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Abstract

We consider the weighted Sobolev spaces with weights of the Muckenhoupt class and charac-
terize the spaces by the square functions of Marcinkiewicz type defined by repeated averaging
operations over spheres.
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1 Introduction

The function of Marcinkiewicz is defined by
1/2

= d
M(f)(X)Z(/O |F(x+t)+F(x—z)—2F(x)|273t> 7

Flx) = /0 FO)dy.

Marcinkiewicz [7] in 1938 introduced an analogue of this square function in the setting of
periodic functions on the torus. Results conjectured in [7] were proved by Zygmund [17] and
the non-periodic version above was provided by Waterman [16]. Let . (IR") be the Schwartz
class of rapidly decreasing smooth functions on R" and let /o (R") be the subspace of . (R")
consisting of functions f with f vanishing in a neighborhood of the origin, where f denotes
the Fourier transform defined as

~

f&=7NHE) = /R e dx, (x E) = ) k.
k=1
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Then, for p € (1, 00), it is known that

IO = N fllps f € LR), (1.1)

where || - ||, denotes the L? norm and [|i(f)|l, = |l f|l, means that there exist positive
constants Cy, C, independent of f such that

Cillfllp = leHllp = C2ll fllp-

We can see that (1.1) is equivalent to

Oy = 1f . f € A®), (1.2)

where
1/2

* d
V(X)) = (fo lfx+D+ fx—1) —2f(x)|273t>

The relation (1.2) can be used to characterize the Sobolev space wlhep,
We write

f(X+t)+f(x—t)—2f(X)=2</Sof(x—t9)d0(9)—f(X)>,

where SO = {—1, 1} and ¢ is a measure on S such that o ({—1}) = 1/2, 0 ({1}) = 1/2. By
this observation we generalize v to higher dimensions as follows. Let n > 2 and

o 2 4\ 12
A(f)(x):(/(; ’f(x)— t3) :

where do is the Lebesgue surface measure on S"~! normalized as [,-; do = 1. We also
write

O f(x) ;:/ f(x—ly)dU(y)Z][
o1 s

1 fx—1t9)do(6)

sn—

fdoy, =0 (S(x, 1) / fdoy,,

(x,1) S(x,1)

where S(x,7) = {y € R" : |[x — y| = ¢} and oy is the Lebesgue surface measure on
S(x, t). We note that if f is a locally integrable Borel measurable function on R”, then the
integral ©; f (x) is defined for all x € R” and r > 0 and it is a Borel measurable function in
(x,1) € R" x (0, 00) (see [3, pp. 74-75], [14, pp. 1285-1287]). If f is a locally integrable
Lebesgue measurable function, then ®; f(x) is defined for a.e. x € R” and all # > 0 and
measurable in (x, t) on R" x (0, 00); also ®; f(x) is measurable on R" for each fixed ¢ > 0.
When n > 3, this can be seen from [14, pp. 1285-1287]), where the condition n > 3 is
assumed to apply the maximal inequality (8-12) there. When n = 2, we also have similar
results for ®, f(x), since we have a maximal inequality analogous to (8-12) of [14] by [2].
Let S(f) = A(1 f):
2 4, 12
[73 )

S(F)(r) = ( f
0
FUNE) = QrlE) P f &) (13)

W@ = [ hHe=mdew

where for 8 € R, Ig is the Riesz potential operator defined by

for f € A.
The following is known ( [5]).
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Theorem A Suppose that 1 < p < oo, n > 2. Let f € S (R"). Then
SO =1 f Nl p-

This is used to characterize the Sobolev space WLP(R") in terms of A( f). Theorem A was
motivated by results of Alabern et al. [1], where the operator
2 12
dt
t3> (1.4)

E(f)(x) = ( / ‘f(X) - ][ FO)dy
0 B(x,t)
][ F)dy = |B(x,r>|—1/ FO)dy.
B(x,1) B(x,t)

was considered and used to characterize W!-7. Here

where B(x, t) is a ball in R” with center x and radius ¢.
We generalize the operators A and S defined above. Let

5 1/2
dt
11+2<¥> , (1.5)

2 1/2
dt
1‘1+20‘> . (16)

A = (/0 s [ re=mdem

Sa(S)(x) = (/
0

Then, we have an analogue of Theorem A for 1 < o < 2 (see [9]).

Ja(N)x —1y)do(y)

Lo (f)(x) —/

Ssn—

Theorem B Let Sy, be as in (1.6) and f € SH(R"), n > 2. Then if | < a < 2, we have
1Se (M = NNl p

forl < p < oo.

