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Abstract

Band structures of group-IV two-dimensional materials are studied by carrying
out first-principles calculations including spin-orbit coupling (SOC). We pro-
pose a method that identifies irreducible representations (IR) of bands by using
computers. We identify IR for the planar and buckled structures and discuss
the difference between bands obtained by non-SOC and SOC calculations. In
particular, we clarify IR at the Dirac point where the bands split because of the
SOC. We evaluate the Z2 invariants based on identified IR, which suggests that
all the systems are topological insulators.
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1. Introduction

Two-dimensional materials have been attracting scientific interests because
of their novel electronic properties. Since the discovery of graphene in 2004[1,
2], hexagonal group-IV materials including silicene[3, 4, 5], germanene[6], and
stanene[7] have been extensively studied. In particular, the Dirac cones in5

the electronic band structure characterize the electronic properties of these
materials[8, 9, 10].

The spin-orbit coupling (SOC) splits the bands at the Dirac point[11]. Be-
cause of this band split, graphene is considered to become a topological insulator
though the band gap is very small[12]. The SOC becomes large as the atom be-10

comes heavy, so other group-IV materials are good candidates for Z2 topological
insulators[13, 14, 15].
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In the field of spintronics, the SOC is expected to induce new functions in
device materials. To deeply understand electronic properties, the analysis based
on the double group theory is important. So far, irreducible representations (IR)15

in the double group have not been identified in most of cases. In the case of
group-IV two-dimensional materials, there are some attempts to identify IR for
the non-SOC bands[16, 17]. Some discussions on the SOC effect on the bands
were done based on the group theory and tight binding models but little is
known about IR of SOC bands[18, 19].20

In this paper, we propose a method to identify IR of any k-point for the
bands calculated from plane-wave base calculations and therefore the method
can be applied to analysis of bands calculated from standard first-principles cal-
culations. Since this method enables identification by using computers, we can
avoid misidentification. We apply the method to analyze electronic structures of25

the group-IV two-dimensional materials and clarify the difference between the
bands obtained from SOC and non-SOC calculations. In particular, we clarify
details of the level split of the Dirac cones and evaluate the Z2 invariant based
on the group theory.

2. Method30

We first introduce a method which identifies IR of wavefunctions obtained
from SOC calculations. The method for non-SOC calculations was previously
reported[16, 20, 21, 22, 23]. The symmetry operator R̂m consists of the rotation,
Ĉm, and of the fractional translation, τ̂m:

R̂m = {Ĉm | τ̂m}. (1)

The present systems are symmorphic and the fractional translations are (τ̂m =35

0). We next introduce the two-component spinor Bloch wavefunction:

Ψj
~k

= αψα~k,j + βψβ~k,j
, (2)

where ~k and j are the wavevector in the first Brillouin zone and the band
index in the ascending order of energy, respectively. α and β are eigenfunctions
of the operator for the spin angular momentum in the z direction and their
eigenvalues are h̄

2 and − h̄2 , respectively. The two spin-dependent wavefunctions40

are expressed as:

ψ
(α,β)
~k,j

(~r) =
1√
NV

∑
u

c
(α,β)
~k,j

(~Gu) exp[i(~k + ~Gu) · ~r], (3)

where N and V are the number of unit cells and the unit cell volume, re-

spectively, and ~Gu and c
(α,β)
j (~Gu) are the u-th reciprocal lattice vector and a

coefficient, respectively.
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To identify the IR of the wave functions which have the q-th degeneracy, we45

evaluate the following expression:

Qγ =
1

l

p+q−1∑
j=p

∑
m

χγ(Ĉm)∗
〈

Ψj
~k
| Ĉm | Ψj

~k

〉
, (4)

where l and χγ(Ĉm) are the order of the group and the character of IR γ,
respectively, and m runs over the symmetry operations of the k group. If the
condition of Qγ = 1 (Qγ = 0) is satisfied, the wave functions belong (do not
belong) to the γ-th IR. By combining Eqs. (2) - (4), we obtain:

Qγ =
1

l

p+q−1∑
j=p

∑
m

∑
u

χγ(Ĉm)∗
[
cα~k,j(Ĉm

~Gu − ~G′m)∗(Dm
11c

α
~k,j

(~Gu) +Dm
12c

β
~k,j

(~Gu))+

cβ~k,j
(Ĉm ~Gu − ~G′m)∗(Dm

21c
α
~k,j

(~Gu) +Dm
22c

β
~k,j

(~Gu))
]
, (5)

where the reciprocal lattice vector ~G′m satisfies Ĉm~k = ~k − ~G′m (~G′m = 0 when
the k-point is located inside the first Brillouin zone (FBZ)). The matrix Dm

represents the rotation (Ĉm) for spin functions, α and β:

[
Dm

11 Dm
12

Dm
21 Dm

22

]
=

[
cos(θm/2)− ivm sin(θm/2) −i(λm − iµm) sin(θm/2)
−i(λm + iµm) sin(θm/2) cos(θm/2) + ivm sin(θm/2)

]
,

(6)
where θm is the rotation angle around the axis whose direction cosine is (λm,50

µm, vm) [24].
We implement the above algorithm in the first-principles calculation code

PHASE/0[25]. The present method is applied to plane-wave base calculational
methods, i.e, the ultrasoft pseudopotential[26] and projector augmented wave
(PAW) methods[27] as well as the norm-conserving pseudopotential method[28].55

In the cases of the former two methods, we apply Eq. (4) to the soft (plane-
wave) part after the part is normalized. In this paper, we use Bethe[29] and
Mulliken[30, 31] symbols to represent IR. In the case of Mulliken symbols for
the double group, we use a notation of a reference[32]. We use character tables
presented in a text book[24].60

We carry out density functional theory (DFT) band structure calculations
based on the generalized gradient approximation[33]. The slab models are used
to simulate two-dimensional materials; a vacuum space of 30Å is introduced to
avoid the interlayer interaction. The k-point mesh is 16×16×1. We use norm-
conserving[28] or ultrasoft pseudopotentials[26] for non-SOC calculations and65

PAW method[27] for SOC calculations.

3. Results and discussion

3.1. Geometry optimization

We define the unit cell as shown in Fig. 1(a) and the FBZ is shown in Fig.
1(b). We optimize the lattice constant and internal coordinates by performing70
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DFT calculations without SOC (Table I) and find that graphene forms a planar
structure and silicene, germanene, and stanene form buckled structures. As a
result, graphene and the other group-IV materials belong to P6/mmm (D1

6h) and
P3m1 (D3

3d), respectively. The optimized lattice constant (a) and the buckling
height (h) are comparable with those in previous calculations[34].75

3.2. Graphene

We first study graphene by carrying out non-SOC calculation (Fig.2(a)).
The Dirac point is located at the K point whose point group is D3h. The two
wavefunctions belong to a two-dimensional representation E′′ (K6) and thus the
two wavefunctions have the identical energy[16].80

When the SOC is included in band structure calculations, the E′′ (K6) level
splits into the E1/2 (K7) and E3/2 (K9) levels according to the direct product:

E′′ (K6)⊗ E1/2 (K7) = E1/2 (K7)⊕ E3/2 (K9), (7)

where E1/2 (K7) on the left-hand side is the IR of the spin function. We find
that the E3/2 (K9) level is lower than the E1/2 (K7) level and is occupied by
two electrons (Fig. 2(b)). Because of this energy split, the system becomes85

an insulator. The energy split is very small and is less than 1 meV, which is
consistent with past theoretical results[11, 12, 34, 35].

