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We study band structures of group-V two-dimensional materials, i.e. phosphorene and bismuthene, by carrying out first-principles calculations
including spin–orbit coupling (SOC). We propose a method to identify irreducible representations (IR) of both symmorphic and nonsymmorphic
systems. We find for the α structures that all the non-SOC bands are doubly degenerated on the first Brillouin zone edge due to sticking or pairing
of bands and that the SOC slightly splits the bands in most of the cases. We evaluate Z2 invariants based on identified IR. We find that the Z2

invariant of 1 in the case of β bismuthene is due to the strong SOC that reverses the highest occupied and the lowest unoccupied bands at the Γ

point. © 2022 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP Publishing Ltd

1. Introduction

Group-V two-dimensional materials have been attracting
scientific interest for over the past decade. Whereas electronic
structures of group-IV two-dimensional materials are charac-
terized by the Dirac cone,1–3) group-V two-dimensional
materials are semiconductors and are suitable for applications
to thermoelectrics, spintronics and optoelectronics devices.4–8)

It was found for ultrathin Bi films on the Si (111) surface
that films form puckered (α) structures when the thickness is
very small and the six-member ring (β) structure becomes
stable when the thickness becomes large.9–11) Since Bi is a
heavy atom, the spin–orbit coupling (SOC) greatly affects the
electronic structures of the films which are now called
bismuthene. For example, the Rashba effect and the possi-
bility of the topological insulators have been studied.12–17)

The SOC also affects the thermoelectric effect.6)

A theoretical study on phosphorene predicted that the
band gap decreases and becomes close to that of the black
phosphorous as thickness increases.18) Later, phosphorene
was really achieved experimentally and it was confirmed
that the band gap is higher than that of the black phos-
phorous; the band gaps are in the range from 0.3 eV to
2.0 eV.19–22) Optical and electronic properties, in particular,
attract scientific interests. Furthermore, the possibility of a
Dirac metal and a topological insulator for bilayers was
discussed.23,24)

To deeply understand electronic structures, we need to
analyze band structures based on the group theory. Since the
SOC plays an important role in the spintronics application of
group-V two-dimensional materials, it is necessary to clarify
the IR of bands based on the double group theory. However,
little is known about IR for these materials.
In this paper, we study α and β structures of phosphorene

and bismuthene and identify IR of bands calculated from the
first-principles method. Since α structures are nonsymmorphic,
we study the sticking of the non-SOC bands and the split of
the stuck bands due to the SOC. We also analyze the pairing of
bands induced by the time-reversal symmetry. We evaluate Z2

invariants in the systems having inversion symmetry based on
the analysis of identified IR.

2. Method

The function of identifying IR was implemented in some
first-principles codes.25–29) We also reported methods for the
non-SOC calculations30–34) and for the SOC calculations on
symmorphic systems.35) We here report the method for
nonsymmorphic systems.
The two-component spinor Bloch wavefunction is expressed

as:
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where k is the wavevector in the first Brillouin zone and n is
the band index in the ascending order of energy. The two
spin-dependent wavefunctions are given by:
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where N is the number of unit cells and V is the unit cell
volume. Gu and ( )a bcn (Gu) are the u-th reciprocal lattice
vector and a coefficient, respectively.
We evaluate the following expression to identify the IR of

the Bloch wave functions which have the b-th degeneracy:
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where l is the order of the group and ( ˆ )cg Rj is the character of IR
γ. j runs over the symmetry operations, R̂j, of the k-group, which
are represented by Seitz notation, ˆ { ˆ ∣ }t= QRj j j , where Q̂j and
τj represent rotation and fractional translation, respectively.
When Qγ= 1 (Qγ= 0), the wave functions belong (do not
belong) to the γ-th IR.
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By combining Eqs. (1)–(3), we get:
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where the reciprocal lattice vector ¢Gj satisfies
Q = - ¢^ k k Gj j ( ¢ =G 0j when the k-point is located inside
the first Brillouin zone). In the above expression, we
introduce the ray representation whose character is given by:

( ˆ ) ( ˆ ) ( · ) ( )tc=g gX R R ikexp . 5j j j

Hereafter we simply call this ray representation IR. The
matrix Mj represents the rotation (R̂j) for spin functions, α
and β:
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where jj is the rotation angle around the axis whose direction
cosine is (λj, μj, vj).

