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Abstract

The radiative seesaw model with an inert doublet has been shown to be attractive from

a viewpoint of both neutrino masses and cold dark matter. However, if we apply this model

to the explanation of the positron excess in the cosmic ray observed by PAMELA, a huge

boost factor is required although it can be automatically explained that no anti-proton

excess has been observed there. We consider an extension of the model to enhance the

thermally averaged annihilation cross section without changing the features of the model

favored by both the neutrino oscillation and the relic abundance of dark matter. It is

shown that the data of PAMELA and Fermi-LAT can be well explained in this extended

model. Constraints from gamma ray observations are also discussed.
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1 Introduction

The existence of dark matter (DM) now gives us a clear motivation to investigate physics

beyond the standard model (SM). Although we know its relic abundance in the present

universe[1], its nature is not clarified except that DM should be cold. However, recent

observational data on cosmic rays may give us interesting information on its mass and

interactions. PAMELA has reported positron excess in the cosmic ray at the 6 - 100 GeV

range in comparison with the expected background [2]. However, it has observed no

anti-proton excess. The preliminary report of Fermi-LAT also suggests that the total

flux of positrons and electrons is larger than the expected background at regions of 60 -

1000 GeV [3], although any bump shown in the ATIC result [4] is not found in that flux.

If we consider these results are caused by the decay or the annihilation of DM but not

by astrophysical origins, they are expected to give us crucial information on the nature

of DM. However, it has been pointed out that there is a difficult problem if we try to

understand these results on the basis of DM physics.

In case of the DM decay, DM life time should be extremely long such as O(1026) sec

in order to explain the PAMELA positron excess [5, 6]. It is not so easy to answer

how such a long lifetime can be naturally realized in the ordinary models for elementary

particles, although there are several proposals to solve this problem. In case of the DM

annihilation, its relic abundance requires the thermally averaged annihilation cross section

〈σv〉 to be O(10−26) cm3/sec at its freeze-out period where the typical DM velocity vDM

satisfies vDM/c ∼ 0.2. On the other hand, the positron excess found in the PAMELA

experiment requires 〈σv〉 to be O(10−23) cm3/sec for the DM in our Galaxy where vDM/c ∼

10−3 is expected for the averaged DM velocity. This means that there should be some

large enhancement introduced as a boost factor usually, which may be caused by particle

physics, or astrophysics, or both of them. There have been several analyses on this point

[7, 8]. In this paper, we focus our attention on the particle physics side and study a way

to overcome this difficulty in a model for both neutrino mass and DM.

The radiative seesaw model proposed in [9] gives an attractive scenario for the neutrino

mass and mixing. They are explained by new physics at TeV scales in this model. The

model includes DM candidates whose stability is guaranteed by a discrete symmetry.

It forbids bare Dirac mass terms of neutrinos and then is related to the smallness of

neutrino masses. The model has been studied from various points of view [10, 11, 12, 13].
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However, if we apply this model to explain the PAMELA data by the DM annihilation,

we confront the boost factor problem, unfortunately. In this model the annihilation cross

section has a dominant contribution from its p-wave part. Since the p-wave contribution

becomes smaller for smaller DM relative velocity v, the situation is much worse than

the s-wave case. In fact, this requires a huge boost factor of O(106) to explain the

PAMELA data on the basis of this model unless there are some additional astrophysical

effects [12, 13]. On the other hand, we should also remind the reader that the model

has an interesting feature favored by the PAMELA data, that is, the DM can annihilate

only to leptons. Moreover, if we impose constraints on the model from the lepton flavor

violating processes like µ → eγ, e± should not be yielded as the primary final states of

the annihilation. Positrons originated from this DM annihilation are generated through

the decay of µ+ and τ± [13]. Model independent analyses suggest that this feature is

again favored by both data of PAMELA and Fermi-LAT [8]. Thus, it is an interesting

subject for this model to find some solutions for this boost factor problem by extending

the model without disturbing these nice features of the model.d

In this paper we propose a simple extension of the model, which makes the Breit-

Wigner enhancement of thermally averaged annihilation cross section possible. In that

model we show that both data of PAMELA and Fermi-LAT can be well explained without

assuming an unknown huge boost factor as long as the mass of a scalar field is finely

tuned. The enhanced annihilation cross section may also predict the large flux of gamma

ray which is associated with the DM annihilation. We discuss the consistency with the

data for the diffuse gamma ray from observations in the EGRET, HESS and Fermi-LAT

experiments.

The following parts of the paper are organized as follows. In section 2 we fix the

radiative seesaw model and discuss how all the neutrino oscillation data, lepton flavor

violating processes and the DM relic abundance can be consistently explained. After

that we extend the model to enhance the DM annihilation cross section in the present

Galaxy. In section 3 we address the features required for the explanation of the data of

PAMELA and Fermi-LAT. We also discuss the consistency between the diffuse gamma

ray flux expected in the model and the present experimental data. We summarize the

dOne solution has been proposed by considering the decaying DM in a supersymmetric extension of

the model [6].
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paper in section 4.

2 Breit-Wigner enhancement

2.1 A radiative seesaw model

The radiative seesaw model considered here is an extension of the SM with an inert

doublet η (an additional SU(2)L doublet scalar with 〈η〉 = 0) and three gauge singlet

right-handed fermions Nk (k = 1, 2, 3) [9]. In order to forbid tree-level Dirac masses for

neutrinos, we impose Z2 symmetry on the model. An odd charge of this Z2 symmetry is

assigned to all of these new fields, although an even charge is assigned to all of the SM

contents. Both interaction Lagrangian LN relevant to Nk and scalar potential V invariant

under the imposed symmetry are written as

LN = −
(

MkN
c
kPRNk +MkNkPLN

c
k

)

− (hαkℓαηPRNk + h.c.),

V = m2
φφ

†φ+m2
ηη

†η + λ1(φ
†φ)2 + λ2(η

†η)2 + λ3(φ
†φ)(η†η) + λ4(φ

†η)(η†φ)

+
λ5

2

[

(φ†η)2 + h.c.
]

, (1)

where ℓα and φ stand for a left-handed lepton doublet and an ordinary Higgs doublet

scalar, respectively. Coupling constants and masses of singlet fermions are assumed to be

real, for simplicity. LN is assumed to be written by using the basis in which a charged

lepton mass matrix is diagonal.

