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Abstract

We proposed a simple extension of the standard model which contains new fermions and scalars.

This extension will perhaps solve the problems of the early universe and also explain the origin of

the CP violation. In the inflation cosmology, we proposed that inflaton is the linear combination

of the introduced singlet scalars. This new-defined inflaton gives the new features in both inflation

and reheating scenarios. Also, we expect the new fermions can give the suitable parameters which

solves the phase in CKM and PMNS matrices. Finally, we show that both introduced fermions

and scalars can have a new feature in low-scale leptogenesis.

keywords singlet scalars, inflation, leptogenesis, CP violation
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I. THE LAGRANGIAN

We will start our discussion with the introduction of the Lagrangian

−LY =yDσD̄LD̄R + yEσĒLĒR +
3∑
j=1

[
yNJ
2
σN̄ c

JNj + yDjSD̄LdRj + ỹdjS
†D̄LdRj

+ yejSĒLeRj + ỹejS
†ĒLeRj +

3∑
α=1

h∗αjηl̄αNj

] (1)

and potentials

V =λ1(H†H)2 + λ2(η†η)2 + λ3(H†H)(η†η) + λ4(H†η)(η†H) +
λ5

2M∗

[
σ(η†H)2 + h.c

]
+ κσ(σ†σ)2 + κS(S†S)2 + (κHσH†H + κηση

†η)(σ†σ) + (κHSH†H + κηSη)(S†S)

+ κσS(σ†σ)(S†S) +m2
HH†H +m2

ηη
†η +m2

σσ
†σ +m2

SS
†S + Vb.

(2)

We have introduced the extension of SM with global U(1) × Z4 symmetry and several

additional fields. We introduced vector-like down-type quarks (DL, DR), a pair of vector-

like charged leptons (EL, ER), and three right-handed singlet fermions Nj, j = 1, 2, 3). We

introduced the doublet η, which later in this model can be chosen as the dark matter (DM)

candidate for the lightest neutral component with Z2 odd parity, and singlet-scalars σ and S

which later be used as the linear combination of inflaton in this model. The SM particles do

not have a charge in this global symmetry. This global U(1) has a color anomaly similar to

the KSVZ model for the strong CP problem [1, 2], then it can play the role of PQ symmetry.

Please note that H† = 1√
2
(0 h∗) is the SM Higgs doublet. Also, we have dRj and eRj as the

SM down-type quarks and charged leptons. We assume, all parameters in Lagrangian are

real-positive and the dominant parts are up to dimension five with the cut-off scale of M∗.

Lastly, we identify Vb as another potential, its terms are invariant under global symmetry

but violate the S number.

Vb = α(S4 + S†4) + βσ†σ(S2 + S†2) =
1

2
S̃2(αS̃2 cos 4ρ+ βσ̃2 cos 2ρ), (3)

where we define σ = σ̃√
2
eiθ and S = S̃√

2
eiρ. Please see fig. I for the corresponding charge

under the symmetry we introduced.
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SU(3)C SU(2)L U(1)Y U(1) Z4 SU(3)C SU(2)L U(1)Y U(1) Z4

DL 3 1 −1
3 0 2 DR 3 1 −1

3 2 0

EL 1 1 -1 0 2 ER 1 1 -1 2 0

σ 1 1 0 -2 2 S 1 1 0 0 2

Nk 1 1 0 1 1 η 1 2 −1
2 -1 1

TABLE I. The additional fields in respect to this model which charge under [SU(3)C × SU(2)L ×

U(1)Y ]× U(1)× Z4

II. THE CP VIOLATION PHASES IN CKM AND PMNS MATRICES

To determine the Yukawa couplings of down-type quarks and charged leptons in the

Lagrangian (1), the mass terms can be written by

(
f̄Li F̄L

)
Mf

fRj
FR

+ h.c., Mf =

mfij 0

Ffj µF

 =

 hfijh 0

(yfjue
iρ + ỹfjue

−iρ) yFw

 . (4)

The f and F correspond to f = d, e and F = D,E for down-type quarks and charge leptons,

also Mf is 4 × 4 mass matrix written in eq. (4). This mass matrix has a similar form [3].