This can be used to characterize the Sobolev spaces W*? for | < o« < 2 by A, in (1.5).
In this note, to characterize W% ? for 2 < o < n, we generalize S, by considering iterated
averaging operations. For k € Z (the set of integers), k > 1, let

0 2 \"?
A&"’(f)(x>=(/o (=00 £ )] tw) : (1.7)
i~ 2 dr \ /2
Sé")(f)(x)z(/o (1 = 00 Lo ()| tlTZ) , (1.8)

where [ is the identity operator and

k
N [k k!
ety (el (Y=t
(I -0 ;( G)en )=
O f(x)= fror k- ko (x), j =2,
—_—
J

O, f(x) =0, f(x) = /S  fa =)o) = f o). 0 =00,(50.0) o0,

We note that f * o, (x) = fS(X b fdoxs.
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If k =2in (1.7), we have
2 g 1/2
1142 ’

where (f)s(y.) = fsy.p) f- We note that A = Ay, Ay = A, S5 = Sy, 1 = S.

Also, we consider discrete parameter versions of Ag‘) and Sék):

Aff)(f)(x)=(/ ‘f(x)—Z][ f(y)dax,z(y)-i-][ (Dsn does(3)
0 S(x,t) S(x,t)

00 172
2
BE (@) = ( > a—enfrw) 2‘”“) : (1.9)
£=—00
00 5 1/2
UL () x) = ( > |- e tr ) 2”“) : (1.10)
{=—00

Let]l < p <00,0 <a <nandw € A, (the weight class of Muckenhoupt). We recall
that a weight function w belongs to A, if

p—1
sup <|B|_1/ w(x)dx) <|B|_1/ w(x)—‘/("—”dx> < 00,
B B B

where the supremum is taken over all balls B in R". Let L, be the weighted Lebesgue space
consisting of all functions f such that

1/p
1f 1Ly = (fR If(x)l”w(x)dx) - oo

Define the weighted Sobolev space Wy, ”, 0 < a < n, by
WoP ={f eLb: f=1I,(g) forsomeg e LP}, (1.11)
where f = I,(g) signifies that

f f(x)h(x)dx:/ g(x)Iy(h)ydx forall h € ;
R" Rll

such function g € LY, is uniquely determined by f, since I, is a bijection on .%, which is
dense in L” (w™P'/P), the dual space of L”(w), with 1/p + 1/p’ = 1. Define g = I_(f),
and for f € WP let

1flpow = 1f lpow + - () pw- (1.12)

(See Remarks 1.5 and 1.6 below.) We simply write W% ” when w = 1 (unweighted case). In
this note, we mainly concentrate on the case 1 < o < n.
We shall prove the following theorems.

Theorem 1.1 Suppose that 1 < a < min(2k,n), 1 < p <oocandw € Aj. Let Sék) be as in
(1.8). Then we have

IS pw = N fllpws [ € SR,

Theorem 1.2 Let 1 < a < min(2k, n) and let A be as in (1.7). Letw € A, with 1 < p <
oo. Then, f is in the space Wy'¥ if and only if f € LL and Aék)(f) e LL; also, we have

e ()l pow = AL o
where [_,(f) is as in (1.12).

@ Springer
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Theorem 1.3 Suppose that 1 < « < min(2k,n), 1 < p < ooand w € Ap,. Let Uo((k) be as
in (1.10). Then we have

IO pow = 1 fllpws € TR,

Theorem 1.4 Let 1 < o < min(2k, n) and let Bék) be as in (1.9). Suppose that 1 < p < 0o
and w € Ap. Then, f belongs to WP if and only if f € LY, and Bé,k)(f) e LY also, we
have

e () pow = IBE O p -

Analogues of Theorems 1.1 and 1.2 are obtained by Theorems 4.1 and 4.2 of [12], where
averaging over spheres is replaced by averaging over balls.

We shall prove Theorems 1.1 and 1.3 by applying results for more general Littlewood-
Paley operators. Let  be a function in L' (R") satisfying

Y(x)dx =0. (1.13)
R}l

The Littlewood-Paley function on R" is defined by

gy () = </O 1 )] 7) , (1.14)
where ¥, (x) = t "y (r~'x). Also a discrete parameter version of gy is defined by
0 1/2
Ay (fHx) = ( > !f*wm!z) : (1.15)
{=—00

The following results are known.
Theorem C Suppose that

(1) there exists € > 0 such that B¢ (¥) < 0o, where Bc(¥r) = fIX\>1 [ ()| |x|€ dx;

(2) there exists u > 1 such that C, () < 0o, where C,({¥) = f|x|<1 Y (x)|" dx;
(3) Hy belongs to LY(R™), where Hy (x) = supy >, 1Y (D).
Then

gy (N pw = Cpwll fllpw

forall p € (1,00) and w € A,. If we further assume the non-degeneracy condition:
SUp;~o |1ﬁ(té§)| > 0 for all & # 0, then we also have the reverse inequality and hence

1 llpw = gy ()l pows [ € Lip, for p € (1,00) and w € A
Theorem D Let B.(Yr), Hy be as in Theorem C. Suppose that

(1) there exists € > 0 such that Bf (W) < oo;
(2) there exists 8 > 0 such that | (£)| < C|E|7® for all ¢ € R" \ {0};
(3) the function Hy is in LY®RM).