The model has several interesting features [10, 11, 12, 13]. First, neutrino masses are

generated through one-loop diagrams as

Mαβ =
∑

k

Λkhαkhβk,

Λk =
λ5〈φ〉

2

8π2Mk
I

(

M2
k

M2
η

)

, I(x) =
x

1− x

(

1 +
x ln x

1− x

)

, (2)

where M2
η = m2

η + (λ3 + λ4)〈φ〉
2. This neutrino mass matrix can explain the neutrino

oscillation data well as long as we set appropriate values for the parameters λ5, hαk, Mk

and Mη. We note that λ5 should be very small to generate desired neutrino masses.

However, this tuning is not so bad nature since it can be controlled by a global symmetry
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which appears if we make λ5 zero.e Second, the lightest one of Nk can be DM since

its stability is guaranteed by the Z2 symmetry. Its relic density can be adjusted to

the one required by WMAP for the same parameters used for the explanation of the

neutrino oscillation data. Third, these are also consistent with the constraints imposed

by the lepton flavor violating processes such as µ → eγ and τ → µγ, if neutrino Yukawa

couplings hαk have certain flavor structure.f

In order to show these aspects concretely, we consider an example of such flavor

structure for neutrino Yukawa couplings as

hei = 0, hµi = hτi (i = 1, 2); he3 = −hτ3, hµ3 = −hτ3. (3)

In this case the neutrino mass matrix can be written as

M =









0 0 0

0 1 1

0 1 1









(h2
τ1Λ1 + h2

τ2Λ2) +









1 1 −1

1 1 −1

−1 −1 1









h2
τ3Λ3, (4)

and the tri-bimaximal neutrino mixing is automatically realized for the neutrino mass

matrix (2) [13]. Moreover, only two mass eigenvalues take nonzero values. Thus, the

neutrino oscillation data can be consistently explained as long as the following conditions

are satisfied:

h2
τ1Λ1 + h2

τ2Λ2 ≃ 2.5× 10−2 eV, h2
τ3Λ3 ≃ 2.9× 10−3 eV. (5)

These come from the required values for ∆m2
atm and ∆m2

solar, respectively. We need

to consider the constraints from both the lepton flavor violating processes and the DM

relic abundance under these conditions. The relation of Yukawa couplings hαk to other

parameters λ5, Mk and Mη is also determined through these constraints. When we apply

eq. (5) to the analysis, it may be useful to note that these give the constraints on the

value of h2
τkλ5 for the fixed Mk and Mη. In particular, Λk is proportional to h2

τkλ5Mk/M
2
η

for Mk ≪ Mη since I(x) ≃ x for x ≪ 1. Since hτk tends to be smaller for larger values

eThis problem may also be solved by making the λ5 term as an effective one through the extension of

the model with a U(1) gauge symmetry [11].
fThere is a severe tension between the relic abundance and the lepton flavor violation generally [10, 11].

If we make neutrino Yukawa couplings small enough to suppress the lepton flavor violation, the DM relic

abundance becomes too large.
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Fig. 1 Contours for the branching ratio of the lepton flavor violating processes and the DM relic

abundance in the (M1, Mη) plane. The left and right panel corresponds to case (i) and (ii) defined

in the text, respectively. Green dotted lines represent the contours for Br(µ → eγ) × 1011 = 1.2, 0.72

in Mη decreasing order. Blue dashed lines represent the ones for Br(τ → µγ) × 108 = 0.68, 0.068 in

M1 increasing order. The red solid line in the M1 < Mη region corresponds to the contour for the N1

relic abundance ΩN1
h2 = 0.11 required by the WMAP. The black long dashed line represents a line for

M1 = Mη.

of λ5, λ5 is expected to have values in restricted regions by taking account of the DM

relic abundance condition as seen later. We will assume M1 < Mη throughout the present

analysis.

The branching ratio of the lepton flavor violating process ℓα → ℓβγ is written as [14]

Br(ℓ−α → ℓ−β γ) =
3α

64π(GFM2
η )

2

[

3
∑

k=1

hαkhβkF2

(

M2
k

M2
η

)

]2

Br(ℓ−α → ℓ−β ν̄βνα),

F2(x) =
1− 6x+ 3x2 + 2x3 − 6x2 ln x

6(1− x)4
. (6)

If we use the condition (3), we find that

Br(µ → eγ) ≃
3α

64π(GFM2
η )

2

[

h2
τ3F2

(

M2
3

M2
η

)]2

,

Br(τ → µγ) ≃
0.51α

64π(GFM2
η )

2

[

h2
τ1F2

(

M2
1

M2
η

)

+ h2
τ2F2

(

M2
2

M2
η

)

− h2
τ3F2

(

M2
3

M2
η

)]2

.(7)

By using these formulas and eqs. (5), the expected values for the branching ratio of µ → eγ

and τ → µγ can be plotted in the (M1, Mη) plane by fixing parameters hτ1, λ5, M2,
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Fig. 2 Diagrams contributing to the N1 annihilation.

and M3. Here we consider two cases: (i) M1 < M2 < M3 and (ii) M1 ≃ M2 < M3. In

both cases λ5 and M3 are treated as free parameters. Since hτ1 and M2 are determined

by other parameters in case (ii), this case is much constrained and predictive compared

with case (i).

In Fig. 1 we show the contours of these branching ratios for typical parameters. Here

we use λ5 = 6.0× 10−11 and M3 = 4.8 TeV. In case (i), we fix the remaining parameters

as hτ1 = 1.5 and M2 = 2.8 TeV. Green dotted lines and blue dashed lines represent the

contours of Br(µ → eγ) and Br(τ → µγ), respectively. The former one is independent

of M1 in both cases (i) and (ii). This is clear from the expression in eq. (7). Moreover,

this branching ratio becomes sufficiently small by making M3 large enough. It should

be noted that F2(M
2
3 /M

2
η ) becomes smaller for larger M3 although larger M3 makes hτ3

larger through eq.(5). On the other hand, Br(τ → µγ) shows different behavior in each

case. It is independent of Mη in case (ii) for the Mη > M1 region. This is expected from

the feature of Λk which is previously remarked on eqs. (5) and (7). In case (i), Br(τ → µγ)

is not largely affected by changing M2 and M3 as long as hτ1 > hτ2 is satisfied, which is

favored by the DM relic abundance as seen later. The present experimental bounds [17]

are found to be satisfied in the wide range of parameter space shown in this figure. The

model can be easily consistent with both the neutrino oscillation data and the bounds

from the lepton flavor violating processes as long as parameters are suitably selected.