36)

We apply the above mentioned method to plane-wave base
calculations, i.e. the ultrasoft pseudopotential37) and projector
augmented wave (PAW) calculations.38) We apply Eq. (4) to
the soft (plane-wave) part after the part is normalized. Since
the soft part itself belongs to IR, the calculated Qγ in Eq. (4)
is close to an integer value (0 or 1).
Density functional theory (DFT) band structure calcula-

tions are carried out based on the generalized gradient
approximation.39) First-principles calculation code
PHASE/040) is used for these calculations. Ultrasoft and
PAW methods are applied to non-SOC and SOC calcula-
tions. We use slab models to simulate two-dimensional
materials; a vacuum space around 20Å in the z direction is
introduced to avoid interaction between interlayers. The
k-point mesh is 30× 30× 1 for both structures.

3. Results and discussion

3.1. Geometry optimization
The unit cell of α and β structures are defined in Fig. 1 and
the first Brillouin zone is shown in Fig. 2. We consider the
two cases for the α structures, i.e. buckled and non-buckled
structures. The former and latter belong to ( )Pmn C2 v1 2

7 and
(Pmna D h2

7 ), respectively.30)

The β structure belongs to ( )P m D3 1 d3
3 , which is the same

as the space group of buckled group-IV two-dimensional
materials.32) The non-buckled α structure and β one have the
inversion symmetry and we locate the origin at the inversion
symmetry point as shown in Fig. 1.
We optimize the lattice constants and atomic positions of α

and β structures by using DFT calculations (Table I). The
bond lengths and bond angles of phosphorene obtained from
SOC calculations are close to those from non-SOC calcula-
tions. The bond lengths and bond angles are found to vary
within 0.001Å and 0.1◦. On the other hand, there is a small

difference between the geometries optimized from non-SOC
and SOC calculations for bismuthene. The bond lengths and
bond angles vary within 0.06Å and 0.3◦ (Table I).
α phosphorene and α bismuthene are found to form non-

buckled and buckled structures, respectively. The buckling
height of bismuthene is evaluated as 0.52Å by using the SOC
calculation. This buckling is due to electron transfer from the
high-position atom to the low-position atom.6,18,30) The low-
position atom has slightly higher partial density of states
(PDOS) than the high-position atom for the occupied band
near the Fermi energy and vice versa for the unoccupied band
near the Fermi energy. These results indicate the electron
transfer from the high position atom to the low position atom
[Figs. 3(a) and 3(b)].
3.2. Group theoretical analysis of α and β structures
The IR for the k point groups are well established and we use
Bethe41) and Mulliken symbols42,43) to represent the IR. We
call these IR conventional IR in this paper. In the case of
Mulliken symbols for the double group, we use notations of a

(a) (b)

(d) (e)

(c)

Fig. 1. (Color online) Atomic structures. Top views of the (a) α and
(b) β structures and side views of the (c) non-buckled α, (d) buckled α, and
(e) β structures are presented. The original points are located at the inversion
symmetry points. The original points are located at the inversion symmetry
points. The original point of the α structure is located at the bond center
which is indicated by the purple point in (c) whereas the original point of the
β structure is located at the center of the six-member ring as shown in (b).

(a) (b)

Fig. 2. (Color online) Brillouin zone of the (a) α and (b) β structures.

a1

and

a2 are the primitive reciprocal lattice vectors.
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reference.44) The symbols used in this study are the same as
those in a textbook.36)

It is well known that the IR are different from the above-
mentioned conventional ones on some or all of the first
Brillouin zone edge (FBZE) in nonsymorphic systems.36) We
call these IR unconventional IR in this paper. We introduce
overlines for the unconventional IR symbols to distinguish
them from the conventional Bethe symbols (Table II). As
explained later, the unconventional IR induces sticking of
non-SOC bands and the SOC splits the bands in most cases.
A pair of bands belonging to different IR have the same

energy in some cases. This pairing due to time-reversal
symmetry is identified by evaluating the Herring sum34,45)

(see Table III).
3.2.1. α structures. We first study α phosphorene by
carrying out non-SOC calculations. The IR of the bands at
the k-points except for the FBZE (X-S-Y lines) are conven-
tional and these IR are represented by Mulliken symbols in
Fig. 4(a). These bands belong to one-dimensional IR and are
not energetically degenerated. On the other hand, all the
bands are degenerated on the FBZE. This degeneracy
originates from the sticking of two bands, which is intrinsic
to FBZE in nonsymmorphic systems: The stuck two bands
belong to two-dimensional IR which are different from
conventional IR.30,31) The character tables for these uncon-
ventional IR have been reported in a previous paper30) and

these unconventional IR are represented by overlined num-
bers in the band figure in Fig. 4(a).
We now study the SOC band structure of α phosphorene