Then
1Ay (Olpw < Cpuwll fllpw

for every w € A, and every p € (1, 00). If we further have the non-degeneracy condition:
SUPyc7, Ilﬁ(Zzé)l > 0 for all & # 0, then the reverse inequality also holds and hence
11w = 1Ay (Dllpws | € L, for p € (1,00) and w € Ap.

@ Springer



66 Page6of 19 Partial Differential Equations and Applications (2022) 3:66

See [8, 11] for Theorems C and D.

Remark 1.5 The definition (1.11) of Wy,'” is the same as that in [9, 11], where W, is
defined by using the Bessel potentials (see [13, Chap. V] for related results). This can be seen
as follows. The space W,,"” with the definition (1.11) is characterized by a certain square
function in [12, Theorem 1.5]. The same square function also characterizes the space woP
defined in terms of the Bessel potentials, which is shown in [11, Corollary 5.2]. Consequently,
we see that the two definitions coincide.

Remark 1.6 Let.y)(IR") be the subspace of . (IR") consisting of functions f with fvanish-
ing outside a compact set not containing the origin. Then we can replace . (R") by .0 (R")
in the definition of the weighted Sobolev spaces Wy, ¥ without changing the definition of the
spaces. This is because .%o (R") is also dense in LY, for w € Ap, 1 < p<oo.

In Sect. 2, we shall prove Theorem 1.1 by applying Theorem C. Theorem 1.2 will be
proved in Sect. 3 as an application of Theorem 1.1. We shall prove Theorem 1.3 in Sect. 4
by applying Theorem D. Also, in Sect. 4, Theorem 1.4 will be proved by using Theorem
1.3. In Sect. 5, analogues of Theorems 1.3 and 1.4 for « = 1 will be presented. This will be
accomplished by applying ideas of [5] in an essential way. Finally, in Sect. 6 we shall have
some further remarks and results.

2 Proof of Theorem 1.1

We write
k N
(I—0n' =1-N, Ntz—Z(—w(.)@{. @1
; J
j=1

We note that N; f = f * u, with a measure y;, t > 0, satisfying

N = [ 1=y auom = [ 1@ -mduo,
k k .

i) =—Y (1) (J)?r(ré)h (2.2)
j=1

and hence [7; (0) = —Z’;Zl(—l)j(l;) = 1, where o = 1. Using [ dp = 1, for f € A,
we see that '

(I — O Iy f(x) = Lo f(x) — Io f % pr (x)
= /R o f () = Lo f (= 13) dp(y).

Recall that if L, (x) = t(a)|x|*7", 0 < @ < n, with
(@) = (/2 —«a/2)
= RaT (a)2)”

then Ly (§) = (27|€]) ™. Let

{(x) = La(x) — fRn Lo(x —y)du(y) = /Rn (La(x) = Lo(x = y))du(y). (23

The following results will be used in estimating ¢.

@ Springer
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Lemma 2.1 We have the following properties of .

(1) the measure w is compactly supported;
(2) for any compact set K in R" and «, 1 < a < n, we have

sup
xekK

/n Lo(x —y)dp(y)| < oo;

3) f]R" ydu(y) =0if1 < |yl <2k —1, where y = (y1, ..., Vn) is a multi-index;
VYI

Vi €Ly =0, |yl =yi+-+yuy =y oy

Proof We can see the assertion of part (1) from
a k
w=— ;(_1)/<J.>0</>’ oD =gx-no, j>2, oV=g
= 7

since o is concentrated on $"~!. To prove part (2), we first see that, by a direct computation,

sup/La(x —y)do(y) < oo,
xekK

where we are assuming that « > 1. By induction, this holds with o replaced by o /) for any
2 < j <k, which easily implies what is claimed.
Proof of part (3). Since 1 — 6 (§) = 0(|$|2) for || < 1, we see that

k
-k .
1= A@E) =1+ (-1 <J.)6(5)~' =1 -6 =008

Jj=1

for |£| < 1. On the other hand, applying Taylor’s formula for f1(§) at & = 0, we have
AE =1+ Y 07 Q0E" + 05

1=]y|=2k—1

for |£] < 1, where ¥ = 8{/1 L = (808 ... (3/0E,)Y". Thus we see that

Y e 0)E = 0(E*

1<|y|<2k-1

for |€| < 1. It follows that 87 i(0) = 0if 1 < |y| < 2k — 1, which implies what we need. O

We apply Taylor’s formula in (2.3) for Ly (x — y) as a function of y at y = 0. Then, by
(1) and (3) of Lemma 2.1, since [«] < 2k — 1, if @ < 2k, we have, if |x| is sufficiently large,

)] < Cleje =L, (24)
Combining (2.4) with part (2) of Lemma 2.1, we see that

Clx|*™ if |x| <1,

2.5
Clx[@ =1 jf |x| > 1. @)

IK(X)IS{

It follows, in particular, that ¢ € LY (R™). Also, by (2.3) and part (3) of Lemma 2.1 we have
£(E) = QrlE) (1 — p&) = 0(|&|7*H)

@ Springer
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for |&] < 1. Since o < 2k, this implies that E(O) =0, or fg“ = 0. Also, we see that

SuUp;~o |2(te’§)| > 0 for every & # 0, since i(§) — 0 as || — oo. By this and (2.5) we
can apply Theorem C to conclude that || g; ()l p,w = | fllp,w for f € LY, p e (1,00) and

w € A, which implies Theorem 1.1 since S (f) = g¢ (f).