Here, we suggest that global U(1) symmetry works as the PQ symmetry and all parameters

are assumed to be real, the arg(detMf ) = 0 is fulfilled, whether the radiative effects are

taken into account after the braking of PQ symmetry (see [4, 5]).

In this thesis, we assume that µ2
F + FfF † � Ffm†f . It can be obviously satisfied as we

assume u,w � h. We can also have

Bf ' −
AfmfF †f
µ2
F + FfF †f

, Cf '
Ffm†f

µ2
F + FfF †f

, Df ' 1. (5)

These approximately guarantee the unitarity of the matrix Af . It is easy to find

A−1
f m̃2

fAf ' mfm
†
f −

1

µF + FfF †f
(mfF †f )(Ffm†f ). (6)

III. EFFECTIVE MODEL AT LOWER ENERGY REGION

In this section, we turn back to the Lagrangian eq. (I) and (2) and integrating out the

heavy fields σ and S, as in this part we discuss the effective model in the lower energy region.
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It is leaving us with the SM with extended lepton sector as it sounds in Scotogenic model

referred in [6] which invariant under Z2 symmetry. The Lagrangian is

− Lscotogenic =
3∑
j=1

[
MNJ

2
N̄ c
JNj +

3∑
α=1

h̃∗αjηl̄αNj + h.c.

]
+ +m̃2

HH†H + m̃2
ηη
†η

+ λ̃1(H†H)2 + λ̃2(η†η)2 + λ̃3(H†H)(η†η) + λ4(H†η)(η†H) +
λ̃5

2

[
σ(η†H)2 + h.c

]
,

(7)

which the redefined coupling constant (with tilde) are appearing after the symmetry breaking

of σ̃ and S̃:

λ̃1 = λ1 −
κ2
Hσ

4κ̃σ
− κ2

HS

4κ̃S
+
κσSκHσκHS

4κ̃σκ̃S
, λ̃2 = λ2 −

κ2
ησ

4κ̃σ
−
κ2
ηS

4κ̃S
+
κσSκησκηS

4κ̃σκ̃S

λ̃3 = λ3 −
κHσκησ

2κ̃σ
− κHSκηS

2κ̃S
+
κσSκHσκηS + κσSκησκHS

4κ̃σκ̃S
, λ̃5 = λ5

w

M∗
.

(8)

In addition, the mass parameters in this low scale can be written as

MNj = yNjw

m̃2
H = m2

H +

(
κHσ +

κHSκσS
2κ̃S

)
w2 +

(
κHS +

κHSκσS
2κ̃σ

)
u2,

m̃2
η = m2

η +

(
κησ +

κηSκσS
2κ̃S

)
w2 +

(
κηS +

κηSκσS
2κ̃σ

)
u2,

(9)

where in this model η has no VEV if m̃2
η > 0. We assume both m̃H and m̃η is in order of

0(1)TeV, parameters tuning are required for this.

As in the original scotogenic model, the neutrino mass is forbidden at tree level due to

Z2 symmetry but it can be generated through a 1-loop diagram. The result is given by

Mν
αβ '

3∑
j=1

h̃αjh̃βjλ̃5Λj with Λ =
h2

8π

1

MNj

ln
M2

Nj

M2
η

, (10)

where we supposed M2
η = m̃2

η + (λ̃3 + λ4)h2 and MNj �Mη. As an example, we can adjust

some parameters of neutrino Yukawa coupling as [7].

h̃ei = 0, h̃µi = hτi = hi (i = 1, 2); h̃e3 = h̃µ3 = −h̃τ3 = h3 (11)

In this section, we will discuss the Inflation due to singlet scalars. It can be traced back

to the similar problems mentioned in ref. [8–13]. For the remaining of this inflation part,

we borrow the relevant method from ref. [14] and [15]. Straightforwardly, in this model, the

action relevant to inflation is given by
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SJ =

∫
d4x
√
−g
[
− 1

2
M2

pR− ξσσ†σR− ξ̃SS†SR

+ ∂µσ†∂µσ + ∂µS†∂µS − V (σ, S)

]
.