[Fig. 4(b)]. Since this system has the inversion symmetry,
all the bands are degenerated due to time-reversal sym-
metry, i.e. Kramers pairing occurs. We find that the stuck
(doubly degenerated) bands on the FBZE in the non-SOC
calculation split into two Kramers pairs on the D-S-C line
[Fig. 4(b)]. On this line, SOC four bands belong to different one-
dimensional unconventional IR and two of the four are paired
due to the time-reversal symmetry. For example, the four bands
at the S points belong to S1 ,

S2 ,
S3 and S4 and the S1 ( S3 ) and

S2 ( S4 ) are paired as Table III shows (The overline notation (
Sn )

is used to represent unconventional IR as explained in the
previous Sect. 3.2 and the characters are tabulated in
Table II).
The above-mentioned splits of the SOC bands on the

D-S-C line are found to be very small. The split of the highest
occupied band has the maximum at the S point and the
maximum value is 22 meV, which is close to those in
previous calculations.46,47)

The SOC does not split the bands at the X and Y points,
i.e. four bands have the same energy. At the X (Y) points,
two Kramers pairs belonging to different unconventional
two-dimensional IR, X1 and X2 (Y1 and Y2), have the same
energy due to the time-reversal symmetry (Table III).

Table I. Calculated α and β structures. The lattice constants (a1 and a2), bond lengths (r1 and r2), buckling height (h) and bond angles (θ1 and θ2) are defined
in Fig. 1. The units of the bond angles are degrees. The results of non-SOC calculations are in the parentheses.

Systems a1 (Å) a2 (Å) r1 (Å) r2 (Å) h (Å) θ1 θ2

α phosphorene 4.52 3.38 2.24 2.25 — 102.8 —

(4.52) (3.38) (2.24) (2.25) — (102.8) —

β phosphorene 3.27 — 2.26 — 1.24 92.8 —

(3.27) — (2.26) — (1.24) (92.6) —

α bismuthene 4.84 4.49 3.08 3.04 0.52 84.9 104.6
(4.88) (4.41) (3.07) (2.98) (0.54) (84.8) (104.9)

β bismuthene 4.30 — 3.03 — 1.72 90.3 —

(4.26) — (3.02) — (1.72) (89.8) —

Fig. 3. (Color online) PDOS of (a) high-position and (b) low-position atoms in buckled α bismuthene calculated by including the SOC. The energy is
measured from the valence band top.
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We here carry out non-SOC calculation on α bismuthene
[Fig. 4(c)]. All the bands at the whole FBZE are doubly
degenerated. The degeneracy on the S-Y line is due to the
sticking as in the case of α phosphorene. On the other hand,
the bands on the X-D line belong to one-dimensional
conventional IR and two IR are paired due to the time-
reversal symmetry.
We next carry out SOC calculation [Fig. 4(d)]. This system

does not have inversion symmetry in sharp contrast with
phosphorene, which has the inversion symmetry leading to
the Kramers pairing at all k-points.
We find that the non-SOC stuck bands on the C line split

into four bands having different energies and belong to
unconventional one-dimensional IR, C1, C2, C3 and C4

(Table II). On the other hand, the non-SOC stuck bands at
the S and Y points split into two doubly degenerated bands
because two of the four bands belong to two different
unconventional one-dimensional IR which are paired
(Table III).

The SOC splits the non-SOC paired bands on the X-D line
into two groups, each of which consists of doubly-degener-
ated bands. The degeneracy for each group on the D line is
due to the pairing, i.e. two different one-dimensional IR
e1/2(1) (D3) and e1/2(2) (D4) are paired (since the original
Mulliken symbols E1/2 corresponds to two one-dimensional
IR, D3 and D4, we introduce the symbols, e1/2(1) and e1/2(2),
to represent D3 and D4, respectively). On the other hand, the
SOC doubly degenerated bands at the X point belong to two-
dimensional conventional IR, E1/2 (X5).
Overall the splits of the SOC bands are larger than those in

phosphorene. For example, the split at the S point (242 meV)
is larger than the value in phosphorene (22 meV).
The bands in α bismuthene are doubly degenerated at the