Remark 2.2 1t is known that

|22 — xP)xP] TV 0 < x| < 2;

oxo(x)=
0, otherwise.

Thus o ) is a compactly supported radial function when j > 2, where o /) is as in the proof
of Lemma 2.1.

3 Proof of Theorem 1.2

We can easily prove the following two lemmas (see [12] for the proofs).

Lemma3.1 Let f € LY, where1 < p < oo and w € Ap. Let m be a positive integer and
define fouy = fXE, with

En={xeR":|x| <m,|f(x)| <m},

where x g denotes the characteristic function of a set E. Then we see that fi,) — f almost
everywhere and in LY asm — oo.

Lemma3.2 Let1 < p <ooand f € L5 withw € Ap. Choose an infinitely differentiable,
non-negative, radial function ¢ on R" such that ¢ (&) = 1 for |&| < 1, supp(¢) C {|&]| < 2}.
Define n©) e S fore € (0,1/2) by

1 E) = pet) — p(e'8).

Then n© (&) = /2 EN©&). Define f© = f . Z-11n©). Then f© — f almost
everywhere and in LY, as € — 0.

Also, we need the following.

Lemma 3.3 Suppose that f € L}, w € Ap, 1 < p < 0o. Let f© be as in Lemma 3.2. Let
du be as in (2.2). Then we have the following.

(1) there exists a sequence {€}}, €x — 0, such that

/S = duy) - /S L fe—y)dpy) 3.1
fora.e. (x,t) € R" x (0, 00);
(2) we can find a sequence {€i}, ¢ — 0, such that we have the convergence (3.1) for a.e.

x € R" and for all t = 2¢ with ¢ € 7.

Proof LetKy = B(0, M)x (0, M),M = 1,2,3,....Bypart(l)of Lemma 2.1, the measure
w is supported in B(0, N) for some N > 0. We see that

@ Springer
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o

<

f O —tmyduy) - / flx = WW)‘ dxdi

[ 1O = 00| dredinly)
B(0,N) B(O,M+MN)

1/p
<cm / (|row-rw| wwar)” / weo P Pax |
B(O,M+MN) (0,M+MN)
where the last inequality follows by Holder’s inequality. By Lemma 3.2, it follows that
Iye — 0as e — 0. Therefore, there exists a sequence {¢;} for which we have (3.1) for
a.e. (x,t) € Ky . Applying this arguments, we can find sequences {e,EM)}, M=1,2,3,...,
such that {e,EMH)} is a subsequence of {e,EM)} and we have

1w —dne > [ = du)

for a.e. (x,t) € Kp. Thus we can get the conclusion of part (1) of the lemma by applying
the diagonal process arguments.

Part (2) can be shown similarly, since we have the convergence (3.1) for a.e. x € R” and
for each fixed ¢ = 2¢ with some {€;} by the arguments of the proof of part (1). O

Ford € (0.1/2), e Rand f € L. let I (f) = 77! ® &)@ |&)F) * f. where
7® is as in Lemma 3.2.

Lemma3.4 Let f € LU, w e A, 1 < p < coandlet f© be as in Lemma 3.2. Let AY be
as in Theorem 1.2. Then

2
TAD G o = 1L F Oy 0 <€ <1/2.

Proof For f € LP e e (0, 1/2) and a positive integer m, define f,, c € ) by fin.e =
(fm)'©, where f() is as in Lemma 3.1. By Theorem 1.1 we have

2
IAD G Mo = 18D )l pw = 1L el s (3.2)

where we have used the relation I_ f, ¢ = IS,{ 2 Sme-

Let K be a compact set in R”. Then we see that f, (x) — f(E) (x) uniformly for x € K,
since by Holder’s inequality, we have

fne@) = FO0)| = ‘ / o) = FONF ) x — y)dy‘

< fomy — Fllpow (/

Thus by Lemma 3.1 we can easily see the uniform convergence claimed. It follows that
e @) = fae % pe(x) = fFO@) — fO % p(x) asm — ooforallx € R" and t > 0
(see (2.2)). Therefore, recalling the definition of A,(Xk)
(3.2), we see that,

1AL Dlpw < lim inf AL (fon, ) p.