Next we discuss the nature of DM in this model. Since N1 is assumed to be DM, the

condition (3) suggests that charged final states yielded in the DM annihilation consist

of µ± or τ± only. Positron and electron are only induced through the decay of these

particles. It should be reminded again that this nature of DM is favored by the anomaly

suggested by PAMELA and Fermi-LAT. The DM relic abundance is determined through

the N1 annihilation, which occurs through the t-channel η exchange diagram shown in
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Fig. 2. The dominant contribution comes from the p-wave process. Thus, the annihilation

cross section averaged by the spin of initial states is expressed asg

σ1v =
1

3π

M2
1 (M

4
1 +M4

η )

(M2
1 +M2

η )
4

h2
τi1

h2
τi2

v2, (8)

where we use eq. (3) to derive this formula. In case (i), i1 = i2 = 1 should be understood

and then σ1v ∝ h4
τ1. On the other hand, if the masses of N1 and N2 are almost degenerate

as in case (ii), coannihilation plays a role and then the contribution of i1,2 = 1 and 2 should

be summed up. As its result, we have σ1v ∝ (h2
τ1 + h2

τ2)
2 [13].

In order to estimate the freeze-out temperature Tf of N1 including the coannihilation

case, we follow the procedure given in [15, 16]. We define σeff and geff as

σeff =
g2N1

g2eff
σN1N1

+ 2
gN1

gN2

g2eff
σN1N2

(1 + δ)3/2e−xδ +
g2N2

g2eff
σN2N2

(1 + δ)3e−2xδ,

geff = gN1
+ gN2

(1 + δ)3/2e−xδ, (9)

where x = M1/T and mpl = 1.22 × 1019 GeV. Internal degrees of freedom of Ni are

described by gNi
and δ is defined by δ ≡ (M2 − M1)/M1. If we define aeff and beff by

σeffv = aeff + beffv
2, the thermally averaged cross section can be written as 〈σeffv〉 =

aeff + 6beff/x. In case (i), σeff and geff are dominated by the first term since δ > 0.2 [16].

On the other hand, δ ≪ 1 is assumed in case (ii). Thus, the second and third terms

can bring the important contribution. Using these, the relic abundance of N1 can be

estimated through the formulas

ΩN1
h2 =

1.07× 109xf

g
1/2
∗ mpl(GeV)(aeff + 3beff/xf)

, xf = ln
0.038geffmplM1(aeff + 6beff/xf)

g
1/2
∗ x

1/2
f

, (10)

where g∗ is the relativistic degrees of freedom at the freeze-out temperature Tf of N1.

By using these formulas and the conditions in eq. (5), we can plot the contour ΩN1
h2 =

0.11 required by WMAP in the (M1,Mη) plane. In Fig. 1, it is drawn by a red solid line

in each case (i) and (ii) for the same values of parameters used in the estimation of

Br(ℓα → ℓβγ). The result in each case depends on h2
τ1 and h2

τ1 + h2
τ2, respectively. Since

it also depends on λ5 through the relations (5) as noted before, the required ΩN1
h2 can be

obtained only for rather restricted values of λ5. In Fig. 1, the points on the red solid line

g We need to remind that final states also include neutrino pairs other than the charged lepton pairs

for the relic abundance estimation.
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in the region satisfying both Br(µ → eγ) < 1.2×10−11 and M1 < Mη give the parameters

consistent with all of the neutrino oscillation data and constraints from the lepton flavor

violating process and the DM relic abundance. Thus, we find that the present model can

give a very simple and consistent framework for the known experimental results.

The values of relevant Yukawa couplings are determined for each point on the ΩN1
h2 =

0.11 line. In Fig. 1, we have, for example,

(i) hτ2 = 1.40, hτ3 = 0.66 at (M1,Mη) = (1600, 1950),

(ii)
√

h2
τ1 + h2

τ2 = 2.14, hτ3 = 0.66 at (M1,Mη) = (1600, 1950).
(11)

If we make λ5 larger for the fixedM1, larger values forMη and hτ1 are required as expected

from eq. (8). On the other hand, λ5 is bounded from below by the condition Mη > M1.

Thus, neutrino Yukawa couplings are required to take rather large values by the DM relic

abundance. This suggests that the model may be inconsistent due to these large Yukawa

couplings, which may make the scalar potential unstable at the energy regions above a

certain cut off scale µ. If this cut-off scale does not satisfy µ > M3, the present scenario

can not work. Since larger M3 is favored from the µ → eγ constraint, we can not make

M3 smaller enough for this instability problem. Thus, this imposes nontrivial constraint

on the model. Since λ2 is most affected by the large neutrino Yukawa couplings hτk, the

cut-off scale µ is determined as the scale where λ2 becomes negative.

We examine this point by studying the behavior of couplings included in LN and V to

fix µ using renormalization group equations (RGEs) for them. These RGEs are given in

Appendix A. Numerical analysis is practiced for the parameters given in (11) assuming

the O(1) values for the couplings λi. This analysis shows that µ = O(10) TeV and then

µ > M3 is possible for these values of couplings at low energy regions. The scenario

seems to be consistent with the potential instability. However, it is difficult to make µ

much larger than M3. If Nk and η are supposed to be suitable representations of some

hidden non-Abelian gauge symmetry under which all the SM contents are singlet, some

improvement may be expected for this situation. As such an example, we may consider

SU(2) symmetry and both Nk and η are doublet of that gauge symmetry. In such an

extension, LN and V are invariant and no anomaly problem occurs within these field

contents. The RGE study of this case shows that µ can be somewhat large. However,

it is difficult to make µ larger than M3 by more than one order since the running region

of the relevant RGEs is too short. Thus, although the model can escape the instability
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of the potential, we need to consider some fundamental model at the scale not far from

M3. Since this argument on the potential stability suggests that smaller neutrino Yukawa

couplings are favored, smaller values of M1 and λ5 are also favored from the N1 relic

abundance. On the other hand, as discussed in the next part, only a limited value of

M1 seems to be favored from the explanation of the charged cosmic ray anomaly. This

suggests that λ5 is also required to take its value in the strictly restricted region.

It is worthy to note that we can predict the expected values for the branching ratio

of µ → eγ and τ → µγ in this model from Fig. 1, if we can fix the value of M1 further

by using other experimental data. Observational data on the cosmic rays from PAMELA

and Fermi-LAT experiments may be used for such a purpose. However, if we suppose the

PAMELA anomaly as a consequence of the annihilation of this DM, we confront difficulty.

The annihilation cross section is found to be too small to explain the PAMELA positron

excess for the typical relative velocity of DM in the present Galaxy as mentioned before.

In the next part we propose an extension of the model to overcome this fault.

