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Paleomagnetic directional groups 
and paleointensity from the flood basalt in the 
Tarim large igneous province: implications 
for eruption frequency
Yoichi Usui1*   and Wei Tian2

Abstract 

We present paleomagnetic secular variation and paleointensity from the Early Permian Tarim large igneous prov-
ince, NW China. The studied sections comprise a total of ~400 m of basaltic flows. Paleomagnetic directions were 
determined for 11 flows. Four successive flows with a cumulative thickness of ~150 m showed a statistically identical 
paleomagnetic direction. Assuming a paleosecular variation speed similar to that of the present day, the ~150-m-thick 
basalt was estimated to have erupted within the past few centuries. Paleointensity experiments were performed on 
both whole-rock and single plagioclase samples. Although alterations during the experiment and/or weak rema-
nence degraded the data quality, the flows with the same paleomagnetic direction revealed similar paleointensity 
estimates, supporting the hypothesis that the eruption of these flows was rapid. More generally, flows from the Lower 
Kupukuziman Formation seem to record lower paleointensity compared to flows from the overlying Kaipaizileike 
Formation.
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Background
The activity of large igneous provinces (LIPs), especially 
continental flood basalts, can have significant effects on 
the global climate and the chemistry of the hydrosphere, 
potentially accounting for some of the major extinc-
tions (e.g., Wignall 2001; Bond and Wignall 2014). The 
proposed mechanisms involve the emission of volatiles 
such as H2S, SO2, HCl, HF, and CO2 into the atmosphere, 
leading to ocean acidification, global temperature pertur-
bation, and ozone depletion. A key parameter in deter-
mining the environmental and biological consequences 
of the activity of LIPs is the eruption rate. For some 
flood basalts, such as the Deccan traps and the Siberian 
traps, pulses of large and rapid eruptions with volumes 

of thousands of km3 and fluxes of  ~100  km3/year are 
proposed, mainly on the basis of paleomagnetic analysis 
(Chenet et al. 2008; Pavlov et al. 2011; Courtillot and Flu-
teau 2014).

A large volume of Early Permian igneous rocks in the 
Tarim basin has recently been recognized as an LIP (Yang 
et  al. 2006; Tian et  al. 2010), following the definition of 
Bryan and Ernst (2008). Although the bulk of the Tarim 
LIP (TLIP) is covered by the Taklimakan desert, geophys-
ical and drill core data, together with outcrop investiga-
tions along the edge of the desert, indicate that the TLIP 
covers an area >300,000 km2 with an estimated volume in 
excess of 300,000 km3, of which over 80% is occupied by 
flood basalt (Yang et al. 2005; Tian et al. 2010).

The eruption frequency of the TLIP flood basalt has 
been investigated by radiometric dating. SHRIMP U–Pb 
ages were reported for a  ~1500-m-thick section includ-
ing  ~500-m-thick basaltic flows (Yu et  al. 2011). The 
uppermost and the lowermost flows revealed statisti-
cally identical ages (289.5  ±  2.0 and 288.0  ±  2.0  Ma, 
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respectively, with errors indicating 2σ) in the studied sec-
tion (Yu et al. 2011). These ages were confirmed by more 
recent measurements of 40Ar/39Ar plateau ages obtained 
from nearby sites (287.3  ±  2.0 and 287.9  ±  3.1  Ma; 
Wei et  al. 2014). Together, the emplacement duration 
for the  ~500-m-thick basalt can be constrained to less 
than  ~6 Myr. If the basalt activity spans  ~6 Myr, the 
instantaneous volcanic flux would be on the order of 
0.1 km3/year or less, being too small to have a significant 
environmental impact. However, the uncertainty in the 
radiometric dating cannot exclude the possibility that the 
basalt activity is much shorter than ~6 Myr.