Γ point which is a time-reversal-invariant momenta (TRIM).
It is well known that the bands split around the Γ point in
general when the system does not have the inversion
symmetry. Indeed, we find band splits overall around the Γ

point but the Σ line is the exception. Since the Σ line belongs
to the high symmetry group C2v, all the bands belong to the
two-dimensional representation E1/2(Σ5).
We tentatively perform a band structure calculation for the

non-buckled bismuthene which has a higher energy than the
buckled bismuthene (Fig. 5). We optimize the non-buckled
structure by using the unit cell which is the same as that of the
buckled structure in Table I and find that the band gap (60 meV)
is smaller than that (140 meV) of the buckled structure. The
space group belongs to the same that of α phosphorene and all
the SOC bands are doubly degenerated due to Kramers pairs
since the system has the inversion symmetry.
3.2.2. β structures. We carry out non-SOC calculations
on β phosphorene [Fig. 6(a)]. The bands belong to one-
dimensional IR except for the bands at the Γ and K points
whose symmetry groups are D3d and D3, respectively. Since
the symmetries are high at these two k-points, the symmetry
groups include two-dimensional IR (E, Eg and Eu) which
induce doubly degenerated bands. The highest occupied and
the lowest unoccupied bands at the Γ point belong to Eg and
A2u, respectively.

Table II. Character table of the unconventional IR for SOC bands of the α structures. The following symmetry operations are presented; E = {E∣0},
C2x = {C2x∣τ}, C2y = {C2y∣0}, C2z = {C2z∣τ}, I = {I∣0}, σyz = {σyz∣τ}, σxz = {σxz∣0}, and σxy = {σxy∣τ}, where t = +a a1

2 1
1

2 2. a1 and a2 are primitive lattice

vectors defined in Fig. 2.

Non-buckled Buckled

k-point IR E C2x C2y C2z I σyz σxz σxy k-point IR E C2x σxz σxy

X (D2h) X1 2 0 −2i 0 0 0 0 0 S (C2v) S1 1 1 −i −i
X2 2 0 2i 0 0 0 0 0 S2 1 1 i i

D (C2v) D1 1 −i 1 −i S3 1 −1 −i i
D2 1 −i −1 i S4 1 −1 i −i
D3 1 i 1 i Y (C2v) Y1 1 1 −i −i
D4 1 i −1 −i Y2 1 1 i i

S (D2h)
+S1 1 1 −i −i 1 1 −i −i Y3 1 −1 −i i
-S1 1 1 −i −i −1 −1 i i Y4 1 −1 i −i
+S2 1 1 i i 1 1 i i Non-buckled, Buckled
-S2 1 1 i i −1 −1 −i −i k-point IR E C2x σxz σxy
+S3 1 −1 −i i 1 −1 −i i C (C2v) C1 1 1 −i −i
-S3 1 −1 −i i −1 1 i −i C2 1 1 i i
+S4 1 −1 i −i 1 −1 i −i C3 1 −1 −i i
-S4 1 −1 i −i −1 1 −i i C4 1 −1 i −i

Y (D2h) Y1 2 0 0 0 0 0 −2i 0
Y2 2 0 0 0 0 0 2i 0

Table III. Pairing of SOC bands due to the time-reversal symmetry in the
cases of α and β structures, which is checked by evaluating the Herring sum.

System k-point Pairing

α X (D2h) X1 X2

(non-buckled) D (C2v) D1 D ;3 D2 D4

S (D2h)
+S1

+S ;2
+S3

+S4
-S1

-S ;2
-S3

-S4

C (C2v) C1 C ;2 C3 C4

Y (D2h) Y1 Y2

Z′ (Cs) e1/2(1) (Z′3) e1/2(2) (Z′4)
α D (Cs) e1/2(1) (D3) e1/2(2) (D4)
(buckled) S (D2h) S1 S ;2 S3 S4

Y (D2h) Y1 Y ;4 Y2 Y3

β Γ (D3d) e3/2g(1) (G+
4 ) e3/2g(2) (G

+
5 )

e3/2u(1) (G-
4 ) e3/2u(1) (G

-
5 )

K (D3) e3/2(1) (K4) e3/2(2) (K5)
M (C2h) e1/2g(1) (M

+
3) e1/2g(2) (M

+
4)

e1/2u(1) (M
−
3) e1/2u(2) (M

−
4)

