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Abstract

We propose a linear-combination-of-pseudo-atomic-orbitals scheme for a finite
electric field method based on the modern theory of polarization. We derive
the matrix elements of the effective potential for the static and homogeneous
field and the corresponding terms of the forces on atoms. In addition, we
successfully evaluated the static and electronic dielectric constants and Born
effective charges of typical semiconducting and insulating materials. Our
formalism will aid in the study of materials under electric fields.
Keywords: electric field; density functional theory; LCAO; Berry phase;
dielectric constant; first-principles calculation.

1. Introduction

The effects of electric fields on insulators are of significant research inter-
est, and have been investigated experimentally and theoretically for several
applications. In theoretical works based on quantum mechanics, dielectric
properties including responses for electric fields have been investigated inten-
sively since the past fifty years [1–3]. In the modern theory of polarization
(MTP) [4,5], first-principles calculations can be used on insulating solids to
determine the electric polarization as a well-defined bulk quantity with Berry
phases. In addition, polarization and Berry phases can be leveraged to probe
the electronic structure of solids under electric fields [6].
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MTP addresses the difficulty in describing electric polarization in bulk
insulators with Berry phases obtained from overlap matrices between the
periodic parts of Bloch orbitals at a k-point and the next k-point, instead
of explicit evaluation of the position operator. The difficulty arises from the
periodic boundary condition applied in electronic structure calculations based
on the density functional theory (DFT), and it cannot be determined how
electrons cross the cell boundary. This is because the existence of electrons is
described by continuous electronic densities. Considering electric fields in the
DFT framework, the boundary condition leads to another difficulty in that
the periodicity can yield unphysical fields. Additional potentials for finite
electric fields include terms arising from the product of the electric field and
position operator E ·r, but it is not acceptable when there are electrons at the
boundary (i.e. sawtooth potential in bulk systems under homogeneous fields);
however, many elaborate approaches combining the supercell and sawtooth
techniques were proposed to address the high-frequency dielectric properties
under static but inhomogeneous electric fields [7–9]. The position can be
substituted with the polarization P to consider the potential for electric fields
in bulk insulators with electric-field-polarized Wannier functions [10], because
MTP shows that polarization is independent of the boundary, except for
arbitrary modules of polarization. The first DFT calculations using E · P
were reported in 1998, but large localization regions were required to get
converged field-polarized Wannier functions [11]. In 2002, practical DFT
schemes for E · P were proposed [6], and they were implemented within
the plane wave method [6] or Car–Parrinello method [12]. The electronic
structures of III-V or II-VI semiconductors were successfully evaluated under
finite electric fields, and dielectric properties such as dielectric constants and
the Born effective charges were also calculated. Such a scheme was also
implemented in a projector augmented wave framework [13].

For realistic conditions, large scale calculations are generally required,
and localized orbitals such as the linear combination of atomic orbitals
(LCAO) method are appropriate in terms of scalability. Interesting models
to consider the electric field effect on vacancies, impurities, and interfacial
systems may require hundreds or thousands of atoms. Moreover, MTP
for the LCAO scheme demands a conversion from Bloch orbitals to atomic
orbitals [14]. Generally, atomic orbitals do not comprise the complete basis
set, and therefore, Pulay’s correction is required. These requirements make
implementation complicated, which is a difficulty in the LCAO scheme. A
tight-binding scheme for finite electric fields was proposed based on MTP [15],
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and it was implemented in the time-dependent DFT framework of the SIESTA
code, a linear combination of pseudo atomic orbitals (LCPAO) first-principles
code [16,17] (the implementation details have not been opened to our best
knowledge). However, with regard to time-independent schemes that were
used in first-principles calculations, only several approaches without Berry
phases were reported thus far: a density matrix approach in the LCAO
method for electric field effects [18]; an implementation in a finite electric
field approach combining the sawtooth and supercell techniques for static but
inhomogeneous fields in the CRYSTAL code with the localized basis set [9].
No LCAO scheme for the finite electric field based on MTP clarified how to
calculate the force on atoms, and it limits the applications to high-frequency
dielectric properties. The LCAO implementation of effective potential and
the implementation of effective potential and the forces on atoms for finite
electric fields practically applicable to ordinal DFT is expected to expand
the application range to consider electric field effects on even large scale or
realistic models (e.g. vacancies in the diamond nitrogen-vacancy center) or
complicated magnetic systems (e.g. spin spirals with the spin-orbit interaction
(SOI)) and its ionic dynamics.