Paleomagnetic secular variation (PSV) analysis has 
been employed to constrain the eruption frequency down 
to the millennium or century timescale, and to identify 
the eruption pulses in some LIPs (Makinen et  al. 1985; 
Riisager et al. 2003; Knight et al. 2004; Chenet et al. 2008; 
Pavlov et al. 2011; Courtillot and Fluteau 2014). The geo-
magnetic field exhibits secular variation, both in direc-
tion and intensity, in timescales of decades to a century. 
On the other hand, in many LIPs, successive lava flows 
yield statistically identical paleomagnetic directions. 
Such directions are regarded to form a directional group. 
The lava flows recording a directional group must erupt 
and cool rapidly relative to the PSV speed. Holocene 
paleomagnetic data revealed that the mean speed of the 
geomagnetic directional change is 2–7°/century (Gallet 
et  al. 2002; Hagstrum and Campion 2002; Chenet et  al. 
2008; Courtillot and Fluteau 2014). Using paleomag-
netic directions with uncertainties less than 10°, Chenet 
et al. (2008) argued that the lava flows in each directional 
group in the Deccan trap were emplaced within roughly 
100  years. In contrast, the absence of clear directional 
groups in the Paraná volcanic province has been taken 
as a sign of steady volcanic activity without a particu-
lar pulse (Dodd et  al. 2015). The geomagnetic inten-
sity change on this timescale is not as well-constrained. 
Nonetheless, a geomagnetic field model based on histori-
cal data (Jackson et al. 2000) and recent archaeomagnetic 
data (Shaar et al. 2015) shows that the maximum inten-
sity change per decade is ~5%.

A previous paleomagnetic study for the TLIP reported 
a positive fold test, indicating that the basalt retains pri-
mary remanence (Sharps et al. 1989). All examined flows 
showed reversed paleomagnetic directions; this is con-
sistent with the age of the basalt (~288 Ma), which falls in 
the middle of the Permo-Carboniferous reversed Super-
chron (PCRS). However, the study focused on establish-
ing the average direction, and the PSV record was not 
discussed. In this report, we acquire new paleodirectional 
and paleointensity data from the TLIP basalt to constrain 
the eruption frequency.

Geology and sampling
We studied outcrops at the Sishichang, Kaipaizileike, 
and Yingan sections (Figs. 1 and 2). These sections were 
close to the sections from which radiometric ages have 
been obtained, as introduced earlier (Yu et al. 2011; Wei 
et  al. 2014). These sections can be easily correlated to 
each other using satellite images and several key beds (Yu 
et  al. 2011). Two packages of basalt sequences occur in 
fluvial siliciclastic sedimentary rocks. They are assigned 
to the Lower Kupukuziman Formation and Kaipaizileike 
Formation (Fig.  2). A large-scale structural discontinu-
ity exists between Yingan and the other sections. The 
Yingan section investigated in this study is also close to 
the Yingan section studied by Sharps et  al. (1989). The 
Sishichang and Kaipaizileike sections belong to the struc-
tural extension from the Subashi section of Sharps et al. 
(1989). 

Yu et al. (2011) described two basaltic horizons and six 
basaltic horizons in the Kupukuziman and Kaipaizileike 
Formations, respectively. We sampled two basaltic hori-
zons (KP1 and KP2) for the Kupukuziman Formation and 
five horizons (KZ1–KZ5) for the Kaipaizileike Formation 
(Fig. 2). KZ4 is distinctive in its andesitic character, cor-
responding to BU7 of Yu et al. (2011). In addition, based 
on detailed field observations, we distinguish basaltic 
flows separated by siliciclastic sediment within some of 
the basaltic horizons. In all, we sampled 11 basaltic flows 
(Fig. 2).

We collected standard field-drilled cores of the basal-
tic flows. Core orientations were taken with a Sun Com-
pass using a Pomeroy orientation device. We sampled 
three flows from the Kupukuziman Formation and eight 
flows from the Kaipaizileike Formation. Site locations 
were recorded using a GPS. Basalt lava flows form a top-
ographic high. With a moderate degree of bedding tilt 
(30°–50°), the top and bottom of the flows are generally 
weathered or covered. Consequently, we sampled what 
we believe to be the middle part of each flow. Except 
for andesitic KZ4, samples are plagioclase-phyric with 
abundant euhedral plagioclase crystals less than 1  mm 
in length. Some flows occasionally contain large (>2 mm) 
plagioclase crystals. The large crystals often exhibit irreg-
ular shapes, and they may be xenocrysts (Fig. 3).