.. 2 2
< Climinf [10% fn cllpw = CIL? £l o, (3.3)
m—00

—o —o

/ 1/p
p ’
F ) =y wey dy) :

and noting (2.1), by Fatou’s lemma and
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(€/2)
I—a

where we have the last equality since is bounded on LY. In particular, we see that

k
Ag)(f©) e L.
To complete the proof of Lemma 3.4, we first note that

IAL () — A (fr Mlpow < IAL @ = frn Ol pw
= 1AL f = Fom) Dl p,w- (3.4)

We can see that

(i) = fom) @ @) = (fijy = Fom)© # 1 (x) = (f = fon) Q@) = (f = Fom)'@ * s (x)

as j — oo for all x and ¢, as we have shown above that f, ¢(x) — fin.e * w;(x) —
F©(x) — £© % 1, (x). Thus by Fatou’s lemma we see that

1AL (F = fon) Dl < iminf 1AL (S = Son) Dl (3.5)
Since (f(j) — f(m))(é) € S, by Theorem 1.1 we have

IAL (fiy = For) O pow 2= M= ((FGy = Fo) M prw
=11 (fijy = for) Dl po-

Since f(n) — fin L%, from this it follows that

im AP (fi) = Fon) Dl pow = 0,
J,m—>00

which combined with (3.4) and (3.5) implies that AL (£,,.c) & AL (£©)in LY asm — oo.
Thus, letting m — oo in (3.2), we have the conclusion of Lemma 3.4. O

Furthermore, we need the following.

Lemma3.5 Letw € A, 1 < p < oco. Suppose that f € Wy and g = 1_o(f) (0 < a <
n). Then we have

Ifo{z)f(e) =g,
Proof For h € .7, we see that
/g(é)(X)Ia(h)(X) dx = lim /gm,e(x)la(h)(x)dx
m—00

= lim [ I/? (g ) (x)h(x) dx

m—>00

= / 1/ (g€ (x)h(x) dx, (3.6)

where g,  is as in the proof of Lemma 3.4. We rewrite the integral f 891, (h) dx as follows:
[ ¢Ownmwadx = tim_ [ g t0000dx

= mlem/g(m)(x)Ia(h(s))(x) dx = /g(x)la(h(e))(x) dx. (3.7)

We have [ gly(h'®)dx = [ fh'© dx by the definition of g = I_o(f). Using this in (3.7),
we see that
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/ 8 W) Io(h)(x) dx = / f@hQ @) dx = lim / Sy @) (x) dx

=m1£noo/fm,e(x)h(x)dx=/f<€>(x)h(x)dx. (3.8)

By (3.6) and (3.8) for all & € .#)) we have
f 1P (N (0 (x) dx = / FOh(x)dx.

Thus we see that Io(f/z) () = £©. We note that IO(f/Z) and Ifa/z) are bounded on L% and
the mapping f — f(© is also bounded on L}, Therefore, using Lemma 3.1 we have

—o

2 2 . 2
1P = 12U 9y = tim 12U (gme)).
m—00
Since gp,e € S and n(€/2 =1 on the support of .7 (g, ), we easily see that
2 .
1P U (g (x) = / 0/ (£))2.F (g, ) (€)X 0 dg

= [ Fano©m 9 de = g0
Using this, we see that
2 .
ISJ{ )(f(e)) = lim gp.= g(€)~
m— 00
This completes the proof of Lemma 3.5. O

Proof of Theorem 1.2 Let f € Wyy” and g = I_o(f). From Lemmas 3.4 and 3.5, it follows
that

TAL F N pw < Cllig N pw < CUM @l pow < Cllglpows

where M denotes the Hardy-Littlewood maximal operator, which is bounded on L. From
part (1) of Lemma 3.3 and Lemma 3.2, we can find a sequence {¢;} such that FeD(x) —
FED % (x) = f(x) — f % (x) forace. (x, 1) € R" x (0, 00) as j — oo. Therefore, by
Fatou’s lemma we have

1A (D) llpw = tim inf AL (£ paw = CllEa f .- (39

Conversely, we assume that f € LY and .A,(),k)( f) € LY. Then, Minkowski’s inequality
and the LY, boundedness of M imply that

TAL N pow < CIMAL N pw < CIAL O pro- (3.10)
Using Lemma 3.4 and (3.10), we have

2
sup 112 O <C sup AL < CIAL ) -
€€(0,1/2) €€(0,1/2)

By compactness, we can find a sequence {¢;},0 < ¢; < 1/2, and a function g € L%, such
thate; — 0,

lgllpw < CUIAL (O pw (3.11)

and Ifeof/z)f(e-f) — g weakly in L% as j — oo.
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Now we prove that f = I,g. Let h € .%. From Lemma 3.2, we see that f€) — f in
LY, as j — oo. Using this, we have

/ f@h(x)dx = lim | f€)(x)h(x)dx = lim 1im/ Jme; (O (x)dx
R” J— o0 Jj—>0o0m—>00 Jpn '

Rn

= lim lim/ I_Q(fm,gj)(x)la(h)(x)dx.
R}’l

j—o00m—00

Thus, noting that I_o (fin.e;) = IEZ/Z)(fm,q), we see that
/ FOh(x)dx = lim lim / 197 (fon e ) (O L (W) (%) dx
Rn Jj—>0o0om—>00 Jpn