In this study, we developed an LCAO implementation of the finite and
homogeneous electric field scheme including the forces on atoms compatible
with self-consistent field (SCF) loops in the DFT framework based on MTP.
Our proposed scheme unveils how to address the force on atoms even in the
bulk system under the electric field in the LCPAO method. In addition, we
evaluated electronic structures under uniform electric fields. Moreover, we
calculated the dielectric properties of insulators and semiconductors: dielectric
constants and Born effective charges of III-V and II-VI semiconductors and
group IV insulating materials. The calculated dielectric properties agree
with previously reported computational values. The LCAO implementation
should serve as a powerful tool to investigate electric field effects on large
scale systems.

2. Theory

2.1. LCPAO method and modern theory of electric polarization
The LCPAO method uses basis sets localized on atoms, and the basis

functions are based on atomic orbitals [14]. The required number of basis
functions is significantly smaller than that in the plane wave method, which
enables solving eigenvalue problems by direct diagonalization. The electronic
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contribution to electric polarization is described via the Berry phase using
Bloch orbitals. While Bloch orbitals can be expressed easily by plane wave
basis sets, using localized basis sets of PAOs Bloch orbitals in the LCPAO
method are given as

〈r|ψ(σk)
µ 〉 = 1√

N

N−1∑
n=0

eik·Rn
∑
iα

c
(σk)
iα,µ 〈r|φRn

iα 〉 , (1)

where r is the position, N is the number of cells considered in calculations, “i”
is the imaginary unit, k is a wave number, Rn is the lattice vector for cell n,
c

(σk)
iα,µ is an LCPAO coefficient connecting a PAO for orbital α belonging to atom
i with a Bloch orbital of spin σ and state µ, τi is the position of an atom i, and
φRiα is a PAO for orbital α belonging to atom i in a cell moved by R from the
original cell, and it is expanded around τi, i.e. 〈r|φRiα〉 = φiα(r−τi−R). For the
LCPAOmethods with the Hamiltonian H(σk)

iα,jβ = ∑N−1
n=0 e

ik·Rn 〈φ0
iα|Hσ|φRn

jβ 〉 and
the overlap matrix S(k)

iα,jβ = ∑N−1
n=0 e

ik·Rn 〈φ0
iα|φRn

jβ 〉, the Kohn–Sham equation
is given as

H(σk)c(σk) = ε(σk)S(k)c(σk) (2)
and can be solved by direct diagonalization to obtain the eigenvalues of
energies ε(σk). According to MTP [4,5], the electronic contribution to electric
polarization Pe in an insulating system with periodic cells is obtained from
Ga · Pe, Gb · Pe, and Gc · Pe, which can be expressed by the Berry phase as

Ga · Pe = − ef

ΩNbNc

∑
σ

Nb−1∑
Ib=0

Nc−1∑
Ic=0

Im ln det
Na−1∏
Ia=0

M (σ,Ia,Ib,Ic)
a , (3)

where f is a weighting coefficient of the spin degeneracy per state, Ga, Gb

and Gc are the reciprocal lattice vectors for the cell vectors va, vb, and vc,
respectively, e is the elementary charge, Ω is the cell volume, Na, Nb and Nc