Magnetic mineralogy
The temperature dependence of low-field magnetic sus-
ceptibility, κ (T), was measured using an AGICO KLY-4 
kappabridge susceptibility meter equipped with a high-
temperature furnace. Measurements were conducted in 
ambient air. Each site except for KZ4 yielded an apparent 
Curie point at 450–500 °C upon heating, indicating low-
Ti titanomagnetite in these samples (Fig. 4). In contrast, 
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the sample KZ4 revealed near-reversible curves, with 
an apparent Curie temperature at  ~590  °C, indicating 
that near-stoichiometric magnetite is the main magnetic 
mineral in this sample. Some samples exhibit additional 
Curie points at ~400 and ~550 °C (Fig. 4). When heated 
in Ar, the ~550 °C signal was significantly suppressed. We 
interpret this as a reflection of magnetite formation due 
to oxidation from heating in air. The cooling curves are 
always below the heating curves, indicating significant 
alteration due to heating. The apparent Curie point for 
the cooling curves is at either  ~550 or  ~400  °C. Again, 
heating in Ar often (but not always) resulted in the single 
Curie point for the cooling curves at ~400 °C. We inter-
pret this as re-mixing of magnetite lamellar in titanomag-
netite present before heating.

Magnetic hysteresis parameters (coercivity Hc; coerciv-
ity of remanence Hcr; saturation remanence Mr; and satu-
ration magnetization Ms) were measured using a Model 
3900 Princeton Measurement Corporation vibrating 
sample magnetometer for bulk rock samples and a Model 
2900 alternating gradient magnetometer at the Geologi-
cal Survey Japan. The hysteresis parameters were ana-
lyzed on a Day plot (Day et al. 1977; Dunlop 2002). The 
data indicate a pseudo-single domain (PSD) magnetic 
carrier in all samples (Table 1; Fig. 5).

Paleomagnetic methods
Paleomagnetic direction
Step-wise demagnetization was conducted using a 
Model TDS-1 paleomagnetic oven (Natsuhara Giken) 
and a Model DEM-95AF demagnetizer with two axis 
tumbling (Natsuhara Giken). Magnetic remanence was 
measured using a Model ASPIN spinner magnetom-
eter (Natsuhara Giken). All paleomagnetic measure-
ments were carried out in the magnetically shielded 
room at JAMSTEC Yokosuka HQ. The demagnetization 
data were analyzed using principal component analysis 
(Kirschvink 1980). Site-mean directions were calcu-
lated using Fisher (1953) statistics. Analysis was done 
using PuffinPlot software version 1.03 (Lurcock and 
Wilson 2012). For each section, the average bedding 
attitude of nearby siliciclastic sediment was used for tilt 
corrections.

The directional results were analyzed to detect any 
occurrence of directional groups. A series of criteria fol-
lowing Chenet et  al. (2008) was used. Successive flows 
were considered to be in the same directional group as 
the corresponding site-mean direction within a thresh-
old angular distance σ from the overall mean direction 
for the corresponding site-mean directions, where σ is 
the root-mean-square of the corresponding α95. If σ was 
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larger than 10°, the results were judged to be uncon-
strained and discarded.

Paleointensity
The paleointensity experiments were performed on the 
1-in. cores or unoriented plagioclase phenocrysts. The 

plagioclase crystals were handpicked from the crushed 
cores and checked under a stereoscopic microscope 
(Nikon SMZ1000) for any surface contamination. No dis-
tinction of potential xenocrysts was made. The IZZI pro-
tocol of the Thellier–Coe paleointensity method (Thellier 
and Thellier 1959; Coe 1967; Coe et al. 1978; Tauxe and 
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Staudigel 2004) was used. The sample was successively 
demagnetized in zero-field heating (Z step) and remag-
netized in in-field heating (I step). The Z and I steps are 

combined in an alternating way. Laboratory alteration 
of magnetic minerals was checked by partial thermore-
manence (pTRM) where previous in-field heating was 
repeated at every second temperature step. Heating was 
done using the oven TDS-1 for 1-inch cores and the cus-
tom-made infrared heating device (Usui et  al. 2015) for 
plagioclase crystals. The laboratory magnetizing field 
intensity was set to range from 20 to 40 μT. The results 
were analyzed using the ThellierTool software version 
2.0 (Leonhardt et al. 2004). Paleointensity estimates were 
obtained from a least-squares linear fit to a segment of 
pTRM gained versus NRM lost plot (the Arai plot; Arai 
1963). The criteria for the successful trials were as fol-
lows: (1) Five or more successive steps should define 
the linear segment (N ≥  5); (2) The standard deviation 
of the linear fit should be smaller than 0.15 of the slope 
(β ≤ 0.15); (3) The linear segment should represent more 
than 30% of the original NRM intensity (f ≥ 0.3); (4) the 
directional data of the corresponding Z steps should 
define an origin-trending demagnetization with maxi-
mum angular deviation (Kirschvink 1980) less than 15° 

Fig. 3  Thin section image of large plagioclase crystals. White scale bar 
is 250 μm
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(MAD < 0.15), and (5) The pTRM check should be within 
7% of the corresponding pTRM (δ(CK) ≤ 0.07). These are 
similar to the default “Class B” criteria of ThellierTool 
(Leonhardt et  al. 2004). As discussed below, the pale-
ointensity experiments were rather unsuccessful, and no 
“Class A” data (Leonhardt et al. 2004) were obtained.