- _lim/ 15;'/2)(f<ff>)(x)1a(h)(x)dx:/ g(0) o (W) (x) dx.
n Rn

J7 O JR

It follows that f = I, g by definition. Thus (3.11) can be restated as

e fllpow = gl pw < CIAL (Ol p.uw- (3.12)
By combining (3.9) and (3.12), we conclude the proof of Theorem 1.2. ]

4 Proofs of Theorems 1.3 and 1.4

Let ¢ be as in (2.3). In the proof of Theorem 1.1 in Section 2, we have already seen that
¢ € L'(R") and [ ¢ = 0. We observe that U (f) = A (f). By (2.5), we can see that £
satisfies the conditions (1) and (3) of Theorem D. To see the condition (2) of Theorem D, we
recall that

L) = Qrlg) (1 — (&)

Obviously, this implies the condition (2) of Theorem D and also the non-degeneracy condition
required in Theorem D. So we can apply Theorem D to get Theorem 1.3.
Next we prove Theorem 1.4.

Lemmad.l Letw e Ay, 1 <p <ooand f € LY. Let f© be as in Lemma 3.2. Let B&k) be
as in Theorem 1.4. Then

2
1BE N = 1L Ol s 0 <€ <1/2.

Proof For f € L}, let f,. € .%) be as in the proof of Lemma 3.4. Applying Theorem 1.3,
we have

2
1BL o)l pow = 1L U fon Ml pow = 1L Fonelp @.1)
Using (4.1) and arguing as in the proof of Lemma 3.4, we can prove Lemma 4.1. O

Proof of Theorem 1.4 The proof is similar to that of Theorem 1.2, so it is brief.
Suppose that f € W,,'” and let g = I_,(f). By Lemmas 4.1 and 3.5, we have

IBEF N pw < Clliglpw < CUM @l pw < Cllglpow-

Thus, as in the proof of (3.9), by part (2) of Lemma 3.3, Lemma 3.2 and Fatou’s lemma we
see that

IBL M pw < Clll—a fll poaw- 4.2)
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Next, we assume that f € L% and B (f) e LY. Using Minkowski’s inequality we see
that

IBEF N pw < CUMBE NN pow < CIBE ) prw- (4.3)
By Lemma 4.1 and (4.3), we have

2
sup 112 O, <C sup 1BOG Dy < CIBE N pow-
€€(0,1/2) €€(0,1/2)

So, we can find a sequence {¢;} and a function g € L such that 0 < €, <1/2,¢;, — 0,
Iglp.w < CIBYL ()l p.uw (4.4)

and Ifo{/z)f(é-/) — g weakly in L, as j — oc.
We can prove that f = I, g as in the proof of Theorem 1.2. So by (4.4) we have

e fllpw = lgllpw < CIBE (Pl p,w- 4.5)
We conclude the proof of Theorem 1.4 by combining (4.2) and (4.5). O

5 Characterization of W,:,’p by discrete parameter square functions

In [5] Aj is used to characterize W,L’p for1 < p < oo, w € A,. Here we consider By and
prove a similar characterization by 5B, where B = Bfl) (see (1.9)).

Theorem5.1 Let 1 < p < oo, w € Ay and f € LY. Then, f € WJ,’p if and only if
Bi(f) € L ; further

1 (M pow = 1B1(H pow-

Let Rj, 1 < j < n, be the Riesz transform:

Yj
|y|n+1 dy,
where C, = ['((n + 1)/2)/7"*+D/2 1t is known that Z (R, f)(€) = (—i&;/IED (&),
fes.

To prove Theorem 5.1 we need the following results.

R;(f)(x) =P-V~Cn/f(X—Y)

Lemma5.2 Let qb(j)(x) = c;lxj lx|™" xB(0,1), J =1, ..., n, where c, is the surface area of
§"~1. Then we have the following.

(1) Re(@D) € L'R") for1 < j.k <n. |

@) FRe@)(E) = (—i&e/IENF @V () and [ R (@) (x)dx = 0for 1 < j k <n.
B) |[Z@YUN)E)| < Cmin(E°, |€]7€) for & € R\ {0} with some € > 0.

@) supyez [ F(R;@INQE)] > 0fors € R\ (0.

Proof Proof of part (1). This is valid since ¢/ is essentially an atom for H!(R") (the Hardy
space) (see [4, Chap. III]). Here we give a proof for completeness. For [x| > 2 we have
[Re(¢9)(x)] < Clx|~"~! as follows. Since fqb(/) = 0, we see that
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Sl )
/|y<1 <|x — y|ntl |x|n+1>¢ () dy

< c/ 6D () dy < Cla " 6]

IR (@) ()] = |C,y

Also, we note that ) € LP(R") for p € (1, n/(n — 1)). Thus by Holder’s inequality and
the L?- boundedness of Ry, for p € (1,n/(n — 1)) we see that

/H . IR (@) () dx < |B(O, 2)|V?' | Re (@), < Cllp ]l

Collecting results, we have R;(¢)) € LI(R™).