are the numbers of k-points to discretize the first Brillouin zone along Ga, Gb

andGc, respectively,M (σ,Ia,Ib,Ic)
aµν =

〈
u(σk(Ia,Ib,Ic))
µ

∣∣∣u(σk(Ia+1,Ib,Ic))
ν

〉
is an overlap

matrix of the periodic parts uσkµ of occupied Bloch orbitals between adjacent
k-points, and k(Ia, Ib, Ic) = (Ia/Na)Ga+(Ib/Nb)Gb+(Ic/Nc)Gc. The manner
of expressing electric polarization by the Berry phase has been successful,
since it provides evaluations based on well-defined quantities instead of direct
evaluation of the position r. M (σ,Ia,Ib,Ic)

a can be calculated by

M (σ,Ia,Ib,Ic)
aµν =

(
c(σk(Ia,Ib,Ic))†T(k(Ia+1,Ib,Ic))

a c(σk(Ia+1,Ib,Ic))
)
µν
, (4)
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where we introduced T(k)
aiα,jβ = ∑N−1

n=0 e
ik·Rn

〈
φ0
iα

∣∣∣∣ e−i Ga
Na
·r
∣∣∣∣φRn

jβ

〉
, and µ and ν

run over occupied states. Although M (σ,k(Ia,Ib,Ic),k(Ia+1,Ib,Ic)) itself is gauge-
dependent, the dependence vanishes when considering the sum over the first
Brillouin zone, and the electric polarization Pe can be evaluated. By introduc-
ing T(k)

aiα,jβ, the known LCPAO formalism of
〈
u(σk(Ia,Ib,Ic))
µ

∣∣∣u(σk(Ia+1,Ib,Ic))
ν

〉
[14]

becomes a matrix form of Eq. 4, which is most suitable for computation in
terms of efficiency and simplicity, especially for iterative calculations such as
SCF calculations. This is because it suffices to prepare T(k)

aiα,jβ once at the
beginning of each SCF loop.

2.2. Effective potential for finite electric fields
We start with an expression of the electric enthalpy functional F , which

is the total energy for an insulating system under a finite electric field:
F [E] = EKS − ΩE · P [10]. Here, E is the electric field, EKS is the ordinary
counterpart of Kohn–Sham total energy described by field-polarized orbitals,
and the polarization P comprises the ionic and electronic contributions:
P = PI + Pe. The solution that minimizes F [E] is desirable, such that
diagonalization can be used to get solutions for insulators under electric fields
in the same manner as in variational approaches to the ordinary Kohn–Sham
equation. Here, considering an additional term of the effective potential
V = −ΩE · P is required. In the plane wave method, Souza et al. suggested
the conjugate-gradient method using a gradient δF/δ 〈u(σk)

µ | [6]. For the
LCPAO method, we propose direct diagonalization by adding matrix elements
of the effective potential into those of the ordinary Kohn–Sham Hamiltonian
H0. The matrix representation of the effective potential A can be extracted
from the relation V = ∑

σk tr(c(σk)†A(σk)c(σk)). Considering the derivative of
V with respect to the LCPAO coefficients, we get

∂V

∂c
(σk)∗
iα,µ

= (A(σk)c(σk))iα,µ. (5)

Moreover, we expand Eq. 5 with the cell vectors va, vb, and vc, and obtain
∂V

∂c
(σk)∗
iα,µ

= −ΩE· ∂P

∂c
(σk)∗
iα,µ

= −ΩE· ∂Pe
∂c

(σk)∗
iα,µ

= − Ω
2π

∑
λ=a,b,c

(E·vλ)
∂

∂c
(σk)∗
iα,µ

(Gλ·Pe).

(6)
Here,

∂

∂c
(σk)∗
iα,µ

(Ga · Pe) = −efΩ

((
O(σk)
a −O(σk)†

a

2i

)
c(σk)

)
iα,µ

, (7)
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where O(σk(Ia,Ib,Ic))
a =

1
NbNc

Tk(Ia+1,Ib,Ic)
a c(σk(Ia+1,Ib,Ic))

(
M (σ,Ia,Ib,Ic)
a

)−1 (
M (σ,Ia−1,Ib,Ic)
a

)−1
c(σk(Ia−1,Ib,Ic))†Tk(Ia,Ib,Ic)

a .