Results
Paleomagnetic direction
Two pilot specimens for each basaltic flow were analyzed 
in detailed thermal and AF demagnetization. For all flows, 
both methods revealed similar characteristic directions 
after the removal of a low stability component by ~10 mT 

AF treatment or 200 °C thermal treatment (Fig. 6). Stability 
against AF treatment is different among sites. The unblock-
ing temperature is 400–450 °C except for the sample KZ4, 
and no correlation with AF stability or the hysteresis 
parameter was obvious. Therefore, the stability against AF 
treatment is likely to reflect differences in grain size rather 
than mineralogy, which in turn may be related to the local 
cooling rate. The sample KZ4 shows unblocking at ~590 °C. 
The unblocking temperature data are consistent with the 
major Curie point estimated from thermomagnetic results.

After the pilot specimens, the remaining specimens 
were treated by AF demagnetization. Table  2 summa-
rizes the directional results. All of the 11 flows exam-
ined revealed well-defined site-mean directions with 
α95  <  10º (Fig.  7). Only reversed polarity was detected, 
and the directions were generally consistent with the 
results of Sharps et al. (1989). In particular, our data from 
the Yingan section were very close to the mean direction 
reported by Sharps et  al. (1989) for the Yingan section. 
The limited number of sites in the Yingan section in our 
dataset precludes formal fold testing; however, the close 
agreement with the Sharps et  al. (1989) direction sup-
ports that our directions also predate the major tilting.

The first four flows (KP1a–KZ1) revealed site-mean 
directions statistically distinct from each other. The fol-
lowing four flows (KZ2a–KZ3a), which span  ~150  m 
of stratigraphy, exhibit statistically identical site-mean 
directions. On the basis of the criteria of Chenet et  al. 
(2008), directions from these flows form a directional 
group. The site-mean directions of the remaining three 
flows are again distinct (Fig. 4). The tight clustering of the 
site-mean directions in the directional group raises the 
question of potential remagnetization. We feel that this 
is not the case, because (1) a flow (KZ3c) very close to 
the flows showing the directional group exhibits a statis-
tically different direction from the directional group; (2) 
there are no obvious rock magnetic properties specific to 
the directional group (Tables 2, 3) field as well as micro-
scope observations did not detect any sign suggesting 
further alteration in the directional group.

Paleointensity
The 1-in. core specimens generally suffer from labora-
tory alteration as indicated by failure in the pTRM checks 
(Fig. 8). An exception was the sample KZ4, where some 
specimens pass the selection criteria. This flow gives a 
paleointensity of 36–45 μT (Fig. 8).

Single plagioclase crystals revealed successful results 
from flows KP1a, KP1b, KZ2a, and KZ4. The presence 
of anomalously large plagioclase crystals, which may be 
xenocrysts, is the main reason for the success of those 
sites while other sites are not. Even in those sites, the 

Table 1  Summary of  hysteresis parameters and  median 
destructive field of NRM (MDF_NRM)

Site Mrs/Ms Hcr/Hc MDF_NRM (mT)

KP1a 0.099 2.62 70

KP1b 0.435 1.77 45

KP2 0.062 2.73 30

KZ1 0.096 2.78 40

KZ2a 0.069 2.41 20

KZ2b 0.047 3.13 15

KZ2c 0.061 2.68 15

KZ3 0.062 3.19 20

KZ3c 0.174 1.87 60

KZ4 0.154 2.67 40

KZ5 0.250 1.68 20

“SD”

“PSD”

