rather mild mass degeneracy between two light right-handed neutrinos is assumed

without large extension of the model.

12Since the Yukawa couplings of N2,3 are required to be much larger than |h1| = 3 · 10−8 for N1, N2,3

are considered to be in the thermal equilibrium. Thus, we can not expect a substantial contribution to

the lepton number asymmetry from the decays of N2,3.
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4 Summary

The inert doublet model extended with the right-handed neutrinos is a simple and inter-

esting framework for both neutrino masses and dark matter. In this scenario, the lightest

right-handed neutrino or the lightest neutral component of the inert doublet can be a

dark matter candidate. Since the neutrino Yukawa couplings should be O(1) to reduce

the relic abundance of dark matter in the former case, the thermal leptogenesis is difficult

due to the strong washout effect. On the other hand, the neutrino Yukawa couplings can

be irrelevant to the dark matter abundance in the latter case. Thus, the latter scenario

has been considered to give the consistent explanation for the origin of the small neutrino

masses, the existence of dark matter and the baryon number asymmetry in the Universe.

In this paper, we reexamined the possibility for the simultaneous explanation of these

three problems in the latter case. We took account of the quantitative explanation for

all the neutrino oscillation data including the recent results for sin2 2θ13 in the analysis.

The results of our study suggest that the sufficient amount of baryon number asymmetry

seems not to be generated in a consistent way with the full neutrino oscillation data.

The neutrino Yukawa couplings could be large enough to enhance the CP asymmetry

even for the O(1) TeV right-handed neutrinos in the consistent way with the neutrino

oscillation data by using the freedom of λ5. However, the same Yukawa couplings induce

the lepton number-violating scattering processes to wash out the generated lepton number

asymmetry. We checked this point through the numerical study. Although we do not

study the whole parameter space, this feature seems to be rather general and then it seems

not so easy to find the parameters to escape this situation without any modification.

We also examined the same problem in the modified situation such as the case with

the heavy right-handed neutrinos like the ordinary type I seesaw and also the case with

the degenerate light right-handed neutrinos. In the former case, we found that the right-

handed neutrino could be somewhat lighter than the ordinary seesaw one but needs to be

heavy enough to the similar level to it. In the latter case, even if the right-handed neutrino

masses are in a TeV range, the resonant effect can enhance the CP asymmetry to generate

the sufficient amount of baryon number asymmetry even for the small neutrino Yukawa

couplings which can suppress the washout sufficiently. An interesting point is that the

required mass degeneracy in this case is much milder than the one in the ordinary seesaw

case. This possibility is brought about by the characteristic feature in this inert doublet
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model with the radiative neutrino mass generation. More complete study of the parameter

regions which are not searched in this paper will be presented in future publication.
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Appendix

In this Appendix, we give the formulas of the reaction density contributing to the Boltz-

mann equations for the number density of N1 and the lepton number asymmetry. For

the processes relevant to their evolution, we could refer to the reaction density given in

[24]. In the present model, however, interaction terms of η and N1 are restricted by the

Z2 symmetry and also the masses of η and Ni take the similar order values, which cause

large difference from the ordinary seesaw leptogenesis. Thus, we need to modify these

formulas by taking account of the features of the present model.13

In order to give the expression for the reaction density of the relevant processes, we

introduce dimensionless variables

x =
s

M2
1

, aj =
M2

j

M2
1

, aη =
M2

η

M2
1

, (33)

where s is the squared center of mass energy. The reaction density for the decay of N1

can be expressed as

γN1

D =
(1 + q21)|h1|2

4π3
M4

1 (1− aη)
2K1(z)

z
, (34)

where K1(z) is the modified Bessel function of the first kind.

The reaction density for the scattering processes is expressed as

γ(ab → ij) =
T

64π4

∫ ∞

smin

ds σ̂(s)
√
sK1

(√
s

T

)

, (35)

where smin = max[(ma +mb)
2, (mi +mj)

2] and σ̂(s) is the reduced cross section. In order

to give the expression for the reaction density of the processes relevant to eq. (29), we

define the following quantities for convenience:

1

Di(x)
=

x− ai
(x− ai)2 + a2i ci

, ci =
1

16π2

(

∑

k=e,µ,τ

|hki|2
)2
(

1− aη
ai

)4

,

λij =
[

x− (
√
ai +

√
aj)

2
] [

x− (
√
ai −

√
aj)

2
]

,

Lij = ln

[

x− ai − aj + 2aη +
√

λij

x− ai − aj + 2aη −
√

λij

]

,

L′
ij = ln

[√
x(x− ai − aj − 2aη) +

√

λij(x− 4aη)√
x(x− ai − aj − 2aη)−

√

λij(x− 4aη)