Proof of part (2). Let 1 < p < n/(n — 1). We take a sequence {f¢};2, in & such
that f, — ¢ in L? as £ — oo. Since ¢/ is supported on |x| < 1, we may assume that
supp(f¢) C B(0,2) and hence we also have f; — ¢ in L. Thus ﬂ(é) — F(pV) (&) for
every &. By the L? boundedness of Ry, it follows that Ry (f¢) — Rg (@YY in LP. Applying
the inequality of Hausdorff-Young, we see that .Z (R (f¢)) — Z(Rx(¢"))) in L?"; also we
may assume that .Z (R (fe)) — Z(Ri(¢)) a.e. by taking a subsequence, if necessary.
Thus, for almost every & we have

FRGD)E) = i _ —i6k 2 —i8k ()
F(Re(dV))(E) = lim F(Ri(fo))(§) = hm fe@) = ——F(@")(). 5.1)
£—00 t—oo |§] &1
Since Ry (¢)) e L by part (1), Z (Rx(¢))) is continuous on R”. Also, .Z (¢\)) is con-
tinuous on R”. Thus by (5.1) .Z (R (@) (&) = (—i&/|E).F (¢)(£) holds for every
§#0.

Next, we observe that
769 = ‘f¢<f>(x><e—2”"<xf> — | =il [0 @il ax < il 652
Thus

F () E)| < Cl&l,

|7 (Ri@ @) = i

which implies .7 (R (¢))(0) = 0, in other words, [ Ry (¢¥))(x)dx = 0.
Proof of part (3). We write .7 (¢)) as follows.

1
F(pV)(E) = f ¢V (x)e D dx = f / 0;e~ 27109 4o (0 dr
0 Jsn-1

_ (1-— e—lﬂi(@,%’))
— /S O e Ao ©) (53)

Thus
[F@N®) < [ 1016 1 dot®) = clel ™,

where 0 < € < 1 and C is a positive constant independent of £. From this and (5.2) we can
deduce the inequality claimed.
Proof of part (4). We recall that

. 2 T2 pClED
2mi(B,£) (n—2)/2 .
/s» | do (@) = L ABETED — v e,
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where Jg denotes the Bessel function of the first kind of order S (see [15, p.154]). It follows
that

o 1 1§
o 2mi(0.8) — ; - 21y
/SH Oje do(©) = — /3 V(E]) = —— €] V(D).

Using this in (5.3), we have

i & ! ’ §j
— \% dr = =W ,
27 6l Jo (rl&hdr €] ((17)]

where W is an analytic function defined by

F (W) () =

. 1
W) = L/ V/(ru)dr.
2w 0

So, using part (2), we see that

n n 2

. &7
D F(Rj@I)E)| = Z@Wﬂsn = [W(ED)| for& e R"\ {0}.

j=1 j=1
Thus, we need to show that

sup |W (2% > 0 for& € R™ \ {0}. (5.4)
LeZ

We give a proof by contradiction. We first note that W(0) = 0. If there is & € R" \ {0}
such that W(2~¢|£]) = O for all £ € Z, then we have a sequence {2_‘Z|§-‘|}§‘;1 of distinct
points such that 27tEl > 0and W2 f|&)) = Oforall £ = 1,2, .... This implies that the
function W is identically O by the uniqueness of analytic continuation. Thus we have reached
a contradiction, and hence we have (5.4). O

To prove Theorem 5.1, we apply the following result.

Theorem 5.3 Suppose that 1 < p < coand w € Aj. Let Uy = Ul(l), where Ul(l) is as in
(1.10). Then we have

10 (Ol pow = N fllpw, [ € LRY.

Proof Let f € .#y. Then by [5, Lemma 2.1] we see that

1 X —
L(f)(x) —/ Li(f)(x —ty)do(y) = f/ <V11f(y), yn> dy, (5.5)
sn=1 cn JBn lx — vl
where ¢, is the surface area of $"~! as above and Vg =(01g,...,0,8). Let

YD) =R x), v =) ¢y
j=1
Then by (5.5), we have

L(f)(x) — /Sn_l L) (x —ty)do(y) =t(f * ¥ (x)).
Thus
Ui(f) = Ay (f). (5.6)
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We note that Av/(j) (f) = Ay (R; ). Using part (3) of Lemma 5.2, we can easily see that
Theorem D is applicable to A to get its L% boundedness. Thus, by Theorem D and the
L? boundedness of R j» we see that

1AY (Ollpw = D18y (Dl pow

j=1

=Y 18y R Hllpas < C Y R flpow < Clfllpw 57

j=1 j=1

[m}

To prove the reverse inequality, we apply the following result, which is essentially [11,
Theorem 3.6].