We next consider the Γ point whose point group is D6h. The highest occupied
level calculated from non-SOC calculations is E2g (Γ+

6 ) and the SOC splits it
into E5/2g (Γ+

9 ) and E3/2g (Γ+
8 ) levels according to the direct product:90

E2g (Γ+
6 )⊗ E1/2g (Γ+

7 ) = E5/2g (Γ+
9 )⊕ E3/2g (Γ+

8 ). (8)

The Γ+
9 level is found to be higher than that of the Γ+

8 level.
The k-point group on the T, T′ and Σ lines is C2v. All the bands on these

lines belong to (E1/2 (Γ5)). Therefore the bands do not cross on these lines (the
second and third bands at a k-point on the T line have very close energies as
Fig. 2(b) shows). On the other hand, bands belonging to different IR cross in95

the non-SOC calculations (Fig. 2(a)).

3.3. Tight binding model for graphene

As described in a previous subsection, the SOC splits the Dirac point into
E1/2 and E3/2 levels and the former is higher than the latter. The suffix of
E corresponds to the absolute value of the magnetic moment |mj | for the total100

angular momentum of the atomic spin-orbit wavefunction located at the original
point. Therefore, it might be surprising that the E3/2 level is higher than the
E1/2 level. Here, we discuss the reason for this energetical order based on a
tight binding model.

Previous studies indicated that d atomic orbitals mainly contribute to the105

energy split at the Dirac point[34, 36, 37]. We consider the Bloch wavefunctions
consisting of the atomic orbitals (pz, d1, d−1) for the A and B sublattices,
where d1 and d−1 include the spherical harmonics, Y 1

2 and Y −1
2 , respectively,
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i.e., d1 = − 1√
2
(dzx + idyz) and d−1 = 1√

2
(dzx − idyz). According to Slater and

Koster[38], two center integrals are given by Ez,zx = lVpdπ and Ez,yz = mVpdπ110

for the direction cosine (l, m, 0). We here consider the Dirac electrons at the
K′ point (k = 2π

a ( 2
3 , 0)). We obtain the hamiltonian matrix as: Ep −3(iVpdπ)ε∗/

√
2 0

3(iVpdπ)ε/
√

2 Ed 0
0 0 Ed

 , (9)

for the basis subset A (PAz , D
B
1 , D

B
−1), and Ep 0 3(iVpdπ)ε/

√
2

0 Ed 0

−3(iVpdπ)ε∗/
√

2 0 Ed

 , (10)

for the basis subset B (PBz , D
A
1 , D

A
−1), where P

A(B)
z , D

A(B)
1 , and D

A(B)
−1 are the

Bloch wavefunctions including atomic orbitals of p
A(B)
z , d

A(B)
1 and d

A(B)
−1 orbitals115

at the A (B) site, respectively. We define ε = exp(2πi/3). For example, PAz is
given by:

PAz (r) =
1√
N

N∑
n=1

exp(i~k · ~Rn)pAz (r − ~Rn), (11)

where N and Rn are the number of the unit cell and the n-th lattice vector,
respectively. All the matrix elements between the two wavefunctions belonging
to different subsets are zero.120

By using the second order perturbation theory, we obtain the energy at the
Dirac cone as:

E = Ep −
9V 2

pdπ/2

Ed − Ep
, (12)

where Ep and Ed are the energies of the p and d-orbitals, respectively. The
wavefunctions are given by:

Ψ1 = PAz −
[
3(iVpdπ)ε/

√
2
]
DB

1 /(Ed − Ep), (13)

and125

Ψ−1 = PBz +
[
3(iVpdπ)ε∗/

√
2
]
DA
−1/(Ed − Ep). (14)

These two wavefunctions belong to the E′′ representation in the D3h symmetry.
We next consider the SOC by adding the perturbation to the Hamiltonian

without non-spin orbit interaction. We introduce the atomic matrix elements
< m1m1/2 | λl̂z ŝz | m1m1/2 > whose absolute value is ζd, where m1 and m1/2

represent the magnetic quantum numbers of the d orbital (1 or -1) and spin130

function (1/2 or -1/2). l̂z (ŝz) is the operators for the z component of the
orbital (spin) angular momentum and λ is a positive constant. These matrix
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elements are considered to mainly contribute to the energy split of the Dirac
cone. The amount of the split is approximately evaluated as:

∆ESO ≈ 9V 2
pdπ

ζd
(Ed − Ep)2

. (15)

Ψ1(r)α and Ψ−1(r)β have higher energies than Ψ1(r)β and Ψ−1(r)α because135

the absolute values of the magnetic quantum numbers dB1 α and dA−1β (|mj | =
3/2) are larger than those of dB1 β and dA−1α (|mj | = 1/2). Here, we confirm that
the Bloch wavefunctions, Ψ1(r)α and Ψ−1(r)β, belong to E1/2 in spite of the
fact that |mj | of the atomic orbitals, dB1 α and dA−1β, are 3/2. We also confirm
that Ψ1(r)β and Ψ−1(r)α belong to E3/2 though |mj | of dB1 β and dA−1α are 1/2.140

Here, we confirm that the former two wavefunctions corresponding to |mj | =
3/2 belong to E1/2 and the latter two wavefunctions corresponding to |mj | = 1/2
belong to E3/2.

We find that145

Ĉ3(Ψ1β,Ψ−1α) = (Ψ1β,Ψ−1α)

[
−1 0
0 −1

]
(16)

and

Ĉ3(Ψ1α,Ψ−1β) = (Ψ1α,Ψ−1β)

[
exp(iπ/3) 0

0 exp(−iπ/3)

]
. (17)

Therefore, the characters for the first two and latter two wavefunctions are -2
and -1, respectively, which is consistent with the fact that the former and latter
basis sets belong to E3/2 and E1/2, respectively.

We discuss some details concerning Eqs. (16) and (17). The Bloch functions150

exemplified by Eq. (11) consist of exp(i~k · ~R) and spin-orbit wavefunction. The
rotation of 2π/3 around the z axis passing through the atomic site transforms
spin-orbit wavefunctions φmj

into (ε∗)mjφmj
where the mj is the magnetic

quantum number. When the rotation of 2π/3 around the z axis passing through
the original point in the periodic system, Ĉ3, operates Bloch function, the term155

exp(i~k · ~R) in the Bloch function gets the factor of (ε∗)−1 and ε∗ for the A and B
sites, respectively, as Fig. 3 shows. Therefore, PAz α and DB

1 α correspond to the
states of mj = −1/2 and mj = 5/2, respectively, i.e., Ĉ3P

A
z α = (ε∗)−1/2PAz α

and Ĉ3D
B
1 α = (ε∗)5/2DB

1 α. Since mj and mj±3 give the same value of (ε∗)mj ,
mj = −1/2 and mj = 5/2 give the same value. As a result, Ψ1(r)α corresponds160

to the state of mj = −1/2, i.e., Ĉ3Ψ1(r)α = (ε∗)−1/2Ψ1(r)α. In a similar way,

we find that Ĉ3Ψ−1β = (ε∗)1/2Ψ−1β. The above results are consistent with the
fact that Ψ1α and Ψ−1β belong to E1/2[39].

In a similar way to the above, we find that Ĉ3P
A
z β = (ε∗)−3/2PAz β, Ĉ3D

B
1 β =

(ε∗)3/2DB
1 β, Ĉ3P

B
z α = (ε∗)3/2PBz α and Ĉ3D

A
−1α = (ε∗)−3/2DA

−1α. Since165

(ε∗)3/2 = (ε∗)−3/2 = −1, we conclude that Ĉ3Ψ1β = −Ĉ3Ψ1β and Ĉ3Ψ−1α =
−Ĉ3Ψ−1α. These results are consistent with the fact that the two functions
belong to E3/2.
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As mentioned above, the term exp(i~k · ~Rn) in the Bloch functions affects
the identification of IR of Bloch functions, which leads to the fact that the E3/2170

level is lower than the E1/2 level. In the case of the Γ point, exp(i~k · ~Rn) does

not affect the identification since exp(i~k · ~Rn) = 1.