2.2 Extension of the model

We consider the introduction of a new interaction which brings a large contribution to

the N1 annihilation only at the present Galaxy and also does not modify the previously

discussed favorable features of the model. For that purpose, we add a complex singlet

scalar S with even parity of the Z2 symmetry.h This singlet scalar is assumed to have

mass MS and couplings with other fields through the Lagrangian through the interaction

Lagrangian

L′
N = −ykSN c

kPRNk − y∗kS
∗NkPLN

c
k −M2

S|S|
2 − κ|S|4 −

(

κφφ
†φ+ κηη

†η
)

|S|2. (12)

Here we note that this is not the most general Lagrangian under the imposed symmetry.

However, although interaction terms like φ†φS and η†ηS which are not forbidden by the

symmetry can be radiatively induced, they are largely suppressed as long as S is assumed

to have no vacuum expectation value.i In that case, S dominantly decays to Nk with the

mass Mk < MS/2. In this extended model, we find that there appears a new one-loop

contribution to the annihilation of N1 as shown in Fig. 2.

hThe extension of the model by a singlet scalar field has been considered in other context in [18].
iThis assumption is justified only if the tadpole diagram for S generated through the Nk loop is

cancelled by cS which can be introduced in Lagrangian. We consider such a situation here.
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This new contribution to the N1 annihilation cross section can be estimated as

(σ2v)αβ =
1

π

M2
1

M4
η

m2
α +m2

β

(s−M2
S)

2 +M2
SΓ

2
S

(

3
∑

k=1

|y1yk|hαkhβkMk

(4π)2Dk

)2

, (13)

where the spin of initial states is averaged. We fix the final states to be charged leptons

with masses mα,β in this expression. This annihilation cross section is dominated by

the contribution from the exchange of a pseudoscalar component. To obtain the total

annihilation cross section, α and β should be summed up for all possible final states as

σ2v =
∑

αβ(σ2v)αβ. The definition of s, ΓS and 1/Dk are given by

s = E2
cm ≃ 4M2

1

(

1 +
v2

4

)

,

ΓS =
|y1|

2

8π
MS

√

1− 4
M2

1

M2
S

(

1− 2
M2

1

M2
S

)

,

1

Dk
=

∫ 1

0

dz
1

1− rk + 4r1z
log

∣

∣

∣

∣

1− (1− rk)z

rk − 4r1z(1 − z)

∣

∣

∣

∣

, (14)

where rk = M2
k/M

2
η and S is supposed to decay to the N1 pair only. This type of annihi-

lation cross section has been suggested to be enhanced sufficiently for the explanation of

the PAMELA data [19]. In fact, if the thermal average of (σv)αβ is estimated naively by

replacing v2 with a thermally averaged value 6
x
in eq. (13), the annihilation cross section

shows the Breit-Wigner resonance at xr =
3
2∆

through the factor [(∆− 3
2x
)2+γ2

S]
−1, where

we use the definition ∆ ≡ 1−
4M2

1

M2
S

and γS ≃ 1
16π

|y1|
2∆1/2. However, such a naive treatment

has been shown to be unreliable near a resonance point [16, 20]. The enhancement of the

annihilation cross section is overestimated in such a naive method. To obtain the correct

enhancement, we need to calculate the thermal average

〈σ2v〉αβ =
x3/2

2π1/2

∫ ∞

0

dv v2(σ2v)αβe
−xv2/4. (15)

Although this formula is derived in the center of mass system, the result is expected to

be reliable since N1 is sufficiently non-relativistic in the present case [16, 20].

In order to find the qualitative feature, it is useful to approximate this integral by

expanding v as v = vr + ν around the peak value vr = 2∆1/2. Then, eqs. (13) and (15)
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give

〈σ2v〉αβ ≃
x3/2

2π3/2

(m2
α +m2

β)M
2
1

M4
ηM

4
S

(

3
∑

k=1

|y1yk|hαkhβkMk

(4π)2Dk

)2

e−x∆

∫ ν0

−ν0

dν
1

ν2∆+ γ2
S

≃
2π1/2

(4π)4
(m2

α +m2
β)

M4
η

(

3
∑

k=1

|yk|hαkhβkMk

DkM1

)2

x3/2e−x∆, (16)

where ν0 ≪ vr and 16πν0 ≫ |y1|
2 are assumed. Using this result, we roughly estimate this

resonance effect on the annihilation cross section caused by the diagram which has Nk as

the internal fermions and τ± in final states. For that purpose, we take xr ≃ 106 which

is just coincident with the typical relative velocity 2 × 10−3c of this DM in the present

Galaxy. The annihilation cross section at xr is found to satisfy the relation j

〈σ2v〉

106〈σ1v〉
∼

(

Mk

M1Dk

)2(
hτk

h̃

)4

|yk|
2, (17)

where h̃ = hτ1 and
√

h2
τ1 + h2

τ2 for the annihilation and the coannihilation, respectively.

The first two factors relevant to the masses and the neutrino Yukawa couplings of Nk are

fixed by the conditions imposed by the neutrino oscillation and the N1 relic abundance.

The first factor is estimated to be O(1) and decreases for larger Mk. The second factor is

considered to be less than 1 except for the coannihilation case where it can be almost 1.

Since |y1| is assumed small in the above discussion, we find that the desirable enhancement

can be expected from the N2 contribution with |y2| = O(1). These show that the sufficient

enhancement factor to explain the PAMELA data can be obtained through the Breit-

Wigner resonance at least in the coannihilation case.

To obtain much quantitative estimation we calculate the thermally averaged annihila-

tion cross section by integrating eq. (15) numerically. The result for 〈σv〉 = 〈σ1v〉+ 〈σ2v〉

is plotted as a function of x in Fig. 3. In this calculation we use the parameters given in

Table 1, which can realize a point on the red line in Fig. 1. They satisfy all the neutrino

oscillation data, the DM relic abundance required by WMAP and the constraints from

the lepton flavor violating processes. Since the interference terms between tree diagrams

and one-loop diagrams can be neglected in both regions vf/c ∼ 0.2 and vr/c
<
∼ 10−3, the

figure shows that we can safely use 〈σ1v〉 and 〈σ2v〉 in each region, respectively. In this

jHere the annihilation cross section 〈σ2v〉 is defined as 〈σ2v〉 = 4〈σ2v〉µ±τ∓ by taking account of all

possible modes. See eqs.(22) and (23) also.
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Fig. 3 The N1 annihilation cross section as a function of x(≡ 6
〈v2〉 ). The left and right panel corresponds

to the case (i) and (ii), respectively. Parameters in the annihilation cross section are fixed to the ones

shown in Table 1. The thin black dashed line shows the result for 〈σv〉 obtained by the naive method.

figure the result obtained by the naive method is also plotted by a thin black dashed line.