(12)

We impose the conformal transformation

˜gµν = Ω2gµν Ω2 = 1 +
ξσσ̃

2 + ξ̃SS̃
2

M2
p

. (13)

. Using the transformation, we can obtain the Action in the Einstein frame as

SE =

∫
d4x
√
−g
[
− 1

2
M2

pRE +
1

2
∂µφσ∂µφσ +

1

2
∂µφS∂µφS

+
6ξσ ξ̃S

σ̃S̃
M2
p[(

Ω2 + 6ξ2
σ

M2
p
σ̃
)(

Ω2 +
6ξ̃2
S

M2
p
S̃
)]1/2

∂µφσ∂µφS −
1

Ω4
V (σ̃, S̃)

]
,

(14)

where the supscript E represents the Einstein frame. In addition, three regions are contain-

ing the inflaton potential

V (φ) =


κ̂S
4ξ̃2
S

M4
p

[
1− exp

(
−
√

2
3
φ
Mp

)]2

if φ > Mp

κ̂S
6ξ̃2
S

M2
pφ

2 if Mp

ξ̃S
< φ < Mp

1
4
κ̂φ4, if φ < Mp

ξ̃S
,

(15)

The first region (φ > Mp) correspond to the inflationary phase, the inflation ends when

φ 'Mp. After the end of inflation, if ξ̃S > 1, the inflation will reach the quadratic potential

depicted in the second region (Mp/ξ̃S < φ < Mp).

It is necessary to calculate the slow roll parameters as

ε ≡ 1

2
Mp

(
V ′

V

)2

=
8M4

p

bξ̃S

(
1 + 6ξ̃S/b

)
S̃4
, η ≡M2

p

V ′′

V
= −

8M2
p

b
(

1 + 6ξ̃S/b
)
S̃2
. (16)

The number of e-folds Nk with scale k exits the Horizon to the end of inflation can be

calculated as

Nk =
1

Mp

∫ φk

φend

V

V ′
dφ =

1

8M2
p

(b+ 6ξ̃S)(S̃2
k − S̃2

end)−
3

4
ln

M2
p + ξ̃SS̃

2
k

M2
p + ξ̃SS̃2

end

, (17)

With this, we have another approximate relation, there are: ε ' 3
4NK

and η ' − 1
Nk . The

potential during the end of inflation is approximated to be V (φ) ' 0.072 κ̂S
ξ̃2
S

M4
p .
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FIG. 1. We varied the coupling constant κ̂ ∼ 10−7 − 10−10 with the values of ns and r can be

read-off by the intersection of fixed ξ̃S or Nk.

The scalar power spectrum can be written as

P(k) = As

(
k

k∗

)ns−1

As =
V 3

12π2M6
pV
′2 =

V

24π2M4
p ε

∣∣∣∣
k∗

. (18)

If we used the Planck data As = (2.101+0.031
−0.034) × 10−9 at k∗ = 0.05Mpc−1 [16]. We find the

constraint

κ̂S ' 4.13× 10−10ξ̃2
S

(
60

Nk∗

)2

. (19)

As we already have all requirements to calculate the spectral index and the tensor-to-scalar

ratio respectively

r = 16ε ns = 1− 6ε+ 2η. (20)

Since κ̂S is free parameter in our model, using the the fixed values of ξ̃S andN‖, we choose the

range 10−10 ≤ κ̂S ≤ 10−7. The constraint of CMB (19) can be obtained in the intersection

points of the fixed ξ̃S and Nk (see fig. 1).
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IV. END OF INFLATION: PREHEATING AND REHEATING