Σ (Cs) e1/2(1) (Σ3) e1/2(2) (Σ4)
T (C2) e1/2(1) (T3) e1/2(2) (T4)
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(a) (b)

(c) (d)

Fig. 4. (Color online) Non-SOC and SOC band structures in the cases of α phosphorene [(a) and (b)] and α bismuthene [(c) and (d)]. In the non-SOC bands,
the doubly degenerated unconventional IR are represented by overlined numbers and the conventional IR are represented by Mulliken symbols. In the SOC
bands, the conventional IR are represented by numbers which correspond to the subscripts of Bethe symbols. The unconventional IR are represented by
overlined numbers and their characters are shown in Table II. The superscript (±) indicates the parity. In the case of the phosphorene SOC band, for example, 5
on the Σ line and +1 at the S point correspond to Σ5 and

+S1 , respectively.

Fig. 5. (Color online) SOC band structure of non-buckled α bismuthene. The conventional IR are represented by numbers that correspond to the subscripts
of Bethe symbols. The unconventional IR are represented by overlined numbers and their characters are shown in Table II. The superscript (±) indicates the
parity.
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We next carry out SOC calculations on β phosphorene
[Fig. 6(b)]. Since the systems have the inversion symmetry,
all the bands are degenerated due to Kramers pairing. At the
Γ point, the valence band top belonging to Eg in the
non-SOC band splits according to the direct product that
E ( )G Ä+

g 3 ( )G+E g1 2 6 = ( )( )G Å+e 1g3 2 4 ( )( )G Å+e 2g3 2 5
( )G+E g1 2 6 , where ( )G+E g1 2 6 on the left-hand side is the IR

of the spin functions. The original Mulliken notation E3/2g

corresponds to two one-dimensional IR, G+
4 and G+

5 .
Therefore, we introduce the symbols of e3/2g(1) and e3/2g(2)
to represent G+

4 and G+
5 , respectively. The two bands

belonging to these IR are degenerated due to the pairing
originating from the time-reversal symmetry (Table III). On
the other hand, E1/2g(G+

6 ) is a two-dimensional IR. The
numbers in the subscripts of E in the Mulliken symbols
correspond to the magnetic quantum number of atomic spin–
orbit wavefunctions. Therefore, it is natural that the E1/2g

band is energetically lower than the e3/2g(1) and e3/2g(2)
bands since the atomic spin–orbit function having the lower
magnetic quantum number has lower energies.35) The non-
SOC conduction band bottom belonging to A2u corresponds
to the SOC band belonging to E1/2u according to the direct
product ( )G Ä-A u2 2 ( )G =+E Eg u1 2 6 1 2 (G-

6 ) as Fig. 6(c)
shows. We find for α phosphorene that the energy difference
between the e3/2g(1)(2) and E1/2g bands is very small (47
meV) because of a weak SOC. The energetical ascending
order is E1/2g, e3/2g(1)(2), and E1/2u [Fig. 6(c)].
The IR of the SOC band structure of β bismuthene are the

same as those of β phosphorene except for the Γ point
[Fig. 6(d)]. Since the SOC is strong in bismuthene, the split
of Eg band at the Γ point is 800 meV and is much larger than

that (47 meV) in phosphorene. As a result, the E1/2u band
originating from the non-SOC unoccupied A2u band has a
lower energy than the e3/2g(1) and e3/2g(2) bands originating
from the non-SOC occupied Eg band. Due to this inversion of
the energetical order, the highest occupied and the lowest
unoccupied bands at the Γ point belong to and E1/2u and
e3/2g(1)(2), respectively [Fig. 6(f)].
3.3. Z2 invariant
We evaluate the topological invariants for systems having the
inversion symmetry based on the group theoretical analysis.
The Z2 invariant v is given by:48–52)

( ) ( ) d- =1 , 7v

i
i

4

where i runs over the TRIM points. We calculate δi as
follows:

( ) ( )d x=
=

k . 8i
m

N

m i
1

2

2

occ.