(8)
Then, we get

∂V

∂c
(σk)∗
iα,µ

=
ef

2π
∑

λ=a,b,c
(E · vλ)

O
(σk)
λ −O(σk)†

λ

2i

 c(σk)


iα,µ

, (9)

Therefore, the matrix elements of A are given as

A
(σk)
iα,jβ =

ef
2π

∑
λ=a,b,c

(E · vλ)
O

(σk)
λ −O(σk)†

λ

2i


iα,jβ

. (10)

Finally, in the case of a finite electric field, the Hamiltonian H(σk) = H
(σk)
0 +

A(σk) can be evaluated to obtain a solution through Eq. 2. In addition, this
formalism is compatible with non-collinear spin density functionals, and is
applicable to cases considering the SOI.

2.3. Forces under finite electric fields
For the forces on atoms induced by the effective potential, the ionic

contribution is ΩE · ∂PI

∂τi
= ZieE, where Zi is the core charge of atom i, and

the electronic contribution in the case of the complete basis set is taken into
account without additional terms, owing to the Hellmann–Feynman theorem.
In the LCAO representation, the additional terms, i.e. Pulay forces, are
necessary, so that the electronic contribution is

ΩE · ∂Pe

∂τi
= ef

2π
∑
σk

∑
λ=a,b,c

(E · vλ)Imtr
((

∂c†

∂τi
Tc+ c†

∂T
∂τi

c+ c†T ∂c

∂τi

)
M−1

)
,

(11)
where c† = c(σk(Ia,Ib,Ic))†, T = T(k(Ia+1,Ib,Ic))

a , c = c(σk(Ia+1,Ib,Ic)), M = c†Tc.
Since F = ∑

σk tr(c(σk)†H(σk)c(σk)), the terms of ∂c†

∂τi
Tc + c†T ∂c

∂τi
are part

of ∂c†

∂τi
Hc + c†H ∂c

∂τi
, calculated from the energy density matrix ε

(σRn)
iα,jβ =

Ω
2π
∑occ.
µ

∑
k e

ik·Rnε(σk)
µ c

(σk)∗
iα,µ c

(σk)
jβ,ν . The derivative of the overlap matrix is

s(Rn)
iα,jβ = 〈φ0

iα|φRn
jβ 〉 [14]. After SCF convergence, only the c† ∂T

∂τi
c term needs

to be calculated explicitly, while evaluation of other terms in the electronic
contribution is replaced with that of the ∂c†

∂τi
Hc+ c†H ∂c

∂τi
This is realized using

ε(σRn) determined after SCF convergence with the derivative of s(Rn).
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3. Computational details