During the end of Inflation, the friction (3Hφ̇) is getting smaller, and comparable with

other terms. With this, we can write the Klein-Gordon equation as

φ̈+
dV (φ)

dφ
' 0. (21)

As we already stated, the quadratic potential is neglected due to the reason we mentioned

before. Thus the quartic potential plays a substantial role to drain the inflaton energy. If

we introduce the dimensionless conformal time τ as aτ =
√
κ̂Sφend and also we redefine the

field f = aφ
φend

, eq. (21). Hence, it can be approximated by

d2f

dτ 2
+ f 3 = 0. (22)

The solution of this equation is belong to Jacobi Elliptic function f(τ) = cn
(
τ − τi, 1√

2

)
[14, 15]. The last equation is obtained by using redefinition of conformal time as

a(τ) =
φend

2
√

3Mp

τ τ = 2(3κ̂SM
2
p )1/4
√
t. (23)

In the purpose of our discussion, we will recall some terms in Lagrangian (I) and (2)

which correspond to the the field σ̃ and S̃ and substitute both fields with φ, we obtain[
− yD√

2

κσS
2κ̃σ

φD̄LD̄R −
yE√

2

κσS
2κ̃σ

φĒLĒR −
3∑
j=1

{
1√
2

(ydje
iρ + ỹdje

−iρ)φD̄LdRj

+
1√
2

(yeje
iρ + ỹeje

−iρ)φĒLeRj +
yNj

2
√

2

κσS
2κ̃σ

φN̄ c
jNj

}
+ h.c

]
+

1

2
(κσSH†H + κηSη

†η)φ2 − 1

2

κσS
2κ̃σ

(κHσH†H + κHση
†η)φ2.

(24)

Thus, the mass term from eq. (24) can be extracted explicitly

MNj =
yNj√

2

|κσS|
2κ̃σ

φ M̃F =
φ√
2

[
3∑
j=1

(y2
fj

+ ỹ2
fj

) + y2
F

κ2
σS

4κ̃2
σ

]1/2

m2
H =

1

2

(
κHS +

|κσS|
2κ̃σ

κHσ

)
φ2 m2

η =
1

2

(
κηS +

|κσS|
2κ̃σ

κησ

)
φ2.

(25)

Where F = D or E should be regarded similar with f = d or e. In addition, we will recall

back and and split S̃2 to be S̃2 = S2
‖ + S2

⊥, also the same way with σ̃, we finally have

κ̃S
4

(S2
‖ + S2

⊥ − u2)2 +
κσS
4

(S2
‖ + S2

⊥ − u2)(σ2
‖ + σ2

⊥ − w2) +
κ̃σ
4

(σ2
‖ + σ2

⊥ − w2)2. (26)
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Using the last potential, we can obtain the masses of each component:

m2
S‖

=
∂2V

∂S2
‖

=
(

3κ̃SS
2
‖ +

κσS
2

(σ2
‖ + σ2

⊥ − w2)
)

=

(
3κ̃SS

2
‖ −

κ2
σS

4κ̃σ
(S2
‖ + S2

⊥ − u2)

)
'
(

3κ̃SS
2
‖ −

κ2
σS

4κ̃σ
S2
‖

)
=

(
3κ̃SS

2
‖ −

κ2
σS

2κ̃σ
S2
‖ +

κ2
σS

4κ̃σ
S2
‖

)
=

(
3κ̂SS

2
‖ −

κ2
σS

4κ̃σ
S‖

)
=

(
3κ̂2

S +
κ2
σS

4κ̃σ

)
φ2.

(27)

where we have used σ̃ =
√
|κσS |
2κ̃S

S̃ and S‖ � S⊥, u, since in this part we regard S‖ as inflaton.