3.4. Silicene, germanene and stanene

We find that the buckled structure is the most stable in the cases of silicene,
germanene, and stanene. The Dirac point is located at the K point whose175

point group is D3 which is lower than D3h in the case of graphene. The two
wavefunctions belong to a two-dimensional representation E and thus the two
wavefunctions have the identical energy as Fig. 4 shows.

When the SOC is included in band calculations (Fig. 4), the E (K3) level
splits the level according to the direct product:180

E (K3)⊗ E1/2 (K6) = e3/2(1) (K4)⊕ e3/2(2) (K5)⊕ E1/2 (K6), (18)

where K5 and K4 are one-dimensional representation and the two levels have the
same energy due to the time-reversal symmetry. Although these two representa-
tions are one-dimensional, they are represented by E3/2 in the Mulliken symbols.
Therefore, to avoid ambiguity, we introduce symbols e3/2(1) and e3/2(2) to rep-
resent K4 and K5, respectively.185

We find that the K6 level is higher than the K5 and K4 levels and K5 and
K4 are occupied by electrons. Because of this energy split, the system becomes
an insulator. The energy split becomes large as the atom becomes heavy (2
meV, 40 meV and 135 meV for silicene, germanene and stanene, respectively).
This chemical trend is consistent with past theoretical results[34, 40, 41]. The190

calculated SOC band gaps of the group-IV materials are tabulated in Table 1.
The valence band top is located at the K point except for stanene where the
top is located at the Γ point. The conduction band bottom is located at the K
point for all the materials.

We next study the Γ point whose point group is D3d. The highest occupied195

level calculated from non-SOC calculations is Eg (Γ+
3 ) and the SOC splits it

into e3/2g(1) (Γ+
4 ), e3/2g(2) (Γ+

5 ) and E1/2g (Γ+
6 ) levels according to the direct

product:

Eg (Γ+
3 )⊗ E1/2g (Γ+

6 ) = e3/2g(1) (Γ+
4 )⊕ e3/2g(2) (Γ+

5 )⊕ E1/2g (Γ+
6 ), (19)

where Γ+
4 and Γ+

5 have the same energy. We find that the Γ+
6 level is lower than

the Γ+
4 and Γ+

5 levels. In the Mulliken notation, E3/2g is assigned to the one-200

dimensional IR, Γ+
4 and Γ+

5 . Therefore, we introduce the notation of e2/3g(1)

and e2/3g(2) to represent Γ+
4 and Γ+

5 , respectively.
The k-point group on the T and T′ (Σ) lines is C2 (Cs). In these cases, each

pair of bands have the same energy and belong to Γ3 and Γ4. These pairing of
the bands is due to the time-reversal symmetry. The different degenerate bands205

do not cross each other. In the case of non-SOC calculations, A or B (A′ or
A′′) are assigned to the bands on the T and T′ (Σ) lines and the two bands
belonging to A and B (A′ and A′′) cross.
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3.5. Z2 invariant

We calculate the Z2 invariants v of the present systems having the inversion210

symmetry[42]:

(−1)v =
∏
i

δi, (20)

where i runs over the time-reversal invariant momenta, namely Γ and three M
points. δi is given by:

δi =

Nocc./2∏
c=1

ξ2c(~ki), (21)

where ξ2c(~ki) is the parity of the 2c-th band at the point ~ki and Nocc. is the
number of the occupied bands. When v = 1, the system is identified as a215

topological insulator.
Table 2 presents results of the analysis. In the Bethe symbols, + and -

correspond to the parities of even and odd, respectively, whereas g and u in
Mulliken symbols correspond to even and odd, respectively.