We implemented the electric field code based on our LCPAO formalism
on the OpenMX code [19–21] (http://www.openmx-square.org), which per-
forms first-principles calculations based on DFT within the local density
approximation (LDA) [22] or generalized gradient approximation (GGA) [23].
The norm-conserving pseudopotentials we used included the 2s and 2p elec-
trons for C and O as valence electrons, while the 2p and 3s for Mg; 3s
and 3p for Al, Si, P and S; 3d and 4s for Zn; 3d, 4s and 4p for Ga, Ge
and As; 4s and 4p for Se; 4d and 5s for Cd; and 4d, 5s and 5p for In
and Sb were also considered. We used a 32 × 32 × 32 regular k-point grid
and real space grids corresponding to energy cutoffs larger than 300 Ry to
obtain the converged results of the dielectric constants and Born effective
charges. We also used the following standard and precise PAO basis sets
ofXr-snspnpdndfnf , where X, r and ns, np, nd and nf denote the element
and cutoff radius in the unit of Bohr and numbers of s-, p-, d- and f-orbital
sets, respectively: for the standard one, C6.0-s2p2d1, O6.0-s2p2d1, Mg9.0-
s3p2d1, Al7.0-s2p2d1, Si7.0-s2p2d1, P7.0-s2p2d1f1, S7.0-s2p2d1f1, Zn6.0S-
s3p2d1, Ga7.0-s3p2d2, Ge7.0-s3p2d2, As7.0-s3p2d2, Se7.0-s3p2d2, Cd7.0-
s3p2d2, In7.0-s3p2d2 and Sb7.0-s3p2d2; for the precise one, C6.0-s3p2d2,
O6.0-s3p2d2, Mg9.0-s3p2d2, Al7.0-s3p2d2, Si7.0-s3p3d2, P7.0-s3p2d2f1, S7.0-
s3p2d2f1, Zn6.0S-s3p2d2f1, Ga7.0-s3p2d2f1, Ge7.0-s3p2d2f1, As7.0-s3p2d2f1,
Se7.0-s3p2d2f1, Cd7.0-s3p2d2f1, In7.0-s3p2d2f1 and Sb7.0-s3p2d2f1.

We used computational models where the unit cell is the primitive cell of
face centered cubic or zinc-blende structures with two atoms for computation.
We applied an electric field of 0.1 GV/m along the a-axis of the conventional
cubic cell including eight atoms. We optimized the lattice constants with
the precise PAOs under the LDA, and w neglected the changes due to an
external electric field. The optimized lattice constants were a = 2.4989 Å
for C, a = 3.8219 Å for Si, a = 3.8471 Å for AlP, a = 3.9845 Å for AlAs,
a = 3.8367 Å for GaP, a = 3.9998 Å for GaAs, a = 4.3184 Å for AlSb,
a = 4.1413 Å for InP, a = 3.7529 Å for ZnS, a = 3.9356 Å for ZnSe,
a = 4.2526 Å for ZnTe, a = 4.2446 Å for CdSe, a = 4.5433 Å for CdTe, and
a = 2.9410 Å for MgO. The dielectric constant tensor ε was evaluated from

εαβ = δαβ + 1
ε0

∂Pα
∂Eβ

(α, β = x, y, z), (12)

where ε0 and δαβ are the electric constant and Kronecker delta, respectively.
When the electric polarization induced by the electric field ∆P is given
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with and without atomic relaxation, εαβ is equal to the static and electronic
dielectric constants εsαβ, ε∞αβ, respectively, and the following can be derived

ε∞xx = 1 + 1
ε0

∆Pα
Eβ

∣∣∣∣∣
δτi=0

, εsxx = 1 + 1
ε0

∆Pα
Eβ

∣∣∣∣∣
F=0

(α, β = x, y, z), (13)

where ∆Pα = Pα(E = Eβêβ)− Pα(E = 0). In addition, through the forces
F on atoms without the atomic relaxation, the Born effective charge tensor
Z∗ of an atom was also evaluated from

Z∗αβ = ∂Fα
∂Eβ

∣∣∣∣∣
δτi=0

= Fα(E = Eβêβ)− Fα(E = 0)
Eβ

∣∣∣∣∣
δτi=0

(α, β = x, y, z).