It shows that the enhancement effect is overestimated and the annihilation cross section

is misled to be large enough for the explanation of the PAMELA data in both cases (i)

and (ii). However, the correct calculation shows that the enhancement can not be large

enough for reasonable values of |yk| in the annihilation case (i). On the other hand, in the

coannihilation case (ii), we find that the Breit-Wigner resonance can make the annihila-

tion cross section have a desirable value 10−23 cm3/sec around v ≃ vr as long as ∆ and |yk|

have suitable values. Here we should note that this value of ∆ requires MS to be finely

tuned to M1 at the level of O(10−6). We also comment on the instability of this solution

induced by radiative corrections. A dominant correction to the singlet scalar mass MS at

the one-loop level is roughly estimated as δM2
S ≃

y2
2

(4π)2
µ2 where µ is the cut-off scale of

the model. Since µ is rather small and µ = O(10) TeV as discussed before, we find that

M1 Mη hτ1 hτ2 hτ3 ∆ |y1| |y2| |y3|

(i) 1.6 1.95 1.5 1.4 0.66 10−6 0.1 2.5 0.01

(ii) 1.6 1.95 0.1 2.14 0.66 10−6 0.015 1.715 0.01

Table 1 Parameter sets used to draw the annihilation cross section behavior in Fig. 2 and also to

obtain the positron spectrum in Fig. 4. Masses are given in TeV unit. We set λ5 = 6.0 × 10−11 and

M3 = 4.8 TeV for each case.
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δM2
S is the same order value as the required MS. This means that we need the fine tuning

of O(10−6) to keep the stability of this solution from the radiative corrections. The large

value of y2 may require the fine tuning up to the eight-loop order. Unfortunately, the

model does not have any physical background to guarantee the required mass relation.

It remains as a difficult problem how to realize this finely tuned situation from the basic

model at high energy regions.

It is worthwhile to stress that these values of ∆ and |yk| can be fixed without contra-

dicting the required DM relic abundance which is determined by the annihilation process

described by eq. (8). The reason is that different parameters are relevant to determine the

DM relic abundance and the positron flux, respectively.k Although the former is deter-

mined by M1, Mη and hτk, the latter is mainly determined by |yk| and ∆. We note that

the parameters relevant to the enhancement of the annihilation cross section required for

the explanation of PAMELA and FERMI-LAT are confined to y1, y2 and MS , although a

lot of free parameters seems to be introduced in eq. (12). It seems to be interesting that

these limited parameters can also allow the model to satisfy the reionization constraints

as discussed below.l

It is also useful to note that it is crucial that the annihilation occurs through a one-

loop diagram in the present enhancement mechanism. This is clear from the fact that the

enhancement is caused by the existence of Nk, which satisfies |yk| ≫ |y1| and hτk ∼ h̃.m

Although these conditions can be satisfied in the coannihilation case, in the annihilation

case larger hτ2 requires relatively smaller hτ1 as seen from eq.(5). However, small hτ1 con-

tradicts the condition imposed by the N1 relic abundance. Thus, only the coannihilation

case can realize 〈σ2v〉 ∼ 10−23 cm3/sec for each M1 by adjusting the values of |yk| and

|y1| without affecting the N1 relic abundance.

k It is useful to note that the similar aspect is found in the case of Sommerfeld enhancements. If

only a single annihilation channel is assumed, Sommerfeld enhancements cause a discrepancy between

the relic density and the excesses of positron flux [21]. The present model escapes this by considering

two processes given in Fig. 2.
lThe relevant parameters contained in eq. (1) have already been fixed to explain the neutrino oscillation

data (two squared mass differences and three mixing angle), the DM relic abundance Ωh2 and lepton

flavor violating processes. Taking account of the supposed flavor structure, they are M1,3,Mη, λ5 and

hτ1 , hτ2 , hτ3 in the coannihilation case.
mIt is worthy to note that numerical calculation shows that 〈σ2v〉 has the largest value for y1 ≃ 0.1

and 0.01 at x = xr in the case (i) and (ii) respectively. It slowly decreases for larger |y1|.
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One may worry about the potential instability caused by the large value of |y2| shown

in Table 1. In fact, the coupling constants κ and κη can become negative at a scale smaller

than M3 as long as η and Nk are singlets of the hidden gauge symmetry. However, if they

are doublets of the hidden SU(2), the coupling constant yk in 〈σ2v〉 is replaced by 2yk

because of the gauge freedom in the one-loop diagram. This shows that a rather small

value y2 ≃ 0.86 is needed to realize the required enhancement of 〈σ2v〉. We can numerically

check that this value of y2 improves the above mentioned potential instability problem to

make the extended model consistent. In this case the cut-off scale of the model is still

determined by the behavior of λ2.

Finally we note the values of the annihilation cross section at the recombination period

z ∼ 1000, which corresponds to the DM relative velocity v/c ∼ 10−8. The DM annihilation

in the period after recombination to structure formation (z >
∼ 6) causes the deposition of

energy in the inter galactic medium, which brings an additional origin for the reionization

and heating of the intergalactic gas. This additional effect is constrained from the observed

optical depth of the universe and the measured temperature of the intergalactic gas.

In particular, the optical depth bound brings severe constraint on the high mass DM

as the present model since it can produce too many free electrons. If we follow the

analysis for these constraints given in [22], the annihilation cross section should satisfy

〈σ2v〉
<
∼ 10−24 cm3/sec for the DM with the mass 1600 GeV. In Fig. 3, we find that this

constraint is satisfied at v/c <
∼ 10−5. It corresponds to the environments in which most of

the annihilation contribution to the relevant signal is considered to take place. Here it is

useful to note that 〈σ2v〉 does not decrease to 10
−24 cm3/sec even for much smaller relative

velocity v < vr and keep larger values than that if |y1|
<
∼ 0.05 is not satisfied. Thus, the

reionization constraint rules out these cases. As long as this condition is satisfied, the

present DM scenario can be consistent with the constraint caused by the effect on the

reionization due to their annihilation.n In the next section we apply this extended model

to the explanation of the anomaly suggested in PAMELA and Fermi-LAT experiments.

nSince the Sommerfeld enhancement shows an inverse proportionality to the relative velocity of the

two DM fields, it could cause different effects on the reionization from this model.
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3 Positron flux and gamma ray constraints