Lemma5.4 Lety € L'(R™) satisfy (1.13) and let Ay, be as in (1.15). Suppose that
1Ay (N llpw < Cllflpw, | €S,

for all w € Ap, and all p € (1,00). Further, suppose that the function m(§) =

> |g&(2“§)|2 is continuous and strictly positive on By = {1 < |&| < 2}. Then the
reverse inequality

[fllpw = ClAY (Dl pw. [ €F,

also holds for all w € A, and all p € (1, 00). Thus || fll pw = 1Ay (Ol p,w, f € 0, for
pe(l,00)andw € A,

Let

2
n

b = Y IFmeol=Y Y7 (¥?)e

{=—00 {=—o0 | j=1

Let N be a positive integer and

N
byE) = ) 1Z@QE)P.

t=—N

Then by is continuous on By, where By is as in Lemma 5.4. By (2) and (3) of Lemma 5.2
by converges to b uniformly on By and hence b is continuous on By. Also, Lemma 5.2
(4) implies that b is strictly positive on By. Thus, taking into account (5.7), we can apply
Lemma 5.4 to Ay to get || fllp,w < CllAy (f)lp,w- Recalling (5.6), we conclude the proof
of Theorem 5.3. ]

Proof of Theorem 5.1 The proof is similar to those of Theorems 1.2 and 1.4. We need the
following.

Lemma 5.5 Supposethatw € A, 1 < p <ooand f € LY. Let £© be as in Lemma 3.2.
Let By be as in Theorem 5.1. Then

2
1By (L pw = 1P £ Oy, 0 <€ <1/2.
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Proof Using Theorem 5.3, we have

1B1Fn o = 1011 fon )l pow = 1L Fonell oo (5.8)

where f € LY, and Sfm.e € 0 1s as in the proof of Lemma 3.4. We can prove Lemma 5.5 by
applying (5.8) and by arguing similarly to the proofs of Lemmas 3.4 and 4.1. O

Applying Lemma 5.5, we can prove Theorem 5.1 in the same way as we have proved Theorem
1.4 by applying Lemma 4.1. O

6 Some further remarks and results
6.1 On availability of polarization techniques

In proving Theorem 1.1, if we have the inequality || Sék) (Npw < Cll fllp,w,thenthe reverse
inequality can be shown by the polarization techniques as in [5, 9] by using the identity
||Sék)(f)||2 = c|| fll2 (see [4, Chap. V, p. 507, 5.6 (b)]). In proving Theorems 1.3 and 5.3
we have difficulties in applying similar arguments due to absence of the corresponding L>

equalities. So we need to apply different arguments using non-degeneracy.

6.2 Commentson S,

In theorems of this note, we have considered square functions involving averaging over
spheres S(x, 1) = {y € R" : |x — y| = r}. To define analogues in metric measure spaces
of those square functions involving averaging over S(x, t), we have difficulties in defining
suitable measures on the spheres (boundaries of balls) in general spaces. This is not the case
for square functions involving averaging over balls like the one in (1.4).

On the other hand, in relation to harmonic analysis on the Euclidean spaces, the square
function Sy (f) in (1.6) has an interesting pointwise relation with the square functions arising
from the Bochner-Riesz operators. Let

SECF) (o) = /

[€]<

FEA = REPHF 70 ag
R

be the Bochner-Riesz mean of order 8 and let o be a Littlewood-Paley operator defined as
00 5 2 1/2
a0 = ([ [rernsinl arrr)
0

) </°OO =26 (Sk(r - Sl’i‘l(f)(x))\2 dR/R)l/Z.

Then the following result is known (see [6, 10]).

Theorem E Suppose that 0 < o < 2 and p = a + 5. Then we have

op(f)(x) = Se (f)(x),
for f € Fp(RM).
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6.3 Discrete parameter square functions defined with repeated uses of averaging
operations over balls

We can also consider a discrete parameter version of the square function in (1.4) as follows:

) 1/2
225) )

Furthermore, we can consider analogues of Bék) (f) and Uo((k) (f)in (1.9) and (1.10), respec-
tively, where the averaging operation f xo; is replaced by f*®, with ® = |B(0, 1)|~! xp(0.1),
and we can prove analogues of Theorems 1.3 and 1.4, as follows.

We define AY f(x), j = 1,by A £(x) = f x &Y (x), where

V)=o), V) =D -xd(x), j>2.

J

( ‘f (x) — f »dy
{=—00 B(X

We also write A; f for At1 f. Let I be the identity operator and for a positive integer k we
consider

(I =A)f0) = (x>+2< 1)/() f).

For0 < o < n,let

o0

12
2
G () = ( > |0 = a0 rw) 2—2‘“) :

l=—00

and

00 172
2
RO = ( > U= A () 2‘”‘) .

{=—00
We state the following results without proofs.

Theorem 6.1 Let0 < @ < min(2k,n), 1 < p <ocoandw € A,,. Then

IRE P lpw = 1 flpows € SR
Theorem 6.2 Suppose that1 < p < oo, w € A, and 0 < a < min(2k, n). Then f € WP
ifand only if f € L} and Q(k)(f) e LL; further,

M=o () pw = 1GE OIpow-

Theorems 6.1 and 6.2 can be shown arguing similarly to the proofs of Theorems 1.3 and 1.4,
respectively. Analogues of Theorems 6.1 and 6.2 for continuous parameter square functions
are obtained in Theorems 4.1 and 4.2 of [12], respectively, where more general settings are
considered.
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