(14)
We then evaluated ε∞xx, εsxx and Z∗xx. Here, we drop the subscripts and
denote them as ε∞, εs and Z∗. The finite electric field was considered after
SCF convergence under the zero field of each SCF loop, i.e., its effective
potential was added after the first SCF convergence. The matrix elements
of the effective potential was calculated from the Hamiltonian matrix in
the previous SCF iteration and the overlap matrices. The overlap matrices
were prepared at the beginning of each SCF loop. We noted that the forces
converged when the magnitudes were less than 1×10−5 Hartree/Bohr. This is
because a Z∗ value of 1 yields a force of approximately 2× 10−4 Hartree/Bohr
under an electric field of 0.1 GV/m, and highly precise evaluation of the forces
is essential to describe the electronic structures under electric fields with εs
and Z∗. In the LCPAO method, the so-called egg box effect leads to numerical
errors arising from the real space grid, and it is critical in evaluating the
forces, dipole moment, and stress tensor. The egg box effect can be resolved
by grid cell sampling and iterative evaluation of such quantities with grid
shifting and frozen density matrix for the LCPAO [14]. The density gradient
in the GGA is sensitive to the egg box effect, especially since it is estimated
from the electronic density on the real space grid. Therefore, we applied
grid cell sampling to evaluate the forces precisely by introducing a fine real
space grid of at least 100 × 100 × 100 after SCF convergence in the GGA
cases. Another workaround is to consider a stronger electric field to enhance
contributions from the electric field to the forces, but it sometimes violates
the limitation of the electric field strength due to the Zener breakdown [6],
and we did not treat the workaround in this work. To evaluate εs, the atomic
relaxation needs to be considered. However, the computational cost of the
grid cell sampling with such fine grid was significantly high, because at least

8



Table 1: Electronic dielectric constants of semiconducting materials. Our calculated values
under three kinds of conditions for the exchange correlation functional and the quality of
PAOs are shown. Theoretical values of Ref. [25] were obtained from the DFPT with the
GGA, while values of Ref. [6] and Ref. [13] were calculated from the DFT with the LDA
and the GGA, respectively, and the finite electric field methods based on the MTP.
System standard precise Ref. (theor.) Ref. (expt.)

LDA LDA GGA LDA GGA
C 5.61 5.67 5.67 5.9 [25] 5.7 [26]
Si 12.17 12.74 12.36 12.9 [25] 11.6 [26]

AlP 8.05 8.16 7.89 8.1 [6] 7.84 [13] 7.4 [26]
8.1 [25]

AlAs 8.84 9.05 8.85 9.6 [6] 8.80 [13] 8.16 [26]
9.3 [25]

GaP 10.33 10.45 9.94 9.4 [6] 10.4 [25] 8.8 [26]
GaAs 13.84 14.42 13.16 11.9 [6] 13.7 [25] 10.86 [26]
AlSb 10.84 11.14 10.90 11.45 [13] 9.88 [26]

11.5 [25]
InP 11.07 10.91 10.08 11 [25] 9.9 [26]
ZnS 5.93 6.12 5.77 5.9 [25] 5.1 [26]
ZnSe 7.15 7.41 6.90 7.2 [25] 5.9 [26]
ZnTe 8.35 8.86 8.24 8.9 [25] 6.9 [26]
CdSe 7.64 8.21 7.21 7.6 [25] 6.2 [26]
CdTe 8.09 8.75 7.89 8.6 [25] 7.1 [26]
MgO 3.09 3.18 3.14 3.1 [25] 3.1 [26]

eight evaluations are required (e.g. 2× 2× 2 grid shifts). Therefore, we used
the “one-shot” grid cell sampling, i.e., the forces based on the fine grid with
the grid shifts were evaluated from the density matrix obtained from the
rough grid without the grid shifts.

4. Results and discussion

To validate our formalism, we calculated the electronic dielectric constants
ε∞ of III-V, II-VI semiconductors and group IV insulators. First, we calculated
ε∞ with LDA to compare our values to those from the plane wave formalism
based on the MTP by Souza et al. [6]. Our calculated values are shown
in Table 1. Our values of the AlP and AlAs based on the precise PAO
basis set coincide with their values, while the ones of the GaP and GaAs
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have more than 10% and 20% errors. Although our LCPAO formalism is
equivalent to Souza et al.’s formalism, this difference might arise from different
conditions such as pseudopotentials. Indeed, our measured values are in good
agreement with recently reported values under GGA based on the density
functional perturbation theory. Next, we calculated ε∞ under the GGA,
and the values were improved (i.e. closer to experimental values) for all the
systems compared to LDA. We confirmed that a moderately large number of
k-points are necessary to obtain the converged values as reported by Souza
et al. [6]. We also investigated the PAO quality dependence, and the values
for the standard basis sets are smaller than those for the precise ones, except
the InP. The standard basis sets yield PAOs around atom centers in a more
narrow domain than the precise basis sets. A more localized description of
electronic states through the standard basis sets can constrain the electronic
distribution more strongly, and suppress ε∞. These results demonstrated that
our LCPAO implementation of the effective potential for the finite electric
field was accurate.