We estimate the positron flux yielded by the N1 annihilation following the method used

in [23, 24] and compare it with the data obtained in the PAMELA and Fermi-LAT ex-

periments. The positron flux in the cosmic ray at the Earth is expressed as Φe+(E) =

ve+f(E)/4π (GeV · cm2 · str · sec)−1 where ve+ is positron velocity. f(E) is the positron

number density per unit energy at the Earth, which can be determined by solving the

diffusion equation for f(E). Using the approximated solution for f(E), the positron flux

Φe+ expected from the N1 annihilation is estimated as

Φe+(E) =
ve+

8πE2/(GeV τE)

(

ρN1

M1

)2 ∫ M1

E

dE ′ I(λD(E,E ′))

{

∑

F

〈σv〉F
dNα(F),e+

dE ′

}

, (18)

where τE = 1016 sec and ρN1
is the local DM density in the halo. In this study we

use ρN1
= 0.3 GeV/cm3 and ve+ = c. Possible final states directly yielded through the

N1 annihilation are expressed by F . dNα(F),e+/dE
′ represents the spectrum of positrons

yielded through the decay of leptons α included in the final state F .

In this formula, the ingredients coming from astrophysics are summarized in the halo

function I(λD) and the positron diffusion length λD. They are defined by

I(λD) = a0 + a1 tanh

(

b1 − ℓ

c1

){

a2 exp

(

−
(ℓ− b2)

2

c2

)

+ a3

}

,

λ2
D = 4K0τE

{

Eδ−1 − E ′(δ−1)

1− δ

}

, (19)

where ℓ = log10(λD/kpc). The expressions of I(λD) and λD depend on the astrophysical

model for the diffusion of positron and the halo profile [24]. In this paper we adopt med

and isothermal profile for them to determine the parameters included in eq. (19). For

such a model [24], parameters in λD are K0 = 0.0112 kpc2/Myr and δ = 0.70, and others

included in I(λD) are

a0 = 0.495, a1 = 0.629, a2 = 0.137, a3 = 0.784,

b1 = 0.766, b2 = 0.550, c1 = 0.193, c2 = 0.296. (20)

As addressed in several work [8], the positron flux is not crucially dependent on the

astrophysical model. We choose this model for the consistency with the constraint from

the diffuse gamma in the cosmic ray. We will come back to this point later.
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In eq. (18) the dependence on the assumed model for particle physics is confined in the

factor summed up for F in the E ′ integral. Since the annihilation cross section 〈σ2v〉αβ

is proportional to m2
α +m2

β, the summation should be taken for

F = (e±, τ∓), (µ±, τ∓), (τ+, τ−), (21)

which can yield positrons finally. This feature is caused by the flavor structure of neutrino

Yukawa couplings (3). Since smaller hτ3 and larger M3 are favored from the µ → eγ

constraint, the N3 contribution to the loop effect may be neglected. If we take account of

these and also assume that |y3| is sufficiently smallo, the positron flux Φe+ due to the N1

annihilation can be expressed as

Φe+ ≃ 1.25× 10−3〈σ2v〉

(

102 GeV

E

)2(
1 TeV

M1

)2

×

∫ M1

E

dE ′ I(E, E ′)

[

1

4

dNµ+,e+

dE ′
+

3

4

(

dNτ+,e+

dE ′
+

dNτ−,e+

dE ′

)]

, (22)

where (GeV · cm2 · str · sec)−1 is used for the unit of Φe+ and the total cross section

〈σ2v〉(≡ 4〈σµ±τ∓〉) is determined in our extended model as

〈σ2v〉 =
16

(4π)5
(GeV)2

(

∆− v2r
4

)2

+ γ2
S

M2
1m

2
τ

M4
ηM

4
S

(

2
∑

k=1

y1ykh
2
τkMk

Dk

)2

. (23)

Here it should be noted that we can keep the favorable feature such that the final states

of the N1 annihilation consist of heavier leptons only.p The fact that e± are not directly

produced is favored to explain the Fermi-LAT data, which show no bump in the hard

e+ + e− spectrum. The directly produced e± tend to be much harder than indirectly

produced e± energetically. The positron spectrum given by (22) has large contributions

from τ+ decay, which causes a softer spectrum for the final positron and electron spectrum.

The decay of µ± to e± yields much harder positron than the τ± decay. The concrete

model with these mixed final states seems not to have been considered in the analysis of

the anomaly suggested through the PAMELA and Fermi-LAT experiments.q

oUnder this assumption, we can safely neglect the N3 contribution to the one-loop annihilation dia-

gram. In this case N1 annihilation does not yield positrons directly.
pAlthough higher order radiative corrections can induce coupling of S with the ordinary Higgs scalars,

their effect is small enough to neglect them in the analysis of N1 annihilation.
qAlthough model independent analysis for this kind of mixed final states is found in the paper by

Meade et al. [8] (see Fig. 12 in it), it is not based on a concrete particle physics model.
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Fig. 4 Left and right panels show the predicted positron excess at the PAMELA regions and the

prediction for the e+ + e− flux at the observation regions of Fermi-LAT and H.E.S.S., respectively. In

both panels, DM massM1 and annihilation cross section 〈σ2v〉 are fixed as (M1 (TeV ), 〈σ2v〉 (cm
3/sec)) =

(1.2, 4.1 × 10−23), (1.6, 6.7× 10−23), (2.0, 9.2 × 10−23). The normalization of background fluxes is taken

to be NΦ = 0.64.

The energy spectrum of positron
dNα,e+

dE
can be computed by using the PYTHIA

Monte Carlo code [25]. We determine the positron spectrum by fitting these simulation

data for both the µ+ and τ± cases. Details of the analysis are given in Appendix B. We

apply this result to eq. (22) to find the positron flux Φe+ . We fix parameters included

in the cross section 〈σ2v〉 by using the ones which realize the point in the allowed region

shown in Fig. 1. They are also summarized in Table 1 for the case of M1 = 1.6 TeV.

As expected background fluxes for positrons and electrons, we use the empirical formulas

given in [26],

Φbkg
e+ = NΦ

4.5E0.7

1 + 650E2.3 + 1500E4.2
,

Φbkg
e− = NΦ

0.16E−1.1

1 + 11E0.9 + 3.2E2.15
+NΦ

0.70E0.7

1 + 110E1.5 + 600E2.9 + 580E4.2
, (24)

where E should be understood in a unit of GeV and NΦ is a normalization factor.