“MD”
SD-MD mixing

KZ1
KP1b
KP1a

plagioclase

Fig. 5  Hysteresis parameters on a Day plot. Filled circles represent 
bulk samples, and other symbols represent plagioclase crystals. 
The combination of the parameters defines regions corresponding 
to “single-domain (SD),” “pseudo-single domain (PSD),” and “multi-
domain (MD)” characters, as outlined on the plot. Dashed lines are 
single-domain–multi-domain mixing curve after Dunlop (2002)
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success rate was not higher than 30%, and a much larger 
number of crystals simply had a remanence too weak to 
be measured. Typical failure includes strong curvature 
in the Arai plot and scattered demagnetization as well as 

failure in the pTRM checks. The successful crystals from 
flows KP1a and KP1b revealed a paleointensity of 7–17 
μT, while KZ2a and KZ4 revealed a paleointensity of 38 
and 16 μT, respectively (Fig. 8).
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Table 2  Summary of the directional results

Latitude and longitude are GPS latitude of the site. Bedding strike and dip are expressed in dip to right of strike format

n specimen number, Dec. and Inc. in situ declination and inclination, Dec_c and Inc_c tilt-corrected declination and inclination. α95 Fisher (1953) 95% confidence limit, 
k Fisher (1953) concentration parameter

Site Longitude (º) Latitude (º) Bedding strike Bedding dip n Dec. (º) Inc. (º) Dec_c (º) Inc_c (º) α95 (º) k

KP1a 79.772 40.797 38 26 8 190.9 −44.0 217.7 −53.7 2.2 787

KP1b 79.775 40.798 38 26 5 213.4 −35.7 230.2 −32.4 2.5 962

KP2 79.777 40.797 38 26 8 213.1 −61.9 255.0 −54.0 4.2 175

KZ1 79.770 40.762 56 26 4 182.4 −38.7 203.9 −56.8 4.9 349

KZ2a 79.772 40.760 56 26 4 191.6 −35.8 212.4 −50.8 7.2 164

KZ2b 79.772 40.759 56 26 7 190.6 −37.9 212.9 −53.0 2.9 422

KZ2c 79.774 40.760 56 26 5 190.8 −37.2 214.0 −55.4 4.8 256

KZ3a 79.774 40.759 56 26 7 194.0 −40.2 218.8 −53.6 2.2 787

KZ3c 79.774 40.758 56 26 6 198.9 −32.0 220.8 −41.2 2.5 731

KZ4 79.472 40.665 100 30 4 222.0 −10.6 229.6 −35.2 7.4 156

KZ5 79.523 40.650 100 30 5 209.4 −31.2 222.8 −58.5 8.7 77.9
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section, respectively

Table 3  Summary of the paleointensity results

N number of steps used for calculation, β standard deviation of the linear fit in the Arai plot relative to the slope, MAD maximum angular deviation of the linear 
directional fit, δ(CK) maximum absolute difference produced by a pTRM check, normalized by the total TRM

Specimen Material Paleointensity (μT) N β MAD δ(CK)

KP1a-x10 Plagioclase 17.37 5 0.04 8 4.7

KP1a-x12 Plagioclase 10.12 6 0.14 6.6 5.1

KP1b-x1 Plagioclase 7.13 8 0.06 7.6 5.1

KP1b-x3 Plagioclase 9.4 10 0.1 4.1 5.8

KZ2a-x4 Plagioclase 38.01 10 0.06 3.6 4.5

KZ4-x2 Plagioclase 16.08 5 0.08 2.7 6.1

KZ4-d Whole rock 36.39 7 0.13 1.5 2.7

KZ4-e Whole rock 44.54 7 0.1 1.5 2.8
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Discussion
PSV speed during PCRS and timescale for the TLIP basalt 
activity
The occurrence of a directional group spanning four 
flows indicates that these flows, a total of ~150-m thick, 
erupted quickly relative to the speed of PSV. To quantify 
the eruption frequency, we have to make an assump-
tion about the PSV speed at  ~290  Ma, which is in the 
PCRS. In terms of PSV magnitude, the Cretaceous nor-
mal Superchron has been characterized by a slightly 
smaller variation at low latitudes compared to the pre-
vious 5 Myr (Tarduno et al. 2002; Biggin et al. 2008). A 
similar tendency was reported for the PCRS (Halden 
et al. 2009). However, for latitudes higher than ~30º, the 
PSV magnitude during the PCRS is statistically indis-
tinguishable from data for the last 5 Myr (Franco et  al. 
2012). Moreover, the relationship between the PSV mag-
nitude and the PSV speed is not clear. Musgrave and 
Fussell (2011) reported exceptionally high temporal reso-
lution paleomagnetic data for PCRS from high-latitude 
(70°) glacial varved sediment. Although their data span 
only  ~1000  years while the PCRS lasted for  >50 Myr, 
the analysis of the Musgrave and Fussel (Musgrave and 
Fussell 2011) data reveals a PSV speed of 5–12°/century 
(mean: 8.0°, 1σ: 3.8°). From these observations, we ten-
tatively assume that the PSV speed during the PCRS at 
mid- to high-latitudes was not grossly different from the 
Holocene value (2–7°/century).