Here, ξ2m(ki) is the parity of the 2m-th band at the point ki.
Nocc. is the number of the occupied bands. v= 1 indicates that
the system is a topological insulator.
We present ξ2m in Tables IV and V for each band. We can

judge the parity by analyzing Bethe (Mulliken) symbols
where + and - (g and u) represent the parities of even and
odd, respectively.
In the β structures, we consider the four TRIM points, Γ

and three M points.35,48) In the case of β phosphorene, we
find that the highest occupied bands at the Γ point are paired.
i.e. one-dimensional IR bands (e 3/2g(1) and e3/2g(2)) have the
same energy and have the same parity of even. The other

(a) (b) (c)

(d) (e) (f)

Fig. 6. (Color online) Non-SOC and SOC bands in the cases of β phosphorene [(a) and (b)] and β bismuthene [(d) and (e)]. Schematic views of the highest
occupied and the lowest unoccupied bands at the Γ point in the cases of (c) phosphorene and (f) bismuthene are presented. In the non-SOC bands, the
conventional IR are represented by Mulliken symbols. In the SOC bands, the conventional IR are represented by numbers which correspond to the subscripts of
the Bethe symbols. The superscript (±) indicates the parities. In the case of the phosphorene SOC band, for example, 6+ at the Γ point corresponds to G+

6 .
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occupied bands at the Γ point belong to two-dimensional
representations, i.e. E1/2g having the even parity or E1/2u

having the odd parity. On the other hand, all the occupied
bands at the M points belong to one-dimensional IR which
are paired (e1/2u(1) (M−

3) and e1/2u(2) (M−
4) or e1/2g(1)

(M+
3) and e1/2g(2) (M

+
4) are paired) as Table III shows. By

calculating Eqs. (7) and (8), we obtain that v= 0 and this
system is found to be a trivial insulator. This result is in
contrast to group-IV materials which are found to be
topological insulators.35)

The parities of bands in the case of β bismuthene are the
same as those of β phosphorene except for the highest
occupied band at the Γ point (Table IV). As a result, v= 1 in
the case of β bismuthene, which is consistent with the result
in the past studies.16,17,53) The highest occupied bands at the
Γ point belong to the two-dimensional IR of E1/2u and its

parity is odd in sharp contrast with the even parity in the case
of β phosphorene (Table IV). As we have mentioned (in
Sect. 3.2.2), the band of E1/2u originates from the lowest
unoccupied non-SOC band of A2u, which is due to the strong
SOC that reverses the highest occupied and the lowest
unoccupied bands (Fig. 6 (f)). Therefore, we conclude that
the Z2 invariant of 1 is due to the strong SOC in β

bismuthene.
We next analyze the Z2 invariants in the cases of non-

buckled structures of α phosphorene and α bismuthene.
Since both systems have the inversion symmetry, we can
estimate the invariants by using Eqs. (7) and (8). The four
TRIM points are Γ, X, S and Y points.54) Table V shows the
parities of all occupied bands at these TRIM points. We find
that the Kramers pairs at the Γ point belong to two-
dimensional IR whereas the Kramers pairs at the S points
belong to different one-dimensional IR having the same
parity (Table V).
At the X (Y) point, two Kramers pairs have the same energy

since the time-reversal symmetry causes the pairing of the
unconventional two-dimensional IR, X1 and X2 (Y1 and Y2)
(Table III). Since each two-dimensional IR includes the
opposite parity, the quadruply degenerated bands contribute
−1 to the product in Eq. (8). Therefore, based on the group
theory, we can evaluate Eq. (8) without carrying out first-
principles band calculations as for the X and Y points.
We find that v= 1 in the case of unbuckled bismuthene,

which is in sharp contrast with v= 0 in the case of
phosphorene and this result for the bismuthene is consistent
with that of past studies.54) However, it was reported that the
buckled structure which is the most stable for the free
standing system has the value of v= 0.17) The non-buckled
structure with v= 1 is expected to be achieved when some
substrates are used as was proposed in previous work.54)

4. Conclusions

We carry out DFT calculations of group-V two-dimensional
materials, phosphorene and bismuthene, and analyze the

Table IV. Analysis of Z2 invariants in the case of β structures. ξ represents
the parity of each band at a TRIM point in Eq. (8). The band number (N) in
the ascending order of energy corresponds to m in Eq. (8).