Using these formulas, we plot the positron fraction Φe+/(Φe+ + Φe−) and the total

flux of e+ + e− scaled by E3 in two panels of Fig. 4, respectively. In the left panel, the

data points for positron excess of PAMELA [2], CAPRICE94 [28] and HEAT95 [29] are

also plotted. On the other hand, the data points for the e+ + e− flux of Fermi-LAT [3]

and HESS [27] are plotted in the right panel. In this figure 〈σ2v〉 is fixed to make the

positron flux Φe+ to realize a good fit to the data of PAMELA and Fermi-LAT for each
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M1 value. This figure shows that the flux of positrons and electrons predicted from the

annihilation ofN1 in this extended model can give rather good fits with these experimental

data. Especially, the predicted flux fits well both data of the PAMELA and Fermi-LAT

experiments for M1 = 1.6 TeV and 〈σ2v〉 = 6.7× 10−23 cm3/sec. This value of 〈σ2v〉 can

be realized by the parameter sets in case (ii) given in Table 1. If we apply this information

for M1 to Fig. 1, we can predict the value of Br(µ → eγ) and Br(τ → µγ). The figure

shows that the predicted value for µ → eγ is within the reach of the MEG experiment

[30]. Thus, lepton flavor violating processes could be a crucial probe for this model.

Annihilation of the DM can cause additional contributions to the cosmic gamma ray.

In fact, if hard charged leptons are produced as the final states of the DM annihilation,

high energy photons are also produced through several processes. One of their origin is

the inverse Compton scattering of positrons with CMB, star light and interstellar photon

[31]. The other ones are final state radiation or internal radiation [33]. The gamma ray

flux expected from the former one does not depend on the particle physics model as long

as the positron flux data presented by PAMELA is assumed. It can be used as a crucial

constraint on the model. Since the gamma ray flux caused by the latter ones depends

on the adopted particle physics model, the predicted photon spectrum can be used to

discriminate the model from others on the basis of the deviation of the photon spectrum

from the one of background in the future observation.

In the present scenario, the DM has mass of O(1) TeV and it can decay into τ±. Thus,

substantial constraints are expected to be imposed by the gamma from the former origin

and also the gamma produced through the decay of π0 which comes from the τ± decay.

These give strong constraints on the gamma ray flux at higher energy regions. Various

studies related to this issue have been done in the model independent way or in the fixed

models [31, 34, 22]. The constraints obtained from analyses of the first year of Fermi γ-ray

observations are also given in [35]. Their results for the gamma ray flux associated with

the DM annihilation into charged lepton pairs are applicable to our model to examine the

consistency with the diffuse gamma ray observations. They show that the galactic diffuse

gamma data constrain the assumed DM halo profile severely. Only the restricted halo

profile called isothermal seems to be consistent with the observations. In fact, following

the study by Cirelli et al. in [35] for the cases with the final states µ+µ− and τ+τ− for the

DM with mass around 1.6 TeV, the DM annihilation cross section 〈σv〉 is shown to be less
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than 6 × 10−23 cm3/sec and 1 × 10−22 cm3/sec, respectively. Papucci et al. in [35] gives

much stronger constraints for the τ+τ− case. The results in this section show that our

model can satisfy these constraints for µ+µ− but the situation seems to be marginal for

the τ+τ− case. Thus, the present model may be considered to work well in the isothermal

profile, although this type of halo profile is considered to be disfavored by the N -body

simulation. We also note that the diffuse neutrino flux satisfies the present observational

constraints [31, 32].

4 Summary

The radiative seesaw model is a simple and interesting extension of the SM by an inert

doublet scalar and singlet fermions. It can give the origin of both small neutrino masses

and DM consistently. However, if we try to explain the positron excess observed by the

PAMELA experiment on the basis of the DM annihilation in this model, an extremely

large boost factor for the annihilation cross section is required. In this paper we have

proposed a simple extension of the model by introducing a singlet scalar. In this extended

model, the DM annihilation cross section can be enhanced in the present Galaxy through

the Breit-Wigner resonance without disturbing the features in the original model, which

are favored by the neutrino masses, the lepton flavor violating processes and the DM

relic abundance. However, it should be noted that the mass of the singlet scalar has

to be finely tuned at the level of O(10−6) for this enhancement. Final states of DM

annihilation are composed of heavier leptons only and the ratio of µ+ and τ± contribution

to the annihilation cross section is 1 to 3. As a result of these features, the data for the

positron and electron flux observed by PAMELA and Fermi-LAT are well explained in

this extended model as long as the coannihilation among Nk occurs. It is interesting

that these results are closely related to the flavor structure of neutrino Yukawa couplings,

which induces tri-bimaximal mixing.

This extended model may be checked through the study of lepton flavor violating

processes such as µ → eγ in the MEG experiment and others in near future. The cosmic

positron and electron flux at higher energy regions may be clarified by the future CALET

experiment, which can observe e± flux up to 10 TeV [36]. Viability of the model may

also be confirmed through this experiment. Although the diffuse gamma ray flux imposes
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severe constraints on the model, they could be consistent as long as the specific halo

density profile called the isothermal profile is assumed. Detailed knowledge on the density

profile of the DM halo seems to be required to judge the validity of the explanation given

here for the anomaly reported by PAMELA and Fermi-LAT.
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Japan Society for Promotion of Science (No.21540262). Numerical computation was par-
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Appendix A

In order to study the stability of the scalar potential, we need the renormalization

group equations (RGEs) for the coupling constants included in the scalar potential V .

This model is an extension of the SM with three singlet fermions Nk and one doublet

scalar η. Thus, the RGEs are similar to the ones of the ordinary two doublet Higgs

model. However, we need to take account of the effect of large neutrino Yukawa couplings

hαk, which are assumed to satisfy the relation (3).

If we assume the existence of the hidden sector gauge interaction mentioned in the text,

invariance of LN restricts the representation of Nk and η to be an adjoint representation

of SU(N) or a doublet of SU(2), for example. In case of the adjoint representation, scalar

potential V should be modified. No anomaly problem appears in both cases. However,

if we note that one-loop diagrams with internal lines of Nk and η have additional group

theoretical factor dim(R), we find that the latter is favored from the constraints of lepton

flavor violating processes.