Two levels in every Kramers pair at the Γ and M points have the same220

energy and the same parity: ξ2c(~ki) = ξ2c−1(~ki). We here confirm the same
parity by analyzing IR. In the case of the planar structure, every Kramers pair
belongs to two-dimensional IR and has the same parity (Table 2). On the other
hand, some Kramers pairs belong to different one-dimensional IR in the case of
buckled structures. For example, every pair at the M point belongs to M+

1 and225

M+
2 or to M−1 and M−2 [43]. Every pair is found to have the same parity. As

mentioned in a previous subsection 3.4, we also find that the highest occupied
levels at the Γ point are paired (Γ+

4 and Γ+
5 are paired) and every Kramers pair

has the same parity.
In all systems, δi are -1 and +1 at the Γ and M points, respectively. As a230

result, v = 1, indicating that the systems are topological insulators[44]. The
present analysis of topological invariants is possible for two and three dimen-
sional materials having the inversion symmetry.

4. Conclusions

We propose a method that identifies IR of the SOC wavefunctions by using235

computers and apply it to analyze band structures of group-IV two-dimensional
systems. The Dirac cone of planar and buckled structures belong to the two-
dimensional IR, E′′ and E, respectively. The SOC splits them into E1/2 (K7) and
E3/2 (K9) in the case of planar structure. We discuss why the E3/2 level is lower

than the E1/2 level by using a tight binding model and find that exp(i~k · ~Rn)240

in the Bloch function affects the identification of IR. In the case of buckled
structures, the SOC splits Dirac cone into the higher level of E1/2 (K6) and
lower two levels of e3/2(1) (K4) and e3/2(2) (K5). The latter two levels have the
same energy because of the time-reversal symmetry. We confirm that the Z2

invariants are 1 for all the systems.245
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Table 1: Optimize lattice constant (a) and buckling height (h) and SOC band gap.

Material a (Å) h (Å) Band gap (meV)
Graphene 2.48 - 0.5
Silicene 3.83 0.45 2

Germanene 4.06 0.64 40
Stanene 4.68 0.83 65

Table 2: Analysis of Z2 invariant. ξ represents the parity and δ is defined in Eq. (21). The
band number in the ascending order of energy corresponds to c in Eq. (21).

System k-point
Band

number
IR ξ δ

Planar
structure

Γ (D6h)

4 E5/2g (Γ+
9 ) +1

-1
3 E3/2g (Γ+

8 ) +1
2 E1/2u (Γ−7 ) -1
1 E1/2g (Γ+

7 ) +1

M (D2h)

4 E1/2g (M+
5 ) +1

+1
3 E1/2u (M−5 ) -1
2 E1/2g (M+

5 ) +1
1 E1/2u (M−5 ) -1

Buckled
structure

Γ (D3d)

4 e3/2g(1)(2) (Γ+
4 Γ+

5 ) +1

-1
3 E1/2g (Γ+

6 ) +1
2 E1/2u (Γ−6 ) -1
1 E1/2g (Γ+

6 ) +1

M (C2h)

4 e1/2g(1)(2) (M+
1 M+

2 ) +1

+1
3 e1/2u(1)(2) (M−1 M−2 ) -1
2 e1/2g(1)(2) (M+

1 M+
2 ) +1

1 e1/2u(1)(2) (M−1 M−2 ) -1
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Figure 1: Top view of unit cell where red and yellow circles indicate the A and B sublattices,
respectively (a) and FBZ (b). Periodic lattice vectors (primitive reciprocal lattice vectors) are

denoted as ~a1 and ~a2 (~b1 and ~b2).
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Figure 2: Band structure of graphene calculated from the non-SOC (a) and SOC (b) calcu-
lations. The energies are measured from the valence band top energy. In (b), the natural
number and the sign (+ and -) indicates the number in the Bethe symbol and the parity,
respectively.
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B

ε

Figure 3: The values of the term exp(i~k · ~R) for each cell. The green circle arrow indicates
the rotation of 2π

3
around the green dot. This rotation transforms the A and B sublattices as

indicated by orange and yellow arrows, respectively.
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Figure 4: Band structures of silicene (the upper row), germanene (the middle row) and stanene
(the lower row). The structures are obtained from non-SOC (the left-hand side) and SOC (the
right-hand side) calculations. The energies are measured from the valence band top energy.
On the right hand side, the natural number and the sign (+ and -) indicates the number in
the Bethe symbol and the parity, respectively.
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