Using the same method, as we skipped their calculation for better reason, the other masses

can be obtained:

m2
S⊥

= κ̂Sφ
2, m2

σ‖
=

(
|κσS|+

κ2
σS

4κ̃σ

)
φ2, and m2

σ⊥
=
κσS
4κ̃σ

φ2. (28)

It is clear, the masses of particles are φ dependent, so the decay channel is opened once

φ ' 0. Hence, the particles are produced during zero crossings. Here we write the equation

of oscillation for the self-production of the inflaton

d2Φk

dτ 2
+ ω2

kΦk = 0, ω2 = k̄2 + 3f(τ)2, (29)

and the equation of the created particles

d2Fk
dτ 2

+ ω̃2
kFk = 0, ω̃2 = k̄2 +

gψ
κ̂S
f(τ)2, (30)

where we have used the rescaled variables

Φk =
aφk
φend

Fk =
aψk
φend

k̄ =
ak

φend
√
κ̂S
. (31)

Here f(τ) is the solution of Eq. (22). Both Φk and Fk shown the exponential behavior

∝ eµkτ , where µk represents the characteristic exponent [14, 17]. This µk is determined by

the ratio of gψ/κ̂S. The number density of produced particle of each species ψ can be written

as

nψk =
ω̃k
2κ̂S

(
|Fk|2

ω̃k
+ |Fk|2

)
− 1

2
. (32)

We then parametrize the coupling gψ into 5 groups

(A)
gσ‖
κ̂S
� 1, (B)

gS‖
κ̂S

= 3, (C)
gS⊥
κ̂S

= 1, (D)
gσ⊥
κ̂S
� 1, (E)

gH
κ̂S
,
gη
κ̂S

> 1. (33)

We conclude here, the (A)-(D) cases are well constrained by the composition of the infla-

tionary model, meanwhile, (E) are not.
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The momentum distribution of produced particle ψ-species through the one-zero crossing

of inflaton φ is

nψ
k̄

= e2µk
τ0
2 = e−( k̄

k̄c
)

2

, k̄2
c =

√
gψ

2π2, κ̂S
(34)

where τ0 is the inflaton period. The resonance is efficient for k̄ < k̄c, then the particle

number density of species ψ can be calculated via

nψ =

∫
d3k̄

(2π)3
nψ
k̄

=

∫
d3k̄

(2π)3
e−( k̄

k̄c
)

2

=
k̄3
c

8π3/2
. (35)

The energy transfer from inflaton to relativistic particles happens from the decay of H and

η. Thus, the relativistic particles are created by indirect ones. The H → q̄t decay process

with top Yukawa coupling ht while η → l̄N with neutrino Yukawa coupling hj. During the

oscillation period, the induced mass η can be larger than Nj. The decay width of ψ = H, η

can be written by

Γ̄ψ =
cψy

2
ψ

8π
m̄ψ m̄ψ =

amψ

φend
√
κ̂S

=

√
gψ
κ̂S
f(τ), (36)

where cψ is internal degrees of freedom, cH = 3 and cη = 1. The Yukawa coupling yψ

represents yH = ht and yη = hj. For Γ̄−1
ψ < τ0/2 is satisfied with gψ > 4 × 10−7

(
κ̂S

10−8

)
, the

produced ψ-species decays to the relativistic fermions are finished before next zero-crossing

[18]. If we fix τ = 0 at the first zero-crossing, we can approximate f(τ) = sin(cf0τ). The

energy transferred by ψ decay can be written by

δρ̄r =

∫ τ0/2

0

dτ Γ̄ψm̄ψn̄ψe
−

∫ τ
0 Γ̄ψτ

′
=

1

8π3/2(2π2)3/4

(
gψ
κ̂S

)5/4

Y (f0, γψ). (37)

where γψ and Y (f0, γψ) are defined as

γψ =
cψy

2
ψ

8πc

√
gψ
κ̂S
, Y (f0, γψ) = cγψ

∫ τ0/2

0

dτf 2
0 sin2(cf0τ)e−2γψ sin2(

cf0τ
2

), (38)

here we used c = 2π/τ0. The energy density which is transferred to the light particles is

accumulated for each zero-crossing, it can be approximated using average value of τ as