To investigate the influence of the SOI, we focused on ZnTe and CdTe
including tellurium, which is the heaviest element in our systems. When
considering the SOI with the precise basis set under GGA, the ε∞ of ZnTe
and CdTe was 8.37 and 8.10, and increased by 0.13 and 0.21, respectively.
The strong SOI can drastically change the electronic structure so that these
increases occur. In fact, the band gap of ZnTe and CdTe changed from 1.73
eV and 1.04 eV to 1.60 eV and 0.77 eV after including the SOI, respectively
(see also Appendix A for the relationship between the band gap and ε∞).
The ε∞ of AlSb also increased by 0.11, and it became 11.01. Our results
illustrated that for systems including heavy-elements, the SOI effect on ε∞
should be considered.

As shown in Table 2, we also calculated the Born effective charges Z∗
of cations except for the group IV systems to validate our formalism of
the forces on atoms under electric fields. For the LDA, we evaluated Z∗

through the finite electric field method as well as finite difference method, and
we confirmed that both methods led to the almost same values of Z∗. Our
calculated results were robust with respect to exchange correlation functionals,
and each Z∗ under the LDA is approximately equal to that under GGA. Our
values were in good agreement with not only the theoretical values, but also
experimental values in previous studies. The mean absolute error of Z∗ for
our values and the experimental values with respect to the systems was ~6%.
Therefore, we concluded that our formalism of forces under finite electric
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Table 2: Born effective charges of cations in semiconducting materials. Our calculated
values under two kinds of conditions for the exchange correlation functional and the quality
of PAOs are shown. The values in parentheses were obtained from the finite difference
method. Theoretical values of Refs. [27] and [28] were obtained from the DFPT with
the LDA and GGA, respectively. Theoretical values of Refs. [29,30] were obtained from
the DFT with the LDA and the finite difference method based on the MTP, while those
of Refs. [6,12] and Ref. [13] were calculated from the DFT with the LDA and the GGA,
respectively. The value for Ref. [30] is complemented by that of the anion.

System precise Ref. (theor.) Ref. (expt.)
LDA GGA LDA GGA

AlP 2.19 2.20 2.24 [6] 2.23 [13] 2.15 [31]
(2.19) 2.20 [27]

AlAs 2.12 2.09 2.14 [6] 2.17 [13] 2.20 [32]
(2.11) 2.12 [27]

2.110 [29]
GaP 2.05 2.11 2.10 [6] 2.16 [33]

(2.04) 2.06 [27]
GaAs 2.09 2.10 2.00 [6] 2.18 [32]

(2.08) 2.08 [27]
2.18 [29]

AlSb 1.81 1.75 1.83 [13] 1.93 [34]
(1.81) 1.81 [27]

InP 2.44 2.48 2.50 [27] 2.55 [35]
(2.44)

ZnS 1.87 1.89 1.99 [30] 2.15 [35]
(1.87)

ZnSe 1.95 1.95 2.12 [28] 2.03 [35]
(1.95)

ZnTe 1.87 1.86 2.00 [35]
(1.87)

CdSe 2.19 2.17 2.25 [35]
(2.18)

CdTe 2.09 2.08 2.35 [35]
(2.09)

MgO 1.98 1.98 1.96 [12] 1.77 [35]
(1.97)
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Table 3: Static dielectric constants of semiconducting materials. Our calculated values
under two types of conditions for the exchange correlation functional and the quality of
PAOs are shown. Theoretical values of Ref. [6,12] and Ref. [13] were calculated from DFT
with LDA and GGA, respectively, and the finite electric field methods based on MTP.