]

. (36)

13Although the modified ones are given in Appendix of [12], the mass spectrum assumed there is

different from the present one. The following formulas are arranged to applicable to the scenario in this

paper.
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As the lepton number violating scattering processes induced through the Ni exchange,

we have

σ̂
(2)
N (x) =

1

2π

(x− aη)
2

x2

[

3
∑

i=1

(hh†)2ii
ai
x

{

x2

xai − a2η
+

2x

Di(x)
+

(x− aη)
2

2Di(x)2

− x2

(x− aη)2

(

1 +
2(x+ ai)− 4aη

Di(x)

)

ln

(

x(x+ ai − 2aη)

xai − a2η

)}

+
∑

i>j

Re[(hh†)2ij ]

√
aiaj

x

{

x

x− ai
+

x

x− aj
+

(x− aη)
2

(x− ai)(x− aj)

+
x2

(x− aη)2

(

2(x+ ai − 2aη)

aj − ai
− x+ ai − 2aη

x− aj

)

ln
x(x+ ai − 2aη)

xai − a2η

+
x2

(x− aη)2

(

2(x+ aj − 2aη)

ai − aj
− x+ aj − 2aη

x− ai

)

ln
x(x+ aj − 2aη)

xaj − a2η

}]

(37)

for ℓαη
† → ℓ̄βη and also

σ̂
(13)
N (x) =

1

2π

[

3
∑

i=1

(hh†)2ii

{

a2(x
2 − 4xaη)

1/2

aix+ (ai − aη)2

+
ai

x+ 2ai − 2aη
ln

(

x+ (x2 − 4xaη)
1/2 + 2ai − 2aη

x− (x2 − 4xaη)1/2 + 2ai − 2aη

)}

+
∑

i>j

Re[(hh†)2ij]
√
aiaj

x+ ai + aj − 2aη
ln

(

x+ (x2 − 4xaη)
1/2 + ai + aj − 2aη

x− (x2 − 4xaη)1/2 + ai + aj − 2aη

)

]

(38)

for ℓαℓβ → ηη. Here we note that cross terms has no contribution if the maximum CP

phases are assumed in the way as sin 2(ϕ2,3 − ϕ1) = 1 with ϕ1 = 0. We adopt this

possibility in the numerical analysis, for simplicity. Since another type of lepton number

violating processes NiNj → ℓαℓβ induced by the η exchange have additional suppression

due to a small |λ5|, we can neglect them safely.14

As the lepton number conserving scattering processes which contribute to determine

the number density of N1, we have

σ̂
(2)
NiNj

(x) =
1

4π

[

3
∑

i,j=1

|(hh†)ii(hh
†)jj

√

λij

x

(

1 +
(ai − aη)(aj − aη)

(ai − aη)(aj − aη) + xaη

+
ai + aj − 2aη

x
Lij

)

− Re[(hh†)2ij ]
2
√
aiajLij

x− ai − aj + 2aη

]

(39)

14We should note that |λ5| might not have a small value in the case with heavy right-handed neutrinos,

which is discussed in section 3. In this case, these processes could give large contribution to the washout

of the generated lepton number asymmetry.
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for NiNj → ℓαℓ̄β which are induced through the η exchange and also

σ̂
(3)
NiNj

(x) =
1

4π

(x− 4aη)
1/2

x1/2

[

|(hh†)ij |2
{

√

λij

x

(

− 2

+
4aη(ai − aj)

2

(aη − ai)(aη − aj)x+ (ai − aj)2aη

)

+
(

1− 2
aη
x

)

L′
ij

}

− Re[(hh†)2ij]

(

√

λij

x
+

2(a2η − aiaj)L
′
ij

(x2 − 4xaη)1/2(x− ai − aj − 2aη)

)]

(40)

for NiNj → ηη† which are induced through the ℓα exchange. The cross terms in these

reduced cross sections are neglected because of the same reasoning as eqs (37) and (38).

In order to see the behavior of these relevant processes such as the decoupling time,

we may estimate the ratio of the reaction rate to the Hubble rate Γ
H

as a function of z (see

Fig. 3). The thermally averaged reaction rate Γ is related to the above discussed reaction

densities through

ΓN1

D =
γN1

D

neq
N1

(41)

for the decay of N1 and also

Γ
(2,13)
N =

γ
(2,13)
N

neq
ℓ

, Γ
(2,3)
NiN1

=
γ
(2,3)
NiN1

neq
NR1

(42)

for the 2-2 scattering processes given in eqs. (37), (38) and eqs. (39), (40), respectively.
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