β phosphorene β bismuthene

k-point N IR ξ k-point N IR ξ

Γ (D3d) 5 e3/2g(1)(2) (G+
4 G+

5 ) +1 Γ (D3d) 5 E1/2u (G-
6 ) −1

4 E1/2g (G+
6 ) +1 4 E1/2g (G+

6 ) +1

3 E1/2g (G+
6 ) +1 3 E1/2g (G+

6 ) +1

2 E1/2u (G-
6 ) −1 2 E1/2u (G-

6 ) −1

1 E1/2g (G+
6 ) +1 1 E1/2g (G+

6 ) +1

M (C2h) 5 e1/2u(1)(2) (M
−
3

-M4 ) −1 M (C2h) 5 e1/2u(1)(2)
(M−

3
-M4 )

−1

4 e 1/2u(1)(2) (M
−
3

-M4 ) −1 4 e 1/2u(1)(2)
(M−

3
-M4 )

−1

3 e1/2g(1)(2) (M
+
3

+M4 ) +1 3 e1/2g(1)(2)
(M+

3
+M4 )

+1

2 e1/2g(1)(2) (M
+
3

+M4 ) +1 2 e1/2g(1)(2)
(M+

3
+M4 )

+1

1 e1/2u(1)(2) (M
−
3

-M4 ) −1 1 e1/2u(1)(2)
(M−

3
-M4 )

−1

Table V. Analysis of Z2 invariants in the case of non-buckled α structures. ξ represents the parity of each band at a TRIM point in Eq. (8). The band number
(N) in the ascending order of energy corresponds to m in Eq. (8).

α phosphorene α bismuthene

Γ (D2h) S (D2h) Γ (D2h) S (D2h)

N IR ξ IR ξ IR ξ IR ξ

10 E1/2g (G+
5 ) +1 + +S S1 2 +1 E1/2u (G-

5 ) −1 + +S S1 2 +1

9 E1/2g (G+
5 ) +1 + +S S3 4 +1 E1/2g (G+

5 ) +1 + +S S3 4 +1

8 E1/2g (G+
5 ) +1 - -S S3 4 −1 E1/2u (G-

5 ) −1 + +S S3 4 +1

7 E1/2u (G-
5 ) −1 - -S S1 2 −1 E1/2g (G+

5 ) +1 + +S S1 2 +1

6 E1/2u (G-
5 ) −1 + +S S3 4 +1 E1/2u (G-

5 ) −1 - -S S3 4 −1

5 E1/2u (G-
5 ) −1 + +S S1 2 +1 E1/2g (G+

5 ) +1 - -S S1 2 −1

4 E1/2g (G+
5 ) +1 - -S S1 2 −1 E1/2u (G-

5 ) −1 - -S S1 2 −1

3 E1/2g (G+
5 ) +1 - -S S3 4 −1 E1/2g (G+

5 ) +1 - -S S3 4 −1

2 E1/2u (G-
5 ) −1 + +S S1 2 +1 E1/2u (G-

5 ) −1 + +S S1 2 +1

1 E1/2g (G+
5 ) +1 + +S S3 4 +1 E1/2g (G+

5 ) +1 + +S S3 4 +1

X (D2h) Y (D2h) X (D2h) Y (D2h)
N IR ξ IR ξ IR ξ IR ξ

9,10 X X1 2 −1 Y Y1 2 −1 X X1 2 −1 Y Y1 2 −1
7,8 X X1 2 −1 Y Y1 2 −1 X X1 2 −1 Y Y1 2 −1
5,6 X X1 2 −1 Y Y1 2 −1 X X1 2 −1 Y Y1 2 −1
3,4 X X1 2 −1 Y Y1 2 −1 X X1 2 −1 Y Y1 2 −1
1,2 X X1 2 −1 Y Y1 2 −1 X X1 2 −1 Y Y1 2 −1
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band structures based on the group theory. We identify IR of
the calculated bands and consider sticking due to unconven-
tional IR and pairing due to the time-reversal symmetry,
which is beneficial for clarifying the origin of degeneracy.
Since α-structures are nonsymmorphic systems, we find

some characteristic features of the band structures on the
FBZE. Whereas the sticking and pairing induce double
degeneracy for the non-SOC bands on the whole FBZE, the
SOC induces a small amount of splitting in most cases.
However, the X and Y points in the non-buckled structures
are exceptional, i.e. the SOC bands are quadruply degenerated.
Based on the identified IR, we find that the Z2 invariant is 1 (0)
in non-buckled α-bismuthene (α-phosphorene). In this analysis,
we clarify that the quadruply degenerated bands at the X and Y
points contribute to −1 in Eq. (8) based on the group theory.
We find that the Z2 invariants are 0 and 1 in the cases of

β-phosphorene and β-bismuthene, respectively. The origin of
this difference between the two systems was clarified based
on the group theory, i.e. the strong SOC reverses the highest
occupied and the lowest unoccupied bands at the Γ point.
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