System precise Ref. (theor.) Ref. (expt.)
LDA GGA LDA GGA

AlP 10.26 9.94 10.2 [6] 10.26 [13] 9.6 [26]
AlAs 10.90 10.56 11.5 [6] 11.05 [13] 10.6 [26]
GaP 11.96 11.69 11.2 [6] 11.0 [26]
GaAs 19.28 14.38 13.5 [6] 12.90 [26]
MgO 7.92 8.79 7.93 [12] 9.8 [26]

fields was also correct. In including the SOI, however, only negligible changes
appeared. Although a fine real space grid allowed us to get converged values,
we confirmed that even a rough real space grid could provide good values,
which suggests that the computational cost can be reduced in calculating Z∗.

Then, we evaluated the atomic relaxation under finite electric fields through
the static dielectric constants εs. As shown in Table 3, the values based on
LDA and GGA were successfully reproduced, except for GaAs. The LDA
value of GaAs was overestimated compared to the results of previous studies,
because our calculated band gap of 0.25 eV was underestimated compared to
the experimental value of 1.579 eV [36], which made more delocalized pictures
of electrons to give the overestimation. The GGA values were closer to the
experimental ones than those of LDA, and the AlP, AlAs, and GaP values
had errors within 7%, while the errors for GaAs and MgO were within ~30%.
Although we reproduced the LDA value of MgO reported in the previous
theoretical study [12], there was a mismatch of the MgO values between the
experimental and theoretical results. With an experimental lattice constant
of 4.212Å [37] for its conventional cell, the εs of MgO became 9.56, i.e., it
approached the experimental εs of 9.8 [26], although our lattice constant was
1% smaller compared to the experimental value. In the atomic relaxation, the
precision of the forces on atoms is of importance, and even minor errors in
the magnitude of 10−4 Hartree/Bohr can reflect large errors in εs. As a result,
it is suggested that not only a fine k-space grid, but also a fine real space grid
is required to describe the movements of atoms in solids under a finite electric
field. Although the computational cost of the ordinary grid cell sampling
with a fine real space grid was significantly high to continue relaxation, we
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confirmed that the “one shot” grid cell sampling was efficient and effective
in avoiding the numerical errors induced by the real space grid or density
gradient. Finally, it was proved that our formalism for the forces was correct,
and that it can be applied to both atomic relaxation and molecular dynamics
under finite electric fields.

5. Conclusion

We developed a first-principles LCPAO scheme of a finite electric field
method based on MTP to yield self-consistent solutions in the DFT framework.
Our scheme unveils how to address the force on atoms in any insulating solid
under the electric field in the LCPAO method. Moreover, we investigated
the PAO dependence and exchange correlation dependence by performing
systematic calculations. Our implementation successfully reproduced the
electronic and static dielectric constants and Born effective charges of III-V
and II-VI semiconductors and group IV insulating materials. We confirmed
that the implementation for the SOI is necessary for systems including heavy
elements. Our LCPAO implementation is expected to be advantageous over
conventional formalisms such as the plane wave method in terms of efficiency
and extensibility, especially for large scale calculations modeling realistic
systems through the O(N) method, and the atomic or orbital decomposition
of the effective potential. Our formalism will expand the problem size such
that complicated systems such as devices can be considered, and the molecular
dynamics of complicated systems such as batteries under a finite electric field
can be realized with a lower computational cost.
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Appendix A: Correlation between the ε∞ and the band gap
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Figure 1: ε∞ versus the band gap calculated with the LDA functional and precise basis
sets.

Figure 1 shows that there was a trade-off between the calculated ε∞ and
band gap. This trend coincides with the picture that the electron distribution
is more localized for the wider band gap.
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