To prepare RGEs applicable to this extended situation, we assume that Nk and η are

singlets (N = 1) or doublets (N = 2) of a hidden gauge symmetry SU(2). All SM fields

are singlets under this group. A set of relevant RGEs can be written in the following form

[37]:

16π2dλ1

dt
= 24λ2

1 + 2Nλ2
3 +Nλ2

4 + 2Nλ3λ4 + 12λ1h
2
t − 6h4

t + κ2
φ,

16π2dλ2

dt
= 8(N + 2)λ2

2 + 2λ2
3 + λ2

4 + 2λ3λ4 + 4λ2

[

2

(

h2
τ1 + h2

τ2 +
3

2
h2
τ3

)

− 3C2(N)g2h

]

−8

(

(h2
τ1 + h2

τ2)
2 +

9

4
h4
τ3

)

+
3(N − 1)(N2 + 2N − 2)

4N2
g4h + κ2

η,

16π2dλ3

dt
= 4

(

3λ1λ3 + (2N + 1)λ2λ3 + λ1λ4 +Nλ2λ4

)

+ 4λ2
3 + 2λ2

4

+2λ3

[

3h2
t + 2

(

h2
τ1 + h2

τ2 +
3

2
h2
τ3

)

− 3C2(N)g2h

]

+ 2κφκη,

16π2dλ4

dt
= 2λ4

[

2 (λ1 + λ2 + 2λ3 + λ4) + 3h2
t + 2

(

h2
τ1 + h2

τ2 +
3

2
h2
τ3

)

− 3C2(N)g2h

]

,

16π2dκ

dt
= 20κ2 + 2κ2

φ + 2Nκ2
η + 8N

3
∑

k=1

(κ|yk|
2 − 4|yk|

4),

16π2dκφ

dt
= 12κφλ1 + 4Nκηλ3 + 2Nκηλ4 + 8κκφ + 4κ2

φ + 4Nκφ

3
∑

k=1

|yk|
2 + 6κφh

2
t ,
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16π2dκη

dt
= (8N + 4)κηλ2 + 4κφλ3 + 4κφλ4 + 8κκη + 4κ2

η + 4κη

(

h2
τ1 + h2

τ2 +
3

2
h2
τ3

)

+4Nκη

3
∑

k=1

|yk|
2 − 32

(

h2
τ1|y1|

2 + h2
τ2|y2|

2 +
3

2
h2
τ3|y3|

2
)

− 6C2(N)κηg
2
h,

16π2dhτi

dt
= hτi

(

(N + 4)(h2
τ1 + h2

τ2) + 3h2
τ3 + 2|yi|

2 − 3C2(N)g2h

)

(i = 1, 2),

16π2dhτ3

dt
= hτ3

(

2(h2
τ1 + h2

τ2) +
3

2
(N + 4)h2

τ3 + 2|y3|
2 − 3C2(N)g2h

)

,

16π2dyi
dt

= yi

(

8|yi|
2 + 2N

3
∑

k=1

|yk|
2 + 2h2

τi(2 + δ3i)
)

(i = 1, 2, 3),

16π2dht

dt
= ht

(

9

2
h2
t − 8g23

)

,

16π2dgh
dt

=
g3h
3

(

− 11N +
∑

Nk ,η

2T (N)
)

,

16π2dg3
dt

= −7g33, (25)

where C2(n) and T (n) stand for values of the second order Casimir operators defined by
∑

a T
aT a = C2(n)1 and tr(T aT b) = T (n)δab for SU(n) generators T a in the fundamental

representation. Thus, gh = 0 for the N = 1 case, and C2(2) = 3
4
and T (2) = 1

2
for

the N = 2 case, respectively. In these RGEs we take account of the contributions to

β-functions only from the top Yukawa coupling ht, the neutrino Yukawa coupling hαk, the

strong gauge coupling g3 and the hidden gauge coupling gh except for the couplings in

the scalar potential. Since the β-function of λ5 is proportional to λ5 due to the symmetry

discussed in the text, it is kept sufficiently small to be neglected.

Appendix B

In the present model the final state positron is yielded as a consequence of µ+ and τ±

decay. We determine the energy spectrum of such positrons by using the PYTHIA Monte

Carlo code [25]. If we write an expectation value of the number of this yielded positron

per the decay of α(= µ+, τ±) as Nα,e+, PYTHIA gives the positron spectrum
dNα,e+

dE
.

The spectrum obtained from this simulation is shown in Fig. 5, where the result for the

α = µ+ is plotted in the left panel and the one for α = τ± pair is plotted in the right

panel. We find from these figures that the positron produced through the decay of τ± is

softer than the one for µ+ as mentioned in the text.

In order to fix their empirical formulas approximately, each data set in Fig. 5 are fitted

23



Fig. 5 The energy spectrum
dNα,e+

dE
obtained for the DM mass M1 = 1.2, 1.6, 2.0 TeV by simulation.

Left and right panels show the positron spectrum obtained from the decay of the µ+ and τ± pair,

respectively.

by using the functions

dNα,e+

dE
=

2
∑

n=0

dn(M1 −E)1/2

(E + E0)n
(26)

where E0 is a constant and E should be understood in a GeV unit. As results of this

fitting, we find that the coefficients dn in the above fitting functions should take the

values shown in Table 2. We have Nµ+,e+ = 1, Nτ±,e+ ∼ 1.3 by integrating the obtained

spectrum. This corresponds to the fact that the decay of τ+ is composed of various modes

such as τ+ → e+ν̄τνe, τ
± → hadrons → e±e±e∓, while the decay mode is dominated only

by µ+ → e+ν̄µνe for µ
+.

particle(α) µ+ τ±

M1(TeV) 1.2 1.6 2.0 1.2 1.6 2.0

d0 −2.76× 10−3 −3.86× 10−3 −2.13× 10−3 −2.50× 10−6 −1.14× 10−6 −7.75× 10−7

d1 4.13× 101 1.20× 102 7.19× 101 2.94× 10−3 1.85× 10−3 1.44× 10−3

d2 −1.52× 105 −9.26× 105 −6.01 × 105 2.43× 100 3.27× 100 3.86× 100

E0 7.12× 103 1.51× 104 1.64× 104 6.54× 101 9.60× 101 1.24× 102

Table. 2 The coefficients dn determined by the fitting to Fig. 5.

In the text we make the estimation of the positron flux (22) by using these positron

spectra. The parameters included in the cross section 〈σ2v〉 is determined by a point in

the allowed regions (on the red solid line) shown in Fig. 1. Other parameters ∆ and yk

relevant only to the N1 annihilation at the present Galaxy are fixed to make 〈σ2v〉 a suit-

able value O(10−23) cm3/sec for the explanation of PAMELA data. They are summarized

24



in Table 1 in the case of M1 = 1.6 TeV.
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