Our analysis indicates that a directional group with 
four flows (KZ2a–KZ3a) does not record a PSV larger 
than ~10°. Assuming a typical PSV speed of 5–12°/cen-
tury (Musgrave and Fussell 2011), the flows are estimated 
to have erupted within a few centuries. The directional 
group consists of a total of ~150 m of basalt. This is simi-
lar in thickness to the directional groups reported from 
the Deccan trap (Chenet et al. 2008). Note that we cannot 
estimate the volume flux of eruptions, as we only meas-
ure specimens from outcrops. Better stratigraphic cor-
relation between outcrop and drill cores is necessary to 
quantify the TLIP eruption history.

Paleointensity as a potential stratigraphic marker
The paleointensity estimates appear to be different 
between the two flows in the Kaipaizileike Formation 
(KP1a and KP1b) and the two flows in the Kupukuziman 
Formation (KZ2a and KZ4). We have to emphasize that 

the quality of these data and the number of specimens 
are not sufficient to establish reliable absolute paleoin-
tensity estimates (e.g., Patterson et  al. 2014). Nonethe-
less, a relatively similar lithology studied here may allow 
discussion about the relative differences among the 
flows. The similarity of paleointensity among the direc-
tional group identified by directional analysis (i.e., KZ2a 
and KZ4) supports the discussion that they erupted in a 
short period of time. Note that how short this period was 
depends on the assumption about PSV speed. In con-
trast, the difference between {KP1a, KP1b} and {KZ2a, 
KZ4} represents a time gap. While we measured only 
two flows from each of the Kaipaizileike and Kupuku-
ziman Formations, thick (~600  m) siliciclastic sediment 
between those Formations hints that there may be a cer-
tain time gap between them. We hypothesize that the 
Kaipaizileike and Kupukuziman Formation may record 
relatively low and high paleointensity, respectively. If 
this is the case, the paleointensity signal could serve as a 
stratigraphic marker to correlate outcrop data with drill 
core data. Further work is necessary to confirm or reject 
this possibility.

Conclusion
We measured the paleomagnetic direction and pale-
ointensity of the TLIP basaltic flows. Out of 11 flows 
studied, four flows revealed statistically identical paleo-
magnetic directions, forming a directional group. These 
flows are estimated to have erupted in a short time rela-
tive to the PSV. If we assume the PSV speed to be similar 
to the present day based on limited data, the directional 
group, which amounts to ~150 m of basalt, is estimated 
to have erupted within the past few centuries. The flows 
within the directional group revealed similar paleointen-
sity estimates, supporting the hypothesis that the erup-
tion of these flows was relatively rapid. Rapid eruption 
might have resulted in a major environmental change. To 
evaluate fully the impact of the TLIP basalt, correlation 
of the outcrop data with geophysical and drill core data 
should be improved to evaluate the lava volume.

The paleointensity estimates are lower for the 
Kaipaizileike Formation than for the Kupukuziman For-
mation. These two formations are separated by thick 
siliciclastic sedimentary rocks; thus, we propose the dif-
ference reflects the secular variation of paleointensity 
during the PCRS. The potential paleointensity difference, 

(See figure on previous page.) 
Fig. 8  Representative paleointensity experiment shown on the Arai diagrams. Triangles represent the pTRM checks. Lines indicate least-squares fits 
to estimate paleointensity. The insets show the Z-step data on the orthogonal vector plots. Green dashed line indicates the principal component 
fit of the direction. Samples are unoriented relative to the geographic coordinate. a A successful result of whole-rock sample. b A failed result of 
whole-rock sample. c, d Successful results of single plagioclase samples. e, f Failed results of single plagioclase samples
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if confirmed by further studies, may be used as a strati-
graphic marker to promote correlation between outcrop 
and drill cores.
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