ρ̄r =
2τ

τ0

δρ̄r = 6.5× 10−4

(
gψ
κ̂S

)5/4

Y (f0, γψ)τ, (39)

where we assumed f0 to be constant. The total energy density of the inflation energy ρ̄φ and

transfer energy ρ̄r are conserved, the reheating temperature can be found by using relation

ρ̄φ = ρ̄r. We found

1

4κ̂S

(√
κSφend
a

)4

=
π2

30
g∗T

4
R, (40)
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FIG. 2. left: the comparison of the reheating temperature TR in (a) preheating and (b) perturbative

process, where the assumed perturbative process is h→ q̄t. right: the reheating temperature due

to σ. We fix κ̃σ = (104.5, 105.3) and vary the parameters κ̃S , κσS/κ̃σ.

we used ρ̄φ = 1
4κ̂S

and g∗ = 130. Using relation (23) and (39) to (40) we obtain

TR = 5.9× 1015g
5/4
ψ Y (f0, γψ)GeV. (41)

V. LEPTOGENESIS

In the ordinary seesaw model, the neutrino mass is generated by Yukawa interaction

hαj l̄αηNj.The production of N1, the lightest right-handed-neutrino, in the thermal bath, is

due to the scattering process of D̃LDR, ẼLER → N1N1 mediated by σ̃ if both fermions are in

thermal equilibrium. The conditions T > M̃F ,MN1 and ΓFF ' H must be satisfied, where

ΓFF is the reaction rate of the scattering. The estimation of the temperature using relation

of ΓFF ' H(T ) gives

T ' 5.8× 108
( yF

10−1.2

)2 ( yN1

10−2

)2

GeV. (42)

Thus, T > M̃F ,MN1 if yF and yN1 satisfied.

after N1 is created by scattering of extra fermions, the decay product lαη
† is expected by

suppressed Yukawa coupling hα1. After the washout process which is labeled as frozen out,

the decay occurs and so the lepton number asymmetry which is generated can be efficiently

converted to baryon number asymmetry via sphaleron processes. We can investigate this

case by solving Boltzmann equation for YN1 and YL(≡ Yl − Ȳl). Yψ =
nψ
s

, with number
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FIG. 3. Both Figures correspond to the evolution of YL and YN1 . Case (I) is depicted in left-panel

with κHσ = 10−4 and κHS = κηS = 0 Case (II) is depicted in right-panel for κHS = κηS = 10−6

while κHσ = κησ = 0. Please note, the other parameters depicted in the the text. The initial

condition is simply depicted as YL = YN1 = 0 at z = zR while ρN1/ρR depicted as ratio of energy

density of N1 and radiation.

density nψ and entropy density s. Solving the Boltzman equation, we see the plot in fig. 3.

VI. DARK MATTER AND ISOCURVATURE FLUCTUATIONS

In this model, we propose 2 dark matters candidate. The first is the lightest component of

η with Z2 odd parity [19–23]. If we assume ηR is the main component of the dark matter, the

dark matter abundance and its direct search can be preserved if λ̃3 and |λ4| take the suitable

values. However, these parameters may affect the perturbativity of the quartic coupling due

to radiative corrections, but we can safely stay away from this problem in certain regions.

The other candidate for dark matter is Axion. This happens if fa ∼ 1011GeV. This case is

can be inferred to the case (II). The PQ symmetry is spontaneously broken during inflation.

The Axion is depicted as the phase θ in σ = 1√
2
σ̃eiθ and its potential is flat during inflation.

The Axion gets the quantum fluctuation δA =
(
H
2π

)2
and causes the isocurvature fluctuation

and affects the CMB amplitude